### 3.116 $$\int \frac{e^{\frac{1}{3} \coth ^{-1}(x)}}{x} \, dx$$

Optimal. Leaf size=402 $-\frac{1}{2} \log \left (\frac{\sqrt [3]{\frac{1}{x}+1}}{\sqrt [3]{\frac{x-1}{x}}}-\frac{\sqrt [6]{\frac{1}{x}+1}}{\sqrt [6]{\frac{x-1}{x}}}+1\right )+\frac{1}{2} \log \left (\frac{\sqrt [3]{\frac{1}{x}+1}}{\sqrt [3]{\frac{x-1}{x}}}+\frac{\sqrt [6]{\frac{1}{x}+1}}{\sqrt [6]{\frac{x-1}{x}}}+1\right )+\frac{1}{2} \sqrt{3} \log \left (\frac{\sqrt [3]{\frac{x-1}{x}}}{\sqrt [3]{\frac{1}{x}+1}}-\frac{\sqrt{3} \sqrt [6]{\frac{x-1}{x}}}{\sqrt [6]{\frac{1}{x}+1}}+1\right )-\frac{1}{2} \sqrt{3} \log \left (\frac{\sqrt [3]{\frac{x-1}{x}}}{\sqrt [3]{\frac{1}{x}+1}}+\frac{\sqrt{3} \sqrt [6]{\frac{x-1}{x}}}{\sqrt [6]{\frac{1}{x}+1}}+1\right )-\sqrt{3} \tan ^{-1}\left (\frac{1-\frac{2 \sqrt [6]{\frac{1}{x}+1}}{\sqrt [6]{\frac{x-1}{x}}}}{\sqrt{3}}\right )+\sqrt{3} \tan ^{-1}\left (\frac{\frac{2 \sqrt [6]{\frac{1}{x}+1}}{\sqrt [6]{\frac{x-1}{x}}}+1}{\sqrt{3}}\right )-\tan ^{-1}\left (\sqrt{3}-\frac{2 \sqrt [6]{\frac{x-1}{x}}}{\sqrt [6]{\frac{1}{x}+1}}\right )+\tan ^{-1}\left (\frac{2 \sqrt [6]{\frac{x-1}{x}}}{\sqrt [6]{\frac{1}{x}+1}}+\sqrt{3}\right )+2 \tan ^{-1}\left (\frac{\sqrt [6]{\frac{x-1}{x}}}{\sqrt [6]{\frac{1}{x}+1}}\right )+2 \tanh ^{-1}\left (\frac{\sqrt [6]{\frac{1}{x}+1}}{\sqrt [6]{\frac{x-1}{x}}}\right )$

[Out]

-(Sqrt[3]*ArcTan[(1 - (2*(1 + x^(-1))^(1/6))/((-1 + x)/x)^(1/6))/Sqrt[3]]) + Sqrt[3]*ArcTan[(1 + (2*(1 + x^(-1
))^(1/6))/((-1 + x)/x)^(1/6))/Sqrt[3]] - ArcTan[Sqrt[3] - (2*((-1 + x)/x)^(1/6))/(1 + x^(-1))^(1/6)] + ArcTan[
Sqrt[3] + (2*((-1 + x)/x)^(1/6))/(1 + x^(-1))^(1/6)] + 2*ArcTan[((-1 + x)/x)^(1/6)/(1 + x^(-1))^(1/6)] + 2*Arc
Tanh[(1 + x^(-1))^(1/6)/((-1 + x)/x)^(1/6)] - Log[1 + (1 + x^(-1))^(1/3)/((-1 + x)/x)^(1/3) - (1 + x^(-1))^(1/
6)/((-1 + x)/x)^(1/6)]/2 + Log[1 + (1 + x^(-1))^(1/3)/((-1 + x)/x)^(1/3) + (1 + x^(-1))^(1/6)/((-1 + x)/x)^(1/
6)]/2 + (Sqrt[3]*Log[1 - (Sqrt[3]*((-1 + x)/x)^(1/6))/(1 + x^(-1))^(1/6) + ((-1 + x)/x)^(1/3)/(1 + x^(-1))^(1/
3)])/2 - (Sqrt[3]*Log[1 + (Sqrt[3]*((-1 + x)/x)^(1/6))/(1 + x^(-1))^(1/6) + ((-1 + x)/x)^(1/3)/(1 + x^(-1))^(1
/3)])/2

________________________________________________________________________________________

Rubi [A]  time = 0.525113, antiderivative size = 402, normalized size of antiderivative = 1., number of steps used = 25, number of rules used = 13, integrand size = 12, $$\frac{\text{number of rules}}{\text{integrand size}}$$ = 1.083, Rules used = {6171, 105, 63, 331, 295, 634, 618, 204, 628, 203, 93, 210, 206} $-\frac{1}{2} \log \left (\frac{\sqrt [3]{\frac{1}{x}+1}}{\sqrt [3]{\frac{x-1}{x}}}-\frac{\sqrt [6]{\frac{1}{x}+1}}{\sqrt [6]{\frac{x-1}{x}}}+1\right )+\frac{1}{2} \log \left (\frac{\sqrt [3]{\frac{1}{x}+1}}{\sqrt [3]{\frac{x-1}{x}}}+\frac{\sqrt [6]{\frac{1}{x}+1}}{\sqrt [6]{\frac{x-1}{x}}}+1\right )+\frac{1}{2} \sqrt{3} \log \left (\frac{\sqrt [3]{\frac{x-1}{x}}}{\sqrt [3]{\frac{1}{x}+1}}-\frac{\sqrt{3} \sqrt [6]{\frac{x-1}{x}}}{\sqrt [6]{\frac{1}{x}+1}}+1\right )-\frac{1}{2} \sqrt{3} \log \left (\frac{\sqrt [3]{\frac{x-1}{x}}}{\sqrt [3]{\frac{1}{x}+1}}+\frac{\sqrt{3} \sqrt [6]{\frac{x-1}{x}}}{\sqrt [6]{\frac{1}{x}+1}}+1\right )-\sqrt{3} \tan ^{-1}\left (\frac{1-\frac{2 \sqrt [6]{\frac{1}{x}+1}}{\sqrt [6]{\frac{x-1}{x}}}}{\sqrt{3}}\right )+\sqrt{3} \tan ^{-1}\left (\frac{\frac{2 \sqrt [6]{\frac{1}{x}+1}}{\sqrt [6]{\frac{x-1}{x}}}+1}{\sqrt{3}}\right )-\tan ^{-1}\left (\sqrt{3}-\frac{2 \sqrt [6]{\frac{x-1}{x}}}{\sqrt [6]{\frac{1}{x}+1}}\right )+\tan ^{-1}\left (\frac{2 \sqrt [6]{\frac{x-1}{x}}}{\sqrt [6]{\frac{1}{x}+1}}+\sqrt{3}\right )+2 \tan ^{-1}\left (\frac{\sqrt [6]{\frac{x-1}{x}}}{\sqrt [6]{\frac{1}{x}+1}}\right )+2 \tanh ^{-1}\left (\frac{\sqrt [6]{\frac{1}{x}+1}}{\sqrt [6]{\frac{x-1}{x}}}\right )$

Antiderivative was successfully veriﬁed.

[In]

Int[E^(ArcCoth[x]/3)/x,x]

[Out]

-(Sqrt[3]*ArcTan[(1 - (2*(1 + x^(-1))^(1/6))/((-1 + x)/x)^(1/6))/Sqrt[3]]) + Sqrt[3]*ArcTan[(1 + (2*(1 + x^(-1
))^(1/6))/((-1 + x)/x)^(1/6))/Sqrt[3]] - ArcTan[Sqrt[3] - (2*((-1 + x)/x)^(1/6))/(1 + x^(-1))^(1/6)] + ArcTan[
Sqrt[3] + (2*((-1 + x)/x)^(1/6))/(1 + x^(-1))^(1/6)] + 2*ArcTan[((-1 + x)/x)^(1/6)/(1 + x^(-1))^(1/6)] + 2*Arc
Tanh[(1 + x^(-1))^(1/6)/((-1 + x)/x)^(1/6)] - Log[1 + (1 + x^(-1))^(1/3)/((-1 + x)/x)^(1/3) - (1 + x^(-1))^(1/
6)/((-1 + x)/x)^(1/6)]/2 + Log[1 + (1 + x^(-1))^(1/3)/((-1 + x)/x)^(1/3) + (1 + x^(-1))^(1/6)/((-1 + x)/x)^(1/
6)]/2 + (Sqrt[3]*Log[1 - (Sqrt[3]*((-1 + x)/x)^(1/6))/(1 + x^(-1))^(1/6) + ((-1 + x)/x)^(1/3)/(1 + x^(-1))^(1/
3)])/2 - (Sqrt[3]*Log[1 + (Sqrt[3]*((-1 + x)/x)^(1/6))/(1 + x^(-1))^(1/6) + ((-1 + x)/x)^(1/3)/(1 + x^(-1))^(1
/3)])/2

Rule 6171

Int[E^(ArcCoth[(a_.)*(x_)]*(n_))*(x_)^(m_.), x_Symbol] :> -Subst[Int[(1 + x/a)^(n/2)/(x^(m + 2)*(1 - x/a)^(n/2
)), x], x, 1/x] /; FreeQ[{a, n}, x] &&  !IntegerQ[n] && IntegerQ[m]

Rule 105

Int[(((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_))/((e_.) + (f_.)*(x_)), x_Symbol] :> Dist[b/f, Int[(a
+ b*x)^(m - 1)*(c + d*x)^n, x], x] - Dist[(b*e - a*f)/f, Int[((a + b*x)^(m - 1)*(c + d*x)^n)/(e + f*x), x], x]
/; FreeQ[{a, b, c, d, e, f, m, n}, x] && IGtQ[Simplify[m + n + 1], 0] && (GtQ[m, 0] || ( !RationalQ[m] && (Su
mSimplerQ[m, -1] ||  !SumSimplerQ[n, -1])))

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 331

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Dist[a^(p + (m + 1)/n), Subst[Int[x^m/(1 - b*x^n)^(
p + (m + 1)/n + 1), x], x, x/(a + b*x^n)^(1/n)], x] /; FreeQ[{a, b}, x] && IGtQ[n, 0] && LtQ[-1, p, 0] && NeQ[
p, -2^(-1)] && IntegersQ[m, p + (m + 1)/n]

Rule 295

Int[(x_)^(m_.)/((a_) + (b_.)*(x_)^(n_)), x_Symbol] :> Module[{r = Numerator[Rt[a/b, n]], s = Denominator[Rt[a/
b, n]], k, u}, Simp[u = Int[(r*Cos[((2*k - 1)*m*Pi)/n] - s*Cos[((2*k - 1)*(m + 1)*Pi)/n]*x)/(r^2 - 2*r*s*Cos[(
(2*k - 1)*Pi)/n]*x + s^2*x^2), x] + Int[(r*Cos[((2*k - 1)*m*Pi)/n] + s*Cos[((2*k - 1)*(m + 1)*Pi)/n]*x)/(r^2 +
2*r*s*Cos[((2*k - 1)*Pi)/n]*x + s^2*x^2), x]; (2*(-1)^(m/2)*r^(m + 2)*Int[1/(r^2 + s^2*x^2), x])/(a*n*s^m) +
Dist[(2*r^(m + 1))/(a*n*s^m), Sum[u, {k, 1, (n - 2)/4}], x], x]] /; FreeQ[{a, b}, x] && IGtQ[(n - 2)/4, 0] &&
IGtQ[m, 0] && LtQ[m, n - 1] && PosQ[a/b]

Rule 634

Int[((d_.) + (e_.)*(x_))/((a_) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Dist[(2*c*d - b*e)/(2*c), Int[1/(a +
b*x + c*x^2), x], x] + Dist[e/(2*c), Int[(b + 2*c*x)/(a + b*x + c*x^2), x], x] /; FreeQ[{a, b, c, d, e}, x] &
& NeQ[2*c*d - b*e, 0] && NeQ[b^2 - 4*a*c, 0] &&  !NiceSqrtQ[b^2 - 4*a*c]

Rule 618

Int[((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> Dist[-2, Subst[Int[1/Simp[b^2 - 4*a*c - x^2, x], x]
, x, b + 2*c*x], x] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 204

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> -Simp[ArcTan[(Rt[-b, 2]*x)/Rt[-a, 2]]/(Rt[-a, 2]*Rt[-b, 2]), x] /
; FreeQ[{a, b}, x] && PosQ[a/b] && (LtQ[a, 0] || LtQ[b, 0])

Rule 628

Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Simp[(d*Log[RemoveContent[a + b*x +
c*x^2, x]])/b, x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[2*c*d - b*e, 0]

Rule 203

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTan[(Rt[b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[b, 2]), x] /;
FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rule 93

Int[(((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_))/((e_.) + (f_.)*(x_)), x_Symbol] :> With[{q = Denomin
ator[m]}, Dist[q, Subst[Int[x^(q*(m + 1) - 1)/(b*e - a*f - (d*e - c*f)*x^q), x], x, (a + b*x)^(1/q)/(c + d*x)^
(1/q)], x]] /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[m + n + 1, 0] && RationalQ[n] && LtQ[-1, m, 0] && SimplerQ[
a + b*x, c + d*x]

Rule 210

Int[((a_) + (b_.)*(x_)^(n_))^(-1), x_Symbol] :> Module[{r = Numerator[Rt[-(a/b), n]], s = Denominator[Rt[-(a/b
), n]], k, u}, Simp[u = Int[(r - s*Cos[(2*k*Pi)/n]*x)/(r^2 - 2*r*s*Cos[(2*k*Pi)/n]*x + s^2*x^2), x] + Int[(r +
s*Cos[(2*k*Pi)/n]*x)/(r^2 + 2*r*s*Cos[(2*k*Pi)/n]*x + s^2*x^2), x]; (2*r^2*Int[1/(r^2 - s^2*x^2), x])/(a*n) +
Dist[(2*r)/(a*n), Sum[u, {k, 1, (n - 2)/4}], x], x]] /; FreeQ[{a, b}, x] && IGtQ[(n - 2)/4, 0] && NegQ[a/b]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
/; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rubi steps

\begin{align*} \int \frac{e^{\frac{1}{3} \coth ^{-1}(x)}}{x} \, dx &=-\operatorname{Subst}\left (\int \frac{\sqrt [6]{1+x}}{\sqrt [6]{1-x} x} \, dx,x,\frac{1}{x}\right )\\ &=-\operatorname{Subst}\left (\int \frac{1}{\sqrt [6]{1-x} (1+x)^{5/6}} \, dx,x,\frac{1}{x}\right )-\operatorname{Subst}\left (\int \frac{1}{\sqrt [6]{1-x} x (1+x)^{5/6}} \, dx,x,\frac{1}{x}\right )\\ &=6 \operatorname{Subst}\left (\int \frac{x^4}{\left (2-x^6\right )^{5/6}} \, dx,x,\sqrt [6]{\frac{-1+x}{x}}\right )-6 \operatorname{Subst}\left (\int \frac{1}{-1+x^6} \, dx,x,\frac{\sqrt [6]{1+\frac{1}{x}}}{\sqrt [6]{\frac{-1+x}{x}}}\right )\\ &=2 \operatorname{Subst}\left (\int \frac{1}{1-x^2} \, dx,x,\frac{\sqrt [6]{1+\frac{1}{x}}}{\sqrt [6]{\frac{-1+x}{x}}}\right )+2 \operatorname{Subst}\left (\int \frac{1-\frac{x}{2}}{1-x+x^2} \, dx,x,\frac{\sqrt [6]{1+\frac{1}{x}}}{\sqrt [6]{\frac{-1+x}{x}}}\right )+2 \operatorname{Subst}\left (\int \frac{1+\frac{x}{2}}{1+x+x^2} \, dx,x,\frac{\sqrt [6]{1+\frac{1}{x}}}{\sqrt [6]{\frac{-1+x}{x}}}\right )+6 \operatorname{Subst}\left (\int \frac{x^4}{1+x^6} \, dx,x,\frac{\sqrt [6]{\frac{-1+x}{x}}}{\sqrt [6]{1+\frac{1}{x}}}\right )\\ &=2 \tanh ^{-1}\left (\frac{\sqrt [6]{1+\frac{1}{x}}}{\sqrt [6]{-\frac{1-x}{x}}}\right )-\frac{1}{2} \operatorname{Subst}\left (\int \frac{-1+2 x}{1-x+x^2} \, dx,x,\frac{\sqrt [6]{1+\frac{1}{x}}}{\sqrt [6]{\frac{-1+x}{x}}}\right )+\frac{1}{2} \operatorname{Subst}\left (\int \frac{1+2 x}{1+x+x^2} \, dx,x,\frac{\sqrt [6]{1+\frac{1}{x}}}{\sqrt [6]{\frac{-1+x}{x}}}\right )+\frac{3}{2} \operatorname{Subst}\left (\int \frac{1}{1-x+x^2} \, dx,x,\frac{\sqrt [6]{1+\frac{1}{x}}}{\sqrt [6]{\frac{-1+x}{x}}}\right )+\frac{3}{2} \operatorname{Subst}\left (\int \frac{1}{1+x+x^2} \, dx,x,\frac{\sqrt [6]{1+\frac{1}{x}}}{\sqrt [6]{\frac{-1+x}{x}}}\right )+2 \operatorname{Subst}\left (\int \frac{1}{1+x^2} \, dx,x,\frac{\sqrt [6]{\frac{-1+x}{x}}}{\sqrt [6]{1+\frac{1}{x}}}\right )+2 \operatorname{Subst}\left (\int \frac{-\frac{1}{2}+\frac{\sqrt{3} x}{2}}{1-\sqrt{3} x+x^2} \, dx,x,\frac{\sqrt [6]{\frac{-1+x}{x}}}{\sqrt [6]{1+\frac{1}{x}}}\right )+2 \operatorname{Subst}\left (\int \frac{-\frac{1}{2}-\frac{\sqrt{3} x}{2}}{1+\sqrt{3} x+x^2} \, dx,x,\frac{\sqrt [6]{\frac{-1+x}{x}}}{\sqrt [6]{1+\frac{1}{x}}}\right )\\ &=2 \tan ^{-1}\left (\frac{\sqrt [6]{-\frac{1-x}{x}}}{\sqrt [6]{1+\frac{1}{x}}}\right )+2 \tanh ^{-1}\left (\frac{\sqrt [6]{1+\frac{1}{x}}}{\sqrt [6]{-\frac{1-x}{x}}}\right )-\frac{1}{2} \log \left (1+\frac{\sqrt [3]{1+\frac{1}{x}}}{\sqrt [3]{-\frac{1-x}{x}}}-\frac{\sqrt [6]{1+\frac{1}{x}}}{\sqrt [6]{-\frac{1-x}{x}}}\right )+\frac{1}{2} \log \left (1+\frac{\sqrt [3]{1+\frac{1}{x}}}{\sqrt [3]{-\frac{1-x}{x}}}+\frac{\sqrt [6]{1+\frac{1}{x}}}{\sqrt [6]{-\frac{1-x}{x}}}\right )+\frac{1}{2} \operatorname{Subst}\left (\int \frac{1}{1-\sqrt{3} x+x^2} \, dx,x,\frac{\sqrt [6]{\frac{-1+x}{x}}}{\sqrt [6]{1+\frac{1}{x}}}\right )+\frac{1}{2} \operatorname{Subst}\left (\int \frac{1}{1+\sqrt{3} x+x^2} \, dx,x,\frac{\sqrt [6]{\frac{-1+x}{x}}}{\sqrt [6]{1+\frac{1}{x}}}\right )-3 \operatorname{Subst}\left (\int \frac{1}{-3-x^2} \, dx,x,-1+\frac{2 \sqrt [6]{1+\frac{1}{x}}}{\sqrt [6]{\frac{-1+x}{x}}}\right )-3 \operatorname{Subst}\left (\int \frac{1}{-3-x^2} \, dx,x,1+\frac{2 \sqrt [6]{1+\frac{1}{x}}}{\sqrt [6]{\frac{-1+x}{x}}}\right )+\frac{1}{2} \sqrt{3} \operatorname{Subst}\left (\int \frac{-\sqrt{3}+2 x}{1-\sqrt{3} x+x^2} \, dx,x,\frac{\sqrt [6]{\frac{-1+x}{x}}}{\sqrt [6]{1+\frac{1}{x}}}\right )-\frac{1}{2} \sqrt{3} \operatorname{Subst}\left (\int \frac{\sqrt{3}+2 x}{1+\sqrt{3} x+x^2} \, dx,x,\frac{\sqrt [6]{\frac{-1+x}{x}}}{\sqrt [6]{1+\frac{1}{x}}}\right )\\ &=-\sqrt{3} \tan ^{-1}\left (\frac{1-\frac{2 \sqrt [6]{1+\frac{1}{x}}}{\sqrt [6]{-\frac{1-x}{x}}}}{\sqrt{3}}\right )+\sqrt{3} \tan ^{-1}\left (\frac{1+\frac{2 \sqrt [6]{1+\frac{1}{x}}}{\sqrt [6]{-\frac{1-x}{x}}}}{\sqrt{3}}\right )+2 \tan ^{-1}\left (\frac{\sqrt [6]{-\frac{1-x}{x}}}{\sqrt [6]{1+\frac{1}{x}}}\right )+2 \tanh ^{-1}\left (\frac{\sqrt [6]{1+\frac{1}{x}}}{\sqrt [6]{-\frac{1-x}{x}}}\right )-\frac{1}{2} \log \left (1+\frac{\sqrt [3]{1+\frac{1}{x}}}{\sqrt [3]{-\frac{1-x}{x}}}-\frac{\sqrt [6]{1+\frac{1}{x}}}{\sqrt [6]{-\frac{1-x}{x}}}\right )+\frac{1}{2} \log \left (1+\frac{\sqrt [3]{1+\frac{1}{x}}}{\sqrt [3]{-\frac{1-x}{x}}}+\frac{\sqrt [6]{1+\frac{1}{x}}}{\sqrt [6]{-\frac{1-x}{x}}}\right )+\frac{1}{2} \sqrt{3} \log \left (1-\frac{\sqrt{3} \sqrt [6]{-\frac{1-x}{x}}}{\sqrt [6]{1+\frac{1}{x}}}+\frac{\sqrt [3]{-\frac{1-x}{x}}}{\sqrt [3]{1+\frac{1}{x}}}\right )-\frac{1}{2} \sqrt{3} \log \left (1+\frac{\sqrt{3} \sqrt [6]{-\frac{1-x}{x}}}{\sqrt [6]{1+\frac{1}{x}}}+\frac{\sqrt [3]{-\frac{1-x}{x}}}{\sqrt [3]{1+\frac{1}{x}}}\right )-\operatorname{Subst}\left (\int \frac{1}{-1-x^2} \, dx,x,-\sqrt{3}+\frac{2 \sqrt [6]{\frac{-1+x}{x}}}{\sqrt [6]{1+\frac{1}{x}}}\right )-\operatorname{Subst}\left (\int \frac{1}{-1-x^2} \, dx,x,\sqrt{3}+\frac{2 \sqrt [6]{\frac{-1+x}{x}}}{\sqrt [6]{1+\frac{1}{x}}}\right )\\ &=-\sqrt{3} \tan ^{-1}\left (\frac{1-\frac{2 \sqrt [6]{1+\frac{1}{x}}}{\sqrt [6]{-\frac{1-x}{x}}}}{\sqrt{3}}\right )+\sqrt{3} \tan ^{-1}\left (\frac{1+\frac{2 \sqrt [6]{1+\frac{1}{x}}}{\sqrt [6]{-\frac{1-x}{x}}}}{\sqrt{3}}\right )-\tan ^{-1}\left (\sqrt{3}-\frac{2 \sqrt [6]{\frac{-1+x}{x}}}{\sqrt [6]{1+\frac{1}{x}}}\right )+\tan ^{-1}\left (\sqrt{3}+\frac{2 \sqrt [6]{\frac{-1+x}{x}}}{\sqrt [6]{1+\frac{1}{x}}}\right )+2 \tan ^{-1}\left (\frac{\sqrt [6]{-\frac{1-x}{x}}}{\sqrt [6]{1+\frac{1}{x}}}\right )+2 \tanh ^{-1}\left (\frac{\sqrt [6]{1+\frac{1}{x}}}{\sqrt [6]{-\frac{1-x}{x}}}\right )-\frac{1}{2} \log \left (1+\frac{\sqrt [3]{1+\frac{1}{x}}}{\sqrt [3]{-\frac{1-x}{x}}}-\frac{\sqrt [6]{1+\frac{1}{x}}}{\sqrt [6]{-\frac{1-x}{x}}}\right )+\frac{1}{2} \log \left (1+\frac{\sqrt [3]{1+\frac{1}{x}}}{\sqrt [3]{-\frac{1-x}{x}}}+\frac{\sqrt [6]{1+\frac{1}{x}}}{\sqrt [6]{-\frac{1-x}{x}}}\right )+\frac{1}{2} \sqrt{3} \log \left (1-\frac{\sqrt{3} \sqrt [6]{-\frac{1-x}{x}}}{\sqrt [6]{1+\frac{1}{x}}}+\frac{\sqrt [3]{-\frac{1-x}{x}}}{\sqrt [3]{1+\frac{1}{x}}}\right )-\frac{1}{2} \sqrt{3} \log \left (1+\frac{\sqrt{3} \sqrt [6]{-\frac{1-x}{x}}}{\sqrt [6]{1+\frac{1}{x}}}+\frac{\sqrt [3]{-\frac{1-x}{x}}}{\sqrt [3]{1+\frac{1}{x}}}\right )\\ \end{align*}

Mathematica [C]  time = 0.0317729, size = 26, normalized size = 0.06 $\frac{12}{7} e^{\frac{7}{3} \coth ^{-1}(x)} \text{Hypergeometric2F1}\left (\frac{7}{12},1,\frac{19}{12},e^{4 \coth ^{-1}(x)}\right )$

Warning: Unable to verify antiderivative.

[In]

Integrate[E^(ArcCoth[x]/3)/x,x]

[Out]

(12*E^((7*ArcCoth[x])/3)*Hypergeometric2F1[7/12, 1, 19/12, E^(4*ArcCoth[x])])/7

________________________________________________________________________________________

Maple [F]  time = 0.068, size = 0, normalized size = 0. \begin{align*} \int{\frac{1}{x}{\frac{1}{\sqrt [6]{{\frac{-1+x}{1+x}}}}}}\, dx \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

int(1/((-1+x)/(1+x))^(1/6)/x,x)

[Out]

int(1/((-1+x)/(1+x))^(1/6)/x,x)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{x \left (\frac{x - 1}{x + 1}\right )^{\frac{1}{6}}}\,{d x} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/((-1+x)/(1+x))^(1/6)/x,x, algorithm="maxima")

[Out]

integrate(1/(x*((x - 1)/(x + 1))^(1/6)), x)

________________________________________________________________________________________

Fricas [A]  time = 1.83976, size = 1080, normalized size = 2.69 \begin{align*} -\sqrt{3} \arctan \left (\frac{2}{3} \, \sqrt{3} \left (\frac{x - 1}{x + 1}\right )^{\frac{1}{6}} + \frac{1}{3} \, \sqrt{3}\right ) - \sqrt{3} \arctan \left (\frac{2}{3} \, \sqrt{3} \left (\frac{x - 1}{x + 1}\right )^{\frac{1}{6}} - \frac{1}{3} \, \sqrt{3}\right ) - \frac{1}{2} \, \sqrt{3} \log \left (16 \, \sqrt{3} \left (\frac{x - 1}{x + 1}\right )^{\frac{1}{6}} + 16 \, \left (\frac{x - 1}{x + 1}\right )^{\frac{1}{3}} + 16\right ) + \frac{1}{2} \, \sqrt{3} \log \left (-16 \, \sqrt{3} \left (\frac{x - 1}{x + 1}\right )^{\frac{1}{6}} + 16 \, \left (\frac{x - 1}{x + 1}\right )^{\frac{1}{3}} + 16\right ) - 2 \, \arctan \left (\sqrt{3} + \frac{1}{2} \, \sqrt{-16 \, \sqrt{3} \left (\frac{x - 1}{x + 1}\right )^{\frac{1}{6}} + 16 \, \left (\frac{x - 1}{x + 1}\right )^{\frac{1}{3}} + 16} - 2 \, \left (\frac{x - 1}{x + 1}\right )^{\frac{1}{6}}\right ) - 2 \, \arctan \left (-\sqrt{3} + 2 \, \sqrt{\sqrt{3} \left (\frac{x - 1}{x + 1}\right )^{\frac{1}{6}} + \left (\frac{x - 1}{x + 1}\right )^{\frac{1}{3}} + 1} - 2 \, \left (\frac{x - 1}{x + 1}\right )^{\frac{1}{6}}\right ) + 2 \, \arctan \left (\left (\frac{x - 1}{x + 1}\right )^{\frac{1}{6}}\right ) + \frac{1}{2} \, \log \left (\left (\frac{x - 1}{x + 1}\right )^{\frac{1}{3}} + \left (\frac{x - 1}{x + 1}\right )^{\frac{1}{6}} + 1\right ) - \frac{1}{2} \, \log \left (\left (\frac{x - 1}{x + 1}\right )^{\frac{1}{3}} - \left (\frac{x - 1}{x + 1}\right )^{\frac{1}{6}} + 1\right ) + \log \left (\left (\frac{x - 1}{x + 1}\right )^{\frac{1}{6}} + 1\right ) - \log \left (\left (\frac{x - 1}{x + 1}\right )^{\frac{1}{6}} - 1\right ) \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/((-1+x)/(1+x))^(1/6)/x,x, algorithm="fricas")

[Out]

-sqrt(3)*arctan(2/3*sqrt(3)*((x - 1)/(x + 1))^(1/6) + 1/3*sqrt(3)) - sqrt(3)*arctan(2/3*sqrt(3)*((x - 1)/(x +
1))^(1/6) - 1/3*sqrt(3)) - 1/2*sqrt(3)*log(16*sqrt(3)*((x - 1)/(x + 1))^(1/6) + 16*((x - 1)/(x + 1))^(1/3) + 1
6) + 1/2*sqrt(3)*log(-16*sqrt(3)*((x - 1)/(x + 1))^(1/6) + 16*((x - 1)/(x + 1))^(1/3) + 16) - 2*arctan(sqrt(3)
+ 1/2*sqrt(-16*sqrt(3)*((x - 1)/(x + 1))^(1/6) + 16*((x - 1)/(x + 1))^(1/3) + 16) - 2*((x - 1)/(x + 1))^(1/6)
) - 2*arctan(-sqrt(3) + 2*sqrt(sqrt(3)*((x - 1)/(x + 1))^(1/6) + ((x - 1)/(x + 1))^(1/3) + 1) - 2*((x - 1)/(x
+ 1))^(1/6)) + 2*arctan(((x - 1)/(x + 1))^(1/6)) + 1/2*log(((x - 1)/(x + 1))^(1/3) + ((x - 1)/(x + 1))^(1/6) +
1) - 1/2*log(((x - 1)/(x + 1))^(1/3) - ((x - 1)/(x + 1))^(1/6) + 1) + log(((x - 1)/(x + 1))^(1/6) + 1) - log(
((x - 1)/(x + 1))^(1/6) - 1)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{x \sqrt [6]{\frac{x - 1}{x + 1}}}\, dx \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/((-1+x)/(1+x))**(1/6)/x,x)

[Out]

Integral(1/(x*((x - 1)/(x + 1))**(1/6)), x)

________________________________________________________________________________________

Giac [A]  time = 1.18374, size = 352, normalized size = 0.88 \begin{align*} -\sqrt{3} \arctan \left (\frac{1}{3} \, \sqrt{3}{\left (2 \, \left (\frac{x - 1}{x + 1}\right )^{\frac{1}{6}} + 1\right )}\right ) - \sqrt{3} \arctan \left (\frac{1}{3} \, \sqrt{3}{\left (2 \, \left (\frac{x - 1}{x + 1}\right )^{\frac{1}{6}} - 1\right )}\right ) - \frac{1}{2} \, \sqrt{3} \log \left (\sqrt{3} \left (\frac{x - 1}{x + 1}\right )^{\frac{1}{6}} + \left (\frac{x - 1}{x + 1}\right )^{\frac{1}{3}} + 1\right ) + \frac{1}{2} \, \sqrt{3} \log \left (-\sqrt{3} \left (\frac{x - 1}{x + 1}\right )^{\frac{1}{6}} + \left (\frac{x - 1}{x + 1}\right )^{\frac{1}{3}} + 1\right ) + \arctan \left (\sqrt{3} + 2 \, \left (\frac{x - 1}{x + 1}\right )^{\frac{1}{6}}\right ) + \arctan \left (-\sqrt{3} + 2 \, \left (\frac{x - 1}{x + 1}\right )^{\frac{1}{6}}\right ) + 2 \, \arctan \left (\left (\frac{x - 1}{x + 1}\right )^{\frac{1}{6}}\right ) + \frac{1}{2} \, \log \left (\left (\frac{x - 1}{x + 1}\right )^{\frac{1}{3}} + \left (\frac{x - 1}{x + 1}\right )^{\frac{1}{6}} + 1\right ) - \frac{1}{2} \, \log \left (\left (\frac{x - 1}{x + 1}\right )^{\frac{1}{3}} - \left (\frac{x - 1}{x + 1}\right )^{\frac{1}{6}} + 1\right ) + \log \left (\left (\frac{x - 1}{x + 1}\right )^{\frac{1}{6}} + 1\right ) - \log \left ({\left | \left (\frac{x - 1}{x + 1}\right )^{\frac{1}{6}} - 1 \right |}\right ) \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/((-1+x)/(1+x))^(1/6)/x,x, algorithm="giac")

[Out]

-sqrt(3)*arctan(1/3*sqrt(3)*(2*((x - 1)/(x + 1))^(1/6) + 1)) - sqrt(3)*arctan(1/3*sqrt(3)*(2*((x - 1)/(x + 1))
^(1/6) - 1)) - 1/2*sqrt(3)*log(sqrt(3)*((x - 1)/(x + 1))^(1/6) + ((x - 1)/(x + 1))^(1/3) + 1) + 1/2*sqrt(3)*lo
g(-sqrt(3)*((x - 1)/(x + 1))^(1/6) + ((x - 1)/(x + 1))^(1/3) + 1) + arctan(sqrt(3) + 2*((x - 1)/(x + 1))^(1/6)
) + arctan(-sqrt(3) + 2*((x - 1)/(x + 1))^(1/6)) + 2*arctan(((x - 1)/(x + 1))^(1/6)) + 1/2*log(((x - 1)/(x + 1
))^(1/3) + ((x - 1)/(x + 1))^(1/6) + 1) - 1/2*log(((x - 1)/(x + 1))^(1/3) - ((x - 1)/(x + 1))^(1/6) + 1) + log
(((x - 1)/(x + 1))^(1/6) + 1) - log(abs(((x - 1)/(x + 1))^(1/6) - 1))