3.142 \(\int e^{-\frac{1}{2} \coth ^{-1}(a x)} x^m \, dx\)

Optimal. Leaf size=41 \[ \frac{x^{m+1} F_1\left (-m-1;-\frac{1}{4},\frac{1}{4};-m;\frac{1}{a x},-\frac{1}{a x}\right )}{m+1} \]

[Out]

(x^(1 + m)*AppellF1[-1 - m, -1/4, 1/4, -m, 1/(a*x), -(1/(a*x))])/(1 + m)

________________________________________________________________________________________

Rubi [A]  time = 0.036163, antiderivative size = 41, normalized size of antiderivative = 1., number of steps used = 2, number of rules used = 2, integrand size = 14, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.143, Rules used = {6173, 133} \[ \frac{x^{m+1} F_1\left (-m-1;-\frac{1}{4},\frac{1}{4};-m;\frac{1}{a x},-\frac{1}{a x}\right )}{m+1} \]

Antiderivative was successfully verified.

[In]

Int[x^m/E^(ArcCoth[a*x]/2),x]

[Out]

(x^(1 + m)*AppellF1[-1 - m, -1/4, 1/4, -m, 1/(a*x), -(1/(a*x))])/(1 + m)

Rule 6173

Int[E^(ArcCoth[(a_.)*(x_)]*(n_))*(x_)^(m_), x_Symbol] :> -Dist[x^m*(1/x)^m, Subst[Int[(1 + x/a)^(n/2)/(x^(m +
2)*(1 - x/a)^(n/2)), x], x, 1/x], x] /; FreeQ[{a, m, n}, x] &&  !IntegerQ[n] &&  !IntegerQ[m]

Rule 133

Int[((b_.)*(x_))^(m_)*((c_) + (d_.)*(x_))^(n_)*((e_) + (f_.)*(x_))^(p_), x_Symbol] :> Simp[(c^n*e^p*(b*x)^(m +
 1)*AppellF1[m + 1, -n, -p, m + 2, -((d*x)/c), -((f*x)/e)])/(b*(m + 1)), x] /; FreeQ[{b, c, d, e, f, m, n, p},
 x] &&  !IntegerQ[m] &&  !IntegerQ[n] && GtQ[c, 0] && (IntegerQ[p] || GtQ[e, 0])

Rubi steps

\begin{align*} \int e^{-\frac{1}{2} \coth ^{-1}(a x)} x^m \, dx &=-\left (\left (\left (\frac{1}{x}\right )^m x^m\right ) \operatorname{Subst}\left (\int \frac{x^{-2-m} \sqrt [4]{1-\frac{x}{a}}}{\sqrt [4]{1+\frac{x}{a}}} \, dx,x,\frac{1}{x}\right )\right )\\ &=\frac{x^{1+m} F_1\left (-1-m;-\frac{1}{4},\frac{1}{4};-m;\frac{1}{a x},-\frac{1}{a x}\right )}{1+m}\\ \end{align*}

Mathematica [F]  time = 0.340857, size = 0, normalized size = 0. \[ \int e^{-\frac{1}{2} \coth ^{-1}(a x)} x^m \, dx \]

Verification is Not applicable to the result.

[In]

Integrate[x^m/E^(ArcCoth[a*x]/2),x]

[Out]

Integrate[x^m/E^(ArcCoth[a*x]/2), x]

________________________________________________________________________________________

Maple [F]  time = 0.139, size = 0, normalized size = 0. \begin{align*} \int{x}^{m}\sqrt [4]{{\frac{ax-1}{ax+1}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^m*((a*x-1)/(a*x+1))^(1/4),x)

[Out]

int(x^m*((a*x-1)/(a*x+1))^(1/4),x)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int x^{m} \left (\frac{a x - 1}{a x + 1}\right )^{\frac{1}{4}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^m*((a*x-1)/(a*x+1))^(1/4),x, algorithm="maxima")

[Out]

integrate(x^m*((a*x - 1)/(a*x + 1))^(1/4), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (x^{m} \left (\frac{a x - 1}{a x + 1}\right )^{\frac{1}{4}}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^m*((a*x-1)/(a*x+1))^(1/4),x, algorithm="fricas")

[Out]

integral(x^m*((a*x - 1)/(a*x + 1))^(1/4), x)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**m*((a*x-1)/(a*x+1))**(1/4),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int x^{m} \left (\frac{a x - 1}{a x + 1}\right )^{\frac{1}{4}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^m*((a*x-1)/(a*x+1))^(1/4),x, algorithm="giac")

[Out]

integrate(x^m*((a*x - 1)/(a*x + 1))^(1/4), x)