3.150 \(\int e^{n \coth ^{-1}(a x)} x \, dx\)

Optimal. Leaf size=122 \[ \frac{2 n \left (\frac{1}{a x}+1\right )^{\frac{n-2}{2}} \left (1-\frac{1}{a x}\right )^{1-\frac{n}{2}} \text{Hypergeometric2F1}\left (2,1-\frac{n}{2},2-\frac{n}{2},\frac{a-\frac{1}{x}}{a+\frac{1}{x}}\right )}{a^2 (2-n)}+\frac{1}{2} x^2 \left (\frac{1}{a x}+1\right )^{\frac{n+2}{2}} \left (1-\frac{1}{a x}\right )^{1-\frac{n}{2}} \]

[Out]

((1 - 1/(a*x))^(1 - n/2)*(1 + 1/(a*x))^((2 + n)/2)*x^2)/2 + (2*n*(1 - 1/(a*x))^(1 - n/2)*(1 + 1/(a*x))^((-2 +
n)/2)*Hypergeometric2F1[2, 1 - n/2, 2 - n/2, (a - x^(-1))/(a + x^(-1))])/(a^2*(2 - n))

________________________________________________________________________________________

Rubi [A]  time = 0.0565528, antiderivative size = 122, normalized size of antiderivative = 1., number of steps used = 3, number of rules used = 3, integrand size = 10, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.3, Rules used = {6171, 96, 131} \[ \frac{2 n \left (\frac{1}{a x}+1\right )^{\frac{n-2}{2}} \left (1-\frac{1}{a x}\right )^{1-\frac{n}{2}} \, _2F_1\left (2,1-\frac{n}{2};2-\frac{n}{2};\frac{a-\frac{1}{x}}{a+\frac{1}{x}}\right )}{a^2 (2-n)}+\frac{1}{2} x^2 \left (\frac{1}{a x}+1\right )^{\frac{n+2}{2}} \left (1-\frac{1}{a x}\right )^{1-\frac{n}{2}} \]

Antiderivative was successfully verified.

[In]

Int[E^(n*ArcCoth[a*x])*x,x]

[Out]

((1 - 1/(a*x))^(1 - n/2)*(1 + 1/(a*x))^((2 + n)/2)*x^2)/2 + (2*n*(1 - 1/(a*x))^(1 - n/2)*(1 + 1/(a*x))^((-2 +
n)/2)*Hypergeometric2F1[2, 1 - n/2, 2 - n/2, (a - x^(-1))/(a + x^(-1))])/(a^2*(2 - n))

Rule 6171

Int[E^(ArcCoth[(a_.)*(x_)]*(n_))*(x_)^(m_.), x_Symbol] :> -Subst[Int[(1 + x/a)^(n/2)/(x^(m + 2)*(1 - x/a)^(n/2
)), x], x, 1/x] /; FreeQ[{a, n}, x] &&  !IntegerQ[n] && IntegerQ[m]

Rule 96

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Simp[(b*(a +
 b*x)^(m + 1)*(c + d*x)^(n + 1)*(e + f*x)^(p + 1))/((m + 1)*(b*c - a*d)*(b*e - a*f)), x] + Dist[(a*d*f*(m + 1)
 + b*c*f*(n + 1) + b*d*e*(p + 1))/((m + 1)*(b*c - a*d)*(b*e - a*f)), Int[(a + b*x)^(m + 1)*(c + d*x)^n*(e + f*
x)^p, x], x] /; FreeQ[{a, b, c, d, e, f, m, n, p}, x] && EqQ[Simplify[m + n + p + 3], 0] && (LtQ[m, -1] || Sum
SimplerQ[m, 1])

Rule 131

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_), x_Symbol] :> Simp[((b*c -
a*d)^n*(a + b*x)^(m + 1)*Hypergeometric2F1[m + 1, -n, m + 2, -(((d*e - c*f)*(a + b*x))/((b*c - a*d)*(e + f*x))
)])/((m + 1)*(b*e - a*f)^(n + 1)*(e + f*x)^(m + 1)), x] /; FreeQ[{a, b, c, d, e, f, m, p}, x] && EqQ[m + n + p
 + 2, 0] && ILtQ[n, 0]

Rubi steps

\begin{align*} \int e^{n \coth ^{-1}(a x)} x \, dx &=-\operatorname{Subst}\left (\int \frac{\left (1-\frac{x}{a}\right )^{-n/2} \left (1+\frac{x}{a}\right )^{n/2}}{x^3} \, dx,x,\frac{1}{x}\right )\\ &=\frac{1}{2} \left (1-\frac{1}{a x}\right )^{1-\frac{n}{2}} \left (1+\frac{1}{a x}\right )^{\frac{2+n}{2}} x^2-\frac{n \operatorname{Subst}\left (\int \frac{\left (1-\frac{x}{a}\right )^{-n/2} \left (1+\frac{x}{a}\right )^{n/2}}{x^2} \, dx,x,\frac{1}{x}\right )}{2 a}\\ &=\frac{1}{2} \left (1-\frac{1}{a x}\right )^{1-\frac{n}{2}} \left (1+\frac{1}{a x}\right )^{\frac{2+n}{2}} x^2+\frac{2 n \left (1-\frac{1}{a x}\right )^{1-\frac{n}{2}} \left (1+\frac{1}{a x}\right )^{\frac{1}{2} (-2+n)} \, _2F_1\left (2,1-\frac{n}{2};2-\frac{n}{2};\frac{a-\frac{1}{x}}{a+\frac{1}{x}}\right )}{a^2 (2-n)}\\ \end{align*}

Mathematica [A]  time = 0.297065, size = 98, normalized size = 0.8 \[ \frac{e^{n \coth ^{-1}(a x)} \left ((n+2) \left (n \text{Hypergeometric2F1}\left (1,\frac{n}{2},\frac{n}{2}+1,e^{2 \coth ^{-1}(a x)}\right )+a^2 x^2+a n x-1\right )+n^2 e^{2 \coth ^{-1}(a x)} \text{Hypergeometric2F1}\left (1,\frac{n}{2}+1,\frac{n}{2}+2,e^{2 \coth ^{-1}(a x)}\right )\right )}{2 a^2 (n+2)} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[E^(n*ArcCoth[a*x])*x,x]

[Out]

(E^(n*ArcCoth[a*x])*(E^(2*ArcCoth[a*x])*n^2*Hypergeometric2F1[1, 1 + n/2, 2 + n/2, E^(2*ArcCoth[a*x])] + (2 +
n)*(-1 + a*n*x + a^2*x^2 + n*Hypergeometric2F1[1, n/2, 1 + n/2, E^(2*ArcCoth[a*x])])))/(2*a^2*(2 + n))

________________________________________________________________________________________

Maple [F]  time = 0.066, size = 0, normalized size = 0. \begin{align*} \int{{\rm e}^{n{\rm arccoth} \left (ax\right )}}x\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(exp(n*arccoth(a*x))*x,x)

[Out]

int(exp(n*arccoth(a*x))*x,x)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int x \left (\frac{a x - 1}{a x + 1}\right )^{\frac{1}{2} \, n}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(exp(n*arccoth(a*x))*x,x, algorithm="maxima")

[Out]

integrate(x*((a*x - 1)/(a*x + 1))^(1/2*n), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (x \left (\frac{a x - 1}{a x + 1}\right )^{\frac{1}{2} \, n}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(exp(n*arccoth(a*x))*x,x, algorithm="fricas")

[Out]

integral(x*((a*x - 1)/(a*x + 1))^(1/2*n), x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int x e^{n \operatorname{acoth}{\left (a x \right )}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(exp(n*acoth(a*x))*x,x)

[Out]

Integral(x*exp(n*acoth(a*x)), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int x \left (\frac{a x - 1}{a x + 1}\right )^{\frac{1}{2} \, n}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(exp(n*arccoth(a*x))*x,x, algorithm="giac")

[Out]

integrate(x*((a*x - 1)/(a*x + 1))^(1/2*n), x)