### 3.105 $$\int e^{-\frac{5}{2} \coth ^{-1}(a x)} x^3 \, dx$$

Optimal. Leaf size=250 $\frac{113 x^2 \sqrt [4]{1-\frac{1}{a x}}}{96 a^2 \sqrt [4]{\frac{1}{a x}+1}}-\frac{521 x \sqrt [4]{1-\frac{1}{a x}}}{192 a^3 \sqrt [4]{\frac{1}{a x}+1}}-\frac{2467 \sqrt [4]{1-\frac{1}{a x}}}{192 a^4 \sqrt [4]{\frac{1}{a x}+1}}-\frac{475 \tan ^{-1}\left (\frac{\sqrt [4]{\frac{1}{a x}+1}}{\sqrt [4]{1-\frac{1}{a x}}}\right )}{64 a^4}+\frac{475 \tanh ^{-1}\left (\frac{\sqrt [4]{\frac{1}{a x}+1}}{\sqrt [4]{1-\frac{1}{a x}}}\right )}{64 a^4}+\frac{x^4 \sqrt [4]{1-\frac{1}{a x}}}{4 \sqrt [4]{\frac{1}{a x}+1}}-\frac{17 x^3 \sqrt [4]{1-\frac{1}{a x}}}{24 a \sqrt [4]{\frac{1}{a x}+1}}$

[Out]

(-2467*(1 - 1/(a*x))^(1/4))/(192*a^4*(1 + 1/(a*x))^(1/4)) - (521*(1 - 1/(a*x))^(1/4)*x)/(192*a^3*(1 + 1/(a*x))
^(1/4)) + (113*(1 - 1/(a*x))^(1/4)*x^2)/(96*a^2*(1 + 1/(a*x))^(1/4)) - (17*(1 - 1/(a*x))^(1/4)*x^3)/(24*a*(1 +
1/(a*x))^(1/4)) + ((1 - 1/(a*x))^(1/4)*x^4)/(4*(1 + 1/(a*x))^(1/4)) - (475*ArcTan[(1 + 1/(a*x))^(1/4)/(1 - 1/
(a*x))^(1/4)])/(64*a^4) + (475*ArcTanh[(1 + 1/(a*x))^(1/4)/(1 - 1/(a*x))^(1/4)])/(64*a^4)

________________________________________________________________________________________

Rubi [A]  time = 0.139989, antiderivative size = 250, normalized size of antiderivative = 1., number of steps used = 11, number of rules used = 9, integrand size = 14, $$\frac{\text{number of rules}}{\text{integrand size}}$$ = 0.643, Rules used = {6171, 98, 151, 155, 12, 93, 298, 203, 206} $\frac{113 x^2 \sqrt [4]{1-\frac{1}{a x}}}{96 a^2 \sqrt [4]{\frac{1}{a x}+1}}-\frac{521 x \sqrt [4]{1-\frac{1}{a x}}}{192 a^3 \sqrt [4]{\frac{1}{a x}+1}}-\frac{2467 \sqrt [4]{1-\frac{1}{a x}}}{192 a^4 \sqrt [4]{\frac{1}{a x}+1}}-\frac{475 \tan ^{-1}\left (\frac{\sqrt [4]{\frac{1}{a x}+1}}{\sqrt [4]{1-\frac{1}{a x}}}\right )}{64 a^4}+\frac{475 \tanh ^{-1}\left (\frac{\sqrt [4]{\frac{1}{a x}+1}}{\sqrt [4]{1-\frac{1}{a x}}}\right )}{64 a^4}+\frac{x^4 \sqrt [4]{1-\frac{1}{a x}}}{4 \sqrt [4]{\frac{1}{a x}+1}}-\frac{17 x^3 \sqrt [4]{1-\frac{1}{a x}}}{24 a \sqrt [4]{\frac{1}{a x}+1}}$

Antiderivative was successfully veriﬁed.

[In]

Int[x^3/E^((5*ArcCoth[a*x])/2),x]

[Out]

(-2467*(1 - 1/(a*x))^(1/4))/(192*a^4*(1 + 1/(a*x))^(1/4)) - (521*(1 - 1/(a*x))^(1/4)*x)/(192*a^3*(1 + 1/(a*x))
^(1/4)) + (113*(1 - 1/(a*x))^(1/4)*x^2)/(96*a^2*(1 + 1/(a*x))^(1/4)) - (17*(1 - 1/(a*x))^(1/4)*x^3)/(24*a*(1 +
1/(a*x))^(1/4)) + ((1 - 1/(a*x))^(1/4)*x^4)/(4*(1 + 1/(a*x))^(1/4)) - (475*ArcTan[(1 + 1/(a*x))^(1/4)/(1 - 1/
(a*x))^(1/4)])/(64*a^4) + (475*ArcTanh[(1 + 1/(a*x))^(1/4)/(1 - 1/(a*x))^(1/4)])/(64*a^4)

Rule 6171

Int[E^(ArcCoth[(a_.)*(x_)]*(n_))*(x_)^(m_.), x_Symbol] :> -Subst[Int[(1 + x/a)^(n/2)/(x^(m + 2)*(1 - x/a)^(n/2
)), x], x, 1/x] /; FreeQ[{a, n}, x] &&  !IntegerQ[n] && IntegerQ[m]

Rule 98

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Simp[((b*c -
a*d)*(a + b*x)^(m + 1)*(c + d*x)^(n - 1)*(e + f*x)^(p + 1))/(b*(b*e - a*f)*(m + 1)), x] + Dist[1/(b*(b*e - a*
f)*(m + 1)), Int[(a + b*x)^(m + 1)*(c + d*x)^(n - 2)*(e + f*x)^p*Simp[a*d*(d*e*(n - 1) + c*f*(p + 1)) + b*c*(d
*e*(m - n + 2) - c*f*(m + p + 2)) + d*(a*d*f*(n + p) + b*(d*e*(m + 1) - c*f*(m + n + p + 1)))*x, x], x], x] /;
FreeQ[{a, b, c, d, e, f, p}, x] && LtQ[m, -1] && GtQ[n, 1] && (IntegersQ[2*m, 2*n, 2*p] || IntegersQ[m, n + p
] || IntegersQ[p, m + n])

Rule 151

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_))^(p_)*((g_.) + (h_.)*(x_)), x_Symb
ol] :> Simp[((b*g - a*h)*(a + b*x)^(m + 1)*(c + d*x)^(n + 1)*(e + f*x)^(p + 1))/((m + 1)*(b*c - a*d)*(b*e - a*
f)), x] + Dist[1/((m + 1)*(b*c - a*d)*(b*e - a*f)), Int[(a + b*x)^(m + 1)*(c + d*x)^n*(e + f*x)^p*Simp[(a*d*f*
g - b*(d*e + c*f)*g + b*c*e*h)*(m + 1) - (b*g - a*h)*(d*e*(n + 1) + c*f*(p + 1)) - d*f*(b*g - a*h)*(m + n + p
+ 3)*x, x], x], x] /; FreeQ[{a, b, c, d, e, f, g, h, n, p}, x] && LtQ[m, -1] && IntegerQ[m]

Rule 155

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_))^(p_)*((g_.) + (h_.)*(x_)), x_Symb
ol] :> Simp[((b*g - a*h)*(a + b*x)^(m + 1)*(c + d*x)^(n + 1)*(e + f*x)^(p + 1))/((m + 1)*(b*c - a*d)*(b*e - a*
f)), x] + Dist[1/((m + 1)*(b*c - a*d)*(b*e - a*f)), Int[(a + b*x)^(m + 1)*(c + d*x)^n*(e + f*x)^p*Simp[(a*d*f*
g - b*(d*e + c*f)*g + b*c*e*h)*(m + 1) - (b*g - a*h)*(d*e*(n + 1) + c*f*(p + 1)) - d*f*(b*g - a*h)*(m + n + p
+ 3)*x, x], x], x] /; FreeQ[{a, b, c, d, e, f, g, h, n, p}, x] && ILtQ[m + n + p + 2, 0] && NeQ[m, -1] && (Sum
SimplerQ[m, 1] || ( !(NeQ[n, -1] && SumSimplerQ[n, 1]) &&  !(NeQ[p, -1] && SumSimplerQ[p, 1])))

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 93

Int[(((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_))/((e_.) + (f_.)*(x_)), x_Symbol] :> With[{q = Denomin
ator[m]}, Dist[q, Subst[Int[x^(q*(m + 1) - 1)/(b*e - a*f - (d*e - c*f)*x^q), x], x, (a + b*x)^(1/q)/(c + d*x)^
(1/q)], x]] /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[m + n + 1, 0] && RationalQ[n] && LtQ[-1, m, 0] && SimplerQ[
a + b*x, c + d*x]

Rule 298

Int[(x_)^2/((a_) + (b_.)*(x_)^4), x_Symbol] :> With[{r = Numerator[Rt[-(a/b), 2]], s = Denominator[Rt[-(a/b),
2]]}, Dist[s/(2*b), Int[1/(r + s*x^2), x], x] - Dist[s/(2*b), Int[1/(r - s*x^2), x], x]] /; FreeQ[{a, b}, x] &
&  !GtQ[a/b, 0]

Rule 203

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTan[(Rt[b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[b, 2]), x] /;
FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
/; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rubi steps

\begin{align*} \int e^{-\frac{5}{2} \coth ^{-1}(a x)} x^3 \, dx &=-\operatorname{Subst}\left (\int \frac{\left (1-\frac{x}{a}\right )^{5/4}}{x^5 \left (1+\frac{x}{a}\right )^{5/4}} \, dx,x,\frac{1}{x}\right )\\ &=\frac{\sqrt [4]{1-\frac{1}{a x}} x^4}{4 \sqrt [4]{1+\frac{1}{a x}}}+\frac{1}{4} \operatorname{Subst}\left (\int \frac{\frac{17}{2 a}-\frac{8 x}{a^2}}{x^4 \left (1-\frac{x}{a}\right )^{3/4} \left (1+\frac{x}{a}\right )^{5/4}} \, dx,x,\frac{1}{x}\right )\\ &=-\frac{17 \sqrt [4]{1-\frac{1}{a x}} x^3}{24 a \sqrt [4]{1+\frac{1}{a x}}}+\frac{\sqrt [4]{1-\frac{1}{a x}} x^4}{4 \sqrt [4]{1+\frac{1}{a x}}}-\frac{1}{12} \operatorname{Subst}\left (\int \frac{\frac{113}{4 a^2}-\frac{51 x}{2 a^3}}{x^3 \left (1-\frac{x}{a}\right )^{3/4} \left (1+\frac{x}{a}\right )^{5/4}} \, dx,x,\frac{1}{x}\right )\\ &=\frac{113 \sqrt [4]{1-\frac{1}{a x}} x^2}{96 a^2 \sqrt [4]{1+\frac{1}{a x}}}-\frac{17 \sqrt [4]{1-\frac{1}{a x}} x^3}{24 a \sqrt [4]{1+\frac{1}{a x}}}+\frac{\sqrt [4]{1-\frac{1}{a x}} x^4}{4 \sqrt [4]{1+\frac{1}{a x}}}+\frac{1}{24} \operatorname{Subst}\left (\int \frac{\frac{521}{8 a^3}-\frac{113 x}{2 a^4}}{x^2 \left (1-\frac{x}{a}\right )^{3/4} \left (1+\frac{x}{a}\right )^{5/4}} \, dx,x,\frac{1}{x}\right )\\ &=-\frac{521 \sqrt [4]{1-\frac{1}{a x}} x}{192 a^3 \sqrt [4]{1+\frac{1}{a x}}}+\frac{113 \sqrt [4]{1-\frac{1}{a x}} x^2}{96 a^2 \sqrt [4]{1+\frac{1}{a x}}}-\frac{17 \sqrt [4]{1-\frac{1}{a x}} x^3}{24 a \sqrt [4]{1+\frac{1}{a x}}}+\frac{\sqrt [4]{1-\frac{1}{a x}} x^4}{4 \sqrt [4]{1+\frac{1}{a x}}}-\frac{1}{24} \operatorname{Subst}\left (\int \frac{\frac{1425}{16 a^4}-\frac{521 x}{8 a^5}}{x \left (1-\frac{x}{a}\right )^{3/4} \left (1+\frac{x}{a}\right )^{5/4}} \, dx,x,\frac{1}{x}\right )\\ &=-\frac{2467 \sqrt [4]{1-\frac{1}{a x}}}{192 a^4 \sqrt [4]{1+\frac{1}{a x}}}-\frac{521 \sqrt [4]{1-\frac{1}{a x}} x}{192 a^3 \sqrt [4]{1+\frac{1}{a x}}}+\frac{113 \sqrt [4]{1-\frac{1}{a x}} x^2}{96 a^2 \sqrt [4]{1+\frac{1}{a x}}}-\frac{17 \sqrt [4]{1-\frac{1}{a x}} x^3}{24 a \sqrt [4]{1+\frac{1}{a x}}}+\frac{\sqrt [4]{1-\frac{1}{a x}} x^4}{4 \sqrt [4]{1+\frac{1}{a x}}}-\frac{1}{12} a \operatorname{Subst}\left (\int \frac{1425}{32 a^5 x \left (1-\frac{x}{a}\right )^{3/4} \sqrt [4]{1+\frac{x}{a}}} \, dx,x,\frac{1}{x}\right )\\ &=-\frac{2467 \sqrt [4]{1-\frac{1}{a x}}}{192 a^4 \sqrt [4]{1+\frac{1}{a x}}}-\frac{521 \sqrt [4]{1-\frac{1}{a x}} x}{192 a^3 \sqrt [4]{1+\frac{1}{a x}}}+\frac{113 \sqrt [4]{1-\frac{1}{a x}} x^2}{96 a^2 \sqrt [4]{1+\frac{1}{a x}}}-\frac{17 \sqrt [4]{1-\frac{1}{a x}} x^3}{24 a \sqrt [4]{1+\frac{1}{a x}}}+\frac{\sqrt [4]{1-\frac{1}{a x}} x^4}{4 \sqrt [4]{1+\frac{1}{a x}}}-\frac{475 \operatorname{Subst}\left (\int \frac{1}{x \left (1-\frac{x}{a}\right )^{3/4} \sqrt [4]{1+\frac{x}{a}}} \, dx,x,\frac{1}{x}\right )}{128 a^4}\\ &=-\frac{2467 \sqrt [4]{1-\frac{1}{a x}}}{192 a^4 \sqrt [4]{1+\frac{1}{a x}}}-\frac{521 \sqrt [4]{1-\frac{1}{a x}} x}{192 a^3 \sqrt [4]{1+\frac{1}{a x}}}+\frac{113 \sqrt [4]{1-\frac{1}{a x}} x^2}{96 a^2 \sqrt [4]{1+\frac{1}{a x}}}-\frac{17 \sqrt [4]{1-\frac{1}{a x}} x^3}{24 a \sqrt [4]{1+\frac{1}{a x}}}+\frac{\sqrt [4]{1-\frac{1}{a x}} x^4}{4 \sqrt [4]{1+\frac{1}{a x}}}-\frac{475 \operatorname{Subst}\left (\int \frac{x^2}{-1+x^4} \, dx,x,\frac{\sqrt [4]{1+\frac{1}{a x}}}{\sqrt [4]{1-\frac{1}{a x}}}\right )}{32 a^4}\\ &=-\frac{2467 \sqrt [4]{1-\frac{1}{a x}}}{192 a^4 \sqrt [4]{1+\frac{1}{a x}}}-\frac{521 \sqrt [4]{1-\frac{1}{a x}} x}{192 a^3 \sqrt [4]{1+\frac{1}{a x}}}+\frac{113 \sqrt [4]{1-\frac{1}{a x}} x^2}{96 a^2 \sqrt [4]{1+\frac{1}{a x}}}-\frac{17 \sqrt [4]{1-\frac{1}{a x}} x^3}{24 a \sqrt [4]{1+\frac{1}{a x}}}+\frac{\sqrt [4]{1-\frac{1}{a x}} x^4}{4 \sqrt [4]{1+\frac{1}{a x}}}+\frac{475 \operatorname{Subst}\left (\int \frac{1}{1-x^2} \, dx,x,\frac{\sqrt [4]{1+\frac{1}{a x}}}{\sqrt [4]{1-\frac{1}{a x}}}\right )}{64 a^4}-\frac{475 \operatorname{Subst}\left (\int \frac{1}{1+x^2} \, dx,x,\frac{\sqrt [4]{1+\frac{1}{a x}}}{\sqrt [4]{1-\frac{1}{a x}}}\right )}{64 a^4}\\ &=-\frac{2467 \sqrt [4]{1-\frac{1}{a x}}}{192 a^4 \sqrt [4]{1+\frac{1}{a x}}}-\frac{521 \sqrt [4]{1-\frac{1}{a x}} x}{192 a^3 \sqrt [4]{1+\frac{1}{a x}}}+\frac{113 \sqrt [4]{1-\frac{1}{a x}} x^2}{96 a^2 \sqrt [4]{1+\frac{1}{a x}}}-\frac{17 \sqrt [4]{1-\frac{1}{a x}} x^3}{24 a \sqrt [4]{1+\frac{1}{a x}}}+\frac{\sqrt [4]{1-\frac{1}{a x}} x^4}{4 \sqrt [4]{1+\frac{1}{a x}}}-\frac{475 \tan ^{-1}\left (\frac{\sqrt [4]{1+\frac{1}{a x}}}{\sqrt [4]{1-\frac{1}{a x}}}\right )}{64 a^4}+\frac{475 \tanh ^{-1}\left (\frac{\sqrt [4]{1+\frac{1}{a x}}}{\sqrt [4]{1-\frac{1}{a x}}}\right )}{64 a^4}\\ \end{align*}

Mathematica [A]  time = 5.30586, size = 161, normalized size = 0.64 $\frac{-3072 e^{-\frac{1}{2} \coth ^{-1}(a x)}-\frac{6292 e^{\frac{3}{2} \coth ^{-1}(a x)}}{e^{2 \coth ^{-1}(a x)}-1}+\frac{7376 e^{\frac{7}{2} \coth ^{-1}(a x)}}{\left (e^{2 \coth ^{-1}(a x)}-1\right )^2}-\frac{5248 e^{\frac{11}{2} \coth ^{-1}(a x)}}{\left (e^{2 \coth ^{-1}(a x)}-1\right )^3}+\frac{1536 e^{\frac{15}{2} \coth ^{-1}(a x)}}{\left (e^{2 \coth ^{-1}(a x)}-1\right )^4}-1425 \log \left (1-e^{-\frac{1}{2} \coth ^{-1}(a x)}\right )+1425 \log \left (e^{-\frac{1}{2} \coth ^{-1}(a x)}+1\right )+2850 \tan ^{-1}\left (e^{-\frac{1}{2} \coth ^{-1}(a x)}\right )}{384 a^4}$

Warning: Unable to verify antiderivative.

[In]

Integrate[x^3/E^((5*ArcCoth[a*x])/2),x]

[Out]

(-3072/E^(ArcCoth[a*x]/2) + (1536*E^((15*ArcCoth[a*x])/2))/(-1 + E^(2*ArcCoth[a*x]))^4 - (5248*E^((11*ArcCoth[
a*x])/2))/(-1 + E^(2*ArcCoth[a*x]))^3 + (7376*E^((7*ArcCoth[a*x])/2))/(-1 + E^(2*ArcCoth[a*x]))^2 - (6292*E^((
3*ArcCoth[a*x])/2))/(-1 + E^(2*ArcCoth[a*x])) + 2850*ArcTan[E^(-ArcCoth[a*x]/2)] - 1425*Log[1 - E^(-ArcCoth[a*
x]/2)] + 1425*Log[1 + E^(-ArcCoth[a*x]/2)])/(384*a^4)

________________________________________________________________________________________

Maple [F]  time = 0.329, size = 0, normalized size = 0. \begin{align*} \int{x}^{3} \left ({\frac{ax-1}{ax+1}} \right ) ^{{\frac{5}{4}}}\, dx \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

int(x^3*((a*x-1)/(a*x+1))^(5/4),x)

[Out]

int(x^3*((a*x-1)/(a*x+1))^(5/4),x)

________________________________________________________________________________________

Maxima [A]  time = 1.50864, size = 329, normalized size = 1.32 \begin{align*} -\frac{1}{384} \, a{\left (\frac{4 \,{\left (1573 \, \left (\frac{a x - 1}{a x + 1}\right )^{\frac{13}{4}} - 2875 \, \left (\frac{a x - 1}{a x + 1}\right )^{\frac{9}{4}} + 2343 \, \left (\frac{a x - 1}{a x + 1}\right )^{\frac{5}{4}} - 657 \, \left (\frac{a x - 1}{a x + 1}\right )^{\frac{1}{4}}\right )}}{\frac{4 \,{\left (a x - 1\right )} a^{5}}{a x + 1} - \frac{6 \,{\left (a x - 1\right )}^{2} a^{5}}{{\left (a x + 1\right )}^{2}} + \frac{4 \,{\left (a x - 1\right )}^{3} a^{5}}{{\left (a x + 1\right )}^{3}} - \frac{{\left (a x - 1\right )}^{4} a^{5}}{{\left (a x + 1\right )}^{4}} - a^{5}} - \frac{2850 \, \arctan \left (\left (\frac{a x - 1}{a x + 1}\right )^{\frac{1}{4}}\right )}{a^{5}} - \frac{1425 \, \log \left (\left (\frac{a x - 1}{a x + 1}\right )^{\frac{1}{4}} + 1\right )}{a^{5}} + \frac{1425 \, \log \left (\left (\frac{a x - 1}{a x + 1}\right )^{\frac{1}{4}} - 1\right )}{a^{5}} + \frac{3072 \, \left (\frac{a x - 1}{a x + 1}\right )^{\frac{1}{4}}}{a^{5}}\right )} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^3*((a*x-1)/(a*x+1))^(5/4),x, algorithm="maxima")

[Out]

-1/384*a*(4*(1573*((a*x - 1)/(a*x + 1))^(13/4) - 2875*((a*x - 1)/(a*x + 1))^(9/4) + 2343*((a*x - 1)/(a*x + 1))
^(5/4) - 657*((a*x - 1)/(a*x + 1))^(1/4))/(4*(a*x - 1)*a^5/(a*x + 1) - 6*(a*x - 1)^2*a^5/(a*x + 1)^2 + 4*(a*x
- 1)^3*a^5/(a*x + 1)^3 - (a*x - 1)^4*a^5/(a*x + 1)^4 - a^5) - 2850*arctan(((a*x - 1)/(a*x + 1))^(1/4))/a^5 - 1
425*log(((a*x - 1)/(a*x + 1))^(1/4) + 1)/a^5 + 1425*log(((a*x - 1)/(a*x + 1))^(1/4) - 1)/a^5 + 3072*((a*x - 1)
/(a*x + 1))^(1/4)/a^5)

________________________________________________________________________________________

Fricas [A]  time = 1.7037, size = 313, normalized size = 1.25 \begin{align*} \frac{2 \,{\left (48 \, a^{4} x^{4} - 136 \, a^{3} x^{3} + 226 \, a^{2} x^{2} - 521 \, a x - 2467\right )} \left (\frac{a x - 1}{a x + 1}\right )^{\frac{1}{4}} + 2850 \, \arctan \left (\left (\frac{a x - 1}{a x + 1}\right )^{\frac{1}{4}}\right ) + 1425 \, \log \left (\left (\frac{a x - 1}{a x + 1}\right )^{\frac{1}{4}} + 1\right ) - 1425 \, \log \left (\left (\frac{a x - 1}{a x + 1}\right )^{\frac{1}{4}} - 1\right )}{384 \, a^{4}} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^3*((a*x-1)/(a*x+1))^(5/4),x, algorithm="fricas")

[Out]

1/384*(2*(48*a^4*x^4 - 136*a^3*x^3 + 226*a^2*x^2 - 521*a*x - 2467)*((a*x - 1)/(a*x + 1))^(1/4) + 2850*arctan((
(a*x - 1)/(a*x + 1))^(1/4)) + 1425*log(((a*x - 1)/(a*x + 1))^(1/4) + 1) - 1425*log(((a*x - 1)/(a*x + 1))^(1/4)
- 1))/a^4

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**3*((a*x-1)/(a*x+1))**(5/4),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [A]  time = 1.21674, size = 301, normalized size = 1.2 \begin{align*} \frac{1}{384} \, a{\left (\frac{2850 \, \arctan \left (\left (\frac{a x - 1}{a x + 1}\right )^{\frac{1}{4}}\right )}{a^{5}} + \frac{1425 \, \log \left (\left (\frac{a x - 1}{a x + 1}\right )^{\frac{1}{4}} + 1\right )}{a^{5}} - \frac{1425 \, \log \left ({\left | \left (\frac{a x - 1}{a x + 1}\right )^{\frac{1}{4}} - 1 \right |}\right )}{a^{5}} - \frac{3072 \, \left (\frac{a x - 1}{a x + 1}\right )^{\frac{1}{4}}}{a^{5}} + \frac{4 \,{\left (\frac{2343 \,{\left (a x - 1\right )} \left (\frac{a x - 1}{a x + 1}\right )^{\frac{1}{4}}}{a x + 1} - \frac{2875 \,{\left (a x - 1\right )}^{2} \left (\frac{a x - 1}{a x + 1}\right )^{\frac{1}{4}}}{{\left (a x + 1\right )}^{2}} + \frac{1573 \,{\left (a x - 1\right )}^{3} \left (\frac{a x - 1}{a x + 1}\right )^{\frac{1}{4}}}{{\left (a x + 1\right )}^{3}} - 657 \, \left (\frac{a x - 1}{a x + 1}\right )^{\frac{1}{4}}\right )}}{a^{5}{\left (\frac{a x - 1}{a x + 1} - 1\right )}^{4}}\right )} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^3*((a*x-1)/(a*x+1))^(5/4),x, algorithm="giac")

[Out]

1/384*a*(2850*arctan(((a*x - 1)/(a*x + 1))^(1/4))/a^5 + 1425*log(((a*x - 1)/(a*x + 1))^(1/4) + 1)/a^5 - 1425*l
og(abs(((a*x - 1)/(a*x + 1))^(1/4) - 1))/a^5 - 3072*((a*x - 1)/(a*x + 1))^(1/4)/a^5 + 4*(2343*(a*x - 1)*((a*x
- 1)/(a*x + 1))^(1/4)/(a*x + 1) - 2875*(a*x - 1)^2*((a*x - 1)/(a*x + 1))^(1/4)/(a*x + 1)^2 + 1573*(a*x - 1)^3*
((a*x - 1)/(a*x + 1))^(1/4)/(a*x + 1)^3 - 657*((a*x - 1)/(a*x + 1))^(1/4))/(a^5*((a*x - 1)/(a*x + 1) - 1)^4))