3.977 \(\int e^{n \sinh (a c+b c x)} \coth (c (a+b x)) \, dx\)

Optimal. Leaf size=18 \[ \frac{\text{Ei}(n \sinh (c (a+b x)))}{b c} \]

[Out]

ExpIntegralEi[n*Sinh[c*(a + b*x)]]/(b*c)

________________________________________________________________________________________

Rubi [A]  time = 0.0229849, antiderivative size = 18, normalized size of antiderivative = 1., number of steps used = 2, number of rules used = 2, integrand size = 22, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.091, Rules used = {4340, 2178} \[ \frac{\text{Ei}(n \sinh (c (a+b x)))}{b c} \]

Antiderivative was successfully verified.

[In]

Int[E^(n*Sinh[a*c + b*c*x])*Coth[c*(a + b*x)],x]

[Out]

ExpIntegralEi[n*Sinh[c*(a + b*x)]]/(b*c)

Rule 4340

Int[Coth[(c_.)*((a_.) + (b_.)*(x_))]*(u_), x_Symbol] :> With[{d = FreeFactors[Sinh[c*(a + b*x)], x]}, Dist[1/(
b*c), Subst[Int[SubstFor[1/x, Sinh[c*(a + b*x)]/d, u, x], x], x, Sinh[c*(a + b*x)]/d], x] /; FunctionOfQ[Sinh[
c*(a + b*x)]/d, u, x, True]] /; FreeQ[{a, b, c}, x]

Rule 2178

Int[(F_)^((g_.)*((e_.) + (f_.)*(x_)))/((c_.) + (d_.)*(x_)), x_Symbol] :> Simp[(F^(g*(e - (c*f)/d))*ExpIntegral
Ei[(f*g*(c + d*x)*Log[F])/d])/d, x] /; FreeQ[{F, c, d, e, f, g}, x] &&  !$UseGamma === True

Rubi steps

\begin{align*} \int e^{n \sinh (a c+b c x)} \coth (c (a+b x)) \, dx &=\frac{\operatorname{Subst}\left (\int \frac{e^{n x}}{x} \, dx,x,\sinh (c (a+b x))\right )}{b c}\\ &=\frac{\text{Ei}(n \sinh (c (a+b x)))}{b c}\\ \end{align*}

Mathematica [A]  time = 0.0619603, size = 18, normalized size = 1. \[ \frac{\text{Ei}(n \sinh (c (a+b x)))}{b c} \]

Antiderivative was successfully verified.

[In]

Integrate[E^(n*Sinh[a*c + b*c*x])*Coth[c*(a + b*x)],x]

[Out]

ExpIntegralEi[n*Sinh[c*(a + b*x)]]/(b*c)

________________________________________________________________________________________

Maple [A]  time = 0.051, size = 23, normalized size = 1.3 \begin{align*} -{\frac{{\it Ei} \left ( 1,-n\sinh \left ( bcx+ac \right ) \right ) }{cb}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(exp(n*sinh(b*c*x+a*c))*coth(c*(b*x+a)),x)

[Out]

-1/c/b*Ei(1,-n*sinh(b*c*x+a*c))

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \coth \left ({\left (b x + a\right )} c\right ) e^{\left (n \sinh \left (b c x + a c\right )\right )}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(exp(n*sinh(b*c*x+a*c))*coth(c*(b*x+a)),x, algorithm="maxima")

[Out]

integrate(coth((b*x + a)*c)*e^(n*sinh(b*c*x + a*c)), x)

________________________________________________________________________________________

Fricas [A]  time = 2.13657, size = 42, normalized size = 2.33 \begin{align*} \frac{{\rm Ei}\left (n \sinh \left (b c x + a c\right )\right )}{b c} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(exp(n*sinh(b*c*x+a*c))*coth(c*(b*x+a)),x, algorithm="fricas")

[Out]

Ei(n*sinh(b*c*x + a*c))/(b*c)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int e^{n \sinh{\left (a c + b c x \right )}} \coth{\left (a c + b c x \right )}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(exp(n*sinh(b*c*x+a*c))*coth(c*(b*x+a)),x)

[Out]

Integral(exp(n*sinh(a*c + b*c*x))*coth(a*c + b*c*x), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \coth \left ({\left (b x + a\right )} c\right ) e^{\left (n \sinh \left (b c x + a c\right )\right )}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(exp(n*sinh(b*c*x+a*c))*coth(c*(b*x+a)),x, algorithm="giac")

[Out]

integrate(coth((b*x + a)*c)*e^(n*sinh(b*c*x + a*c)), x)