### 3.974 $$\int e^{n \sinh (a c+b c x)} \cosh (c (a+b x)) \, dx$$

Optimal. Leaf size=22 $\frac{e^{n \sinh (c (a+b x))}}{b c n}$

[Out]

E^(n*Sinh[c*(a + b*x)])/(b*c*n)

________________________________________________________________________________________

Rubi [A]  time = 0.0147721, antiderivative size = 22, normalized size of antiderivative = 1., number of steps used = 2, number of rules used = 2, integrand size = 22, $$\frac{\text{number of rules}}{\text{integrand size}}$$ = 0.091, Rules used = {4336, 2194} $\frac{e^{n \sinh (c (a+b x))}}{b c n}$

Antiderivative was successfully veriﬁed.

[In]

Int[E^(n*Sinh[a*c + b*c*x])*Cosh[c*(a + b*x)],x]

[Out]

E^(n*Sinh[c*(a + b*x)])/(b*c*n)

Rule 4336

Int[Cosh[(c_.)*((a_.) + (b_.)*(x_))]*(u_), x_Symbol] :> With[{d = FreeFactors[Sinh[c*(a + b*x)], x]}, Dist[d/(
b*c), Subst[Int[SubstFor[1, Sinh[c*(a + b*x)]/d, u, x], x], x, Sinh[c*(a + b*x)]/d], x] /; FunctionOfQ[Sinh[c*
(a + b*x)]/d, u, x, True]] /; FreeQ[{a, b, c}, x]

Rule 2194

Int[((F_)^((c_.)*((a_.) + (b_.)*(x_))))^(n_.), x_Symbol] :> Simp[(F^(c*(a + b*x)))^n/(b*c*n*Log[F]), x] /; Fre
eQ[{F, a, b, c, n}, x]

Rubi steps

\begin{align*} \int e^{n \sinh (a c+b c x)} \cosh (c (a+b x)) \, dx &=\frac{\operatorname{Subst}\left (\int e^{n x} \, dx,x,\sinh (c (a+b x))\right )}{b c}\\ &=\frac{e^{n \sinh (c (a+b x))}}{b c n}\\ \end{align*}

Mathematica [A]  time = 0.127983, size = 23, normalized size = 1.05 $\frac{e^{n \sinh (a c+b c x)}}{b c n}$

Antiderivative was successfully veriﬁed.

[In]

Integrate[E^(n*Sinh[a*c + b*c*x])*Cosh[c*(a + b*x)],x]

[Out]

E^(n*Sinh[a*c + b*c*x])/(b*c*n)

________________________________________________________________________________________

Maple [A]  time = 0.064, size = 23, normalized size = 1.1 \begin{align*}{\frac{{{\rm e}^{n\sinh \left ( bcx+ac \right ) }}}{cbn}} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

int(exp(n*sinh(b*c*x+a*c))*cosh(c*(b*x+a)),x)

[Out]

exp(n*sinh(b*c*x+a*c))/b/c/n

________________________________________________________________________________________

Maxima [A]  time = 0.990072, size = 30, normalized size = 1.36 \begin{align*} \frac{e^{\left (n \sinh \left (b c x + a c\right )\right )}}{b c n} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(exp(n*sinh(b*c*x+a*c))*cosh(c*(b*x+a)),x, algorithm="maxima")

[Out]

e^(n*sinh(b*c*x + a*c))/(b*c*n)

________________________________________________________________________________________

Fricas [A]  time = 2.04636, size = 88, normalized size = 4. \begin{align*} \frac{\cosh \left (n \sinh \left (b c x + a c\right )\right ) + \sinh \left (n \sinh \left (b c x + a c\right )\right )}{b c n} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(exp(n*sinh(b*c*x+a*c))*cosh(c*(b*x+a)),x, algorithm="fricas")

[Out]

(cosh(n*sinh(b*c*x + a*c)) + sinh(n*sinh(b*c*x + a*c)))/(b*c*n)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int e^{n \sinh{\left (a c + b c x \right )}} \cosh{\left (a c + b c x \right )}\, dx \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(exp(n*sinh(b*c*x+a*c))*cosh(c*(b*x+a)),x)

[Out]

Integral(exp(n*sinh(a*c + b*c*x))*cosh(a*c + b*c*x), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \cosh \left ({\left (b x + a\right )} c\right ) e^{\left (n \sinh \left (b c x + a c\right )\right )}\,{d x} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(exp(n*sinh(b*c*x+a*c))*cosh(c*(b*x+a)),x, algorithm="giac")

[Out]

integrate(cosh((b*x + a)*c)*e^(n*sinh(b*c*x + a*c)), x)