3.959 $$\int e^{c+d x} \cosh ^3(a+b x) \sinh ^3(a+b x) \, dx$$

Optimal. Leaf size=137 $\frac{3 d e^{c+d x} \sinh (2 a+2 b x)}{32 \left (4 b^2-d^2\right )}-\frac{d e^{c+d x} \sinh (6 a+6 b x)}{32 \left (36 b^2-d^2\right )}-\frac{3 b e^{c+d x} \cosh (2 a+2 b x)}{16 \left (4 b^2-d^2\right )}+\frac{3 b e^{c+d x} \cosh (6 a+6 b x)}{16 \left (36 b^2-d^2\right )}$

[Out]

(-3*b*E^(c + d*x)*Cosh[2*a + 2*b*x])/(16*(4*b^2 - d^2)) + (3*b*E^(c + d*x)*Cosh[6*a + 6*b*x])/(16*(36*b^2 - d^
2)) + (3*d*E^(c + d*x)*Sinh[2*a + 2*b*x])/(32*(4*b^2 - d^2)) - (d*E^(c + d*x)*Sinh[6*a + 6*b*x])/(32*(36*b^2 -
d^2))

________________________________________________________________________________________

Rubi [A]  time = 0.113393, antiderivative size = 137, normalized size of antiderivative = 1., number of steps used = 4, number of rules used = 2, integrand size = 24, $$\frac{\text{number of rules}}{\text{integrand size}}$$ = 0.083, Rules used = {5509, 5474} $\frac{3 d e^{c+d x} \sinh (2 a+2 b x)}{32 \left (4 b^2-d^2\right )}-\frac{d e^{c+d x} \sinh (6 a+6 b x)}{32 \left (36 b^2-d^2\right )}-\frac{3 b e^{c+d x} \cosh (2 a+2 b x)}{16 \left (4 b^2-d^2\right )}+\frac{3 b e^{c+d x} \cosh (6 a+6 b x)}{16 \left (36 b^2-d^2\right )}$

Antiderivative was successfully veriﬁed.

[In]

Int[E^(c + d*x)*Cosh[a + b*x]^3*Sinh[a + b*x]^3,x]

[Out]

(-3*b*E^(c + d*x)*Cosh[2*a + 2*b*x])/(16*(4*b^2 - d^2)) + (3*b*E^(c + d*x)*Cosh[6*a + 6*b*x])/(16*(36*b^2 - d^
2)) + (3*d*E^(c + d*x)*Sinh[2*a + 2*b*x])/(32*(4*b^2 - d^2)) - (d*E^(c + d*x)*Sinh[6*a + 6*b*x])/(32*(36*b^2 -
d^2))

Rule 5509

Int[Cosh[(f_.) + (g_.)*(x_)]^(n_.)*(F_)^((c_.)*((a_.) + (b_.)*(x_)))*Sinh[(d_.) + (e_.)*(x_)]^(m_.), x_Symbol]
:> Int[ExpandTrigReduce[F^(c*(a + b*x)), Sinh[d + e*x]^m*Cosh[f + g*x]^n, x], x] /; FreeQ[{F, a, b, c, d, e,
f, g}, x] && IGtQ[m, 0] && IGtQ[n, 0]

Rule 5474

Int[(F_)^((c_.)*((a_.) + (b_.)*(x_)))*Sinh[(d_.) + (e_.)*(x_)], x_Symbol] :> -Simp[(b*c*Log[F]*F^(c*(a + b*x))
*Sinh[d + e*x])/(e^2 - b^2*c^2*Log[F]^2), x] + Simp[(e*F^(c*(a + b*x))*Cosh[d + e*x])/(e^2 - b^2*c^2*Log[F]^2)
, x] /; FreeQ[{F, a, b, c, d, e}, x] && NeQ[e^2 - b^2*c^2*Log[F]^2, 0]

Rubi steps

\begin{align*} \int e^{c+d x} \cosh ^3(a+b x) \sinh ^3(a+b x) \, dx &=\int \left (-\frac{3}{32} e^{c+d x} \sinh (2 a+2 b x)+\frac{1}{32} e^{c+d x} \sinh (6 a+6 b x)\right ) \, dx\\ &=\frac{1}{32} \int e^{c+d x} \sinh (6 a+6 b x) \, dx-\frac{3}{32} \int e^{c+d x} \sinh (2 a+2 b x) \, dx\\ &=-\frac{3 b e^{c+d x} \cosh (2 a+2 b x)}{16 \left (4 b^2-d^2\right )}+\frac{3 b e^{c+d x} \cosh (6 a+6 b x)}{16 \left (36 b^2-d^2\right )}+\frac{3 d e^{c+d x} \sinh (2 a+2 b x)}{32 \left (4 b^2-d^2\right )}-\frac{d e^{c+d x} \sinh (6 a+6 b x)}{32 \left (36 b^2-d^2\right )}\\ \end{align*}

Mathematica [A]  time = 0.985342, size = 113, normalized size = 0.82 $\frac{e^{c+d x} \left (6 b \left (d^2-36 b^2\right ) \cosh (2 (a+b x))+6 \left (4 b^3-b d^2\right ) \cosh (6 (a+b x))+2 d \sinh (2 (a+b x)) \left (\left (d^2-4 b^2\right ) \cosh (4 (a+b x))+52 b^2-d^2\right )\right )}{32 \left (-40 b^2 d^2+144 b^4+d^4\right )}$

Antiderivative was successfully veriﬁed.

[In]

Integrate[E^(c + d*x)*Cosh[a + b*x]^3*Sinh[a + b*x]^3,x]

[Out]

(E^(c + d*x)*(6*b*(-36*b^2 + d^2)*Cosh[2*(a + b*x)] + 6*(4*b^3 - b*d^2)*Cosh[6*(a + b*x)] + 2*d*(52*b^2 - d^2
+ (-4*b^2 + d^2)*Cosh[4*(a + b*x)])*Sinh[2*(a + b*x)]))/(32*(144*b^4 - 40*b^2*d^2 + d^4))

________________________________________________________________________________________

Maple [A]  time = 0.023, size = 202, normalized size = 1.5 \begin{align*}{\frac{3\,\sinh \left ( 2\,a-c+ \left ( 2\,b-d \right ) x \right ) }{128\,b-64\,d}}-{\frac{3\,\sinh \left ( 2\,a+c+ \left ( 2\,b+d \right ) x \right ) }{128\,b+64\,d}}-{\frac{\sinh \left ( \left ( 6\,b-d \right ) x+6\,a-c \right ) }{384\,b-64\,d}}+{\frac{\sinh \left ( \left ( 6\,b+d \right ) x+6\,a+c \right ) }{384\,b+64\,d}}-{\frac{3\,\cosh \left ( 2\,a-c+ \left ( 2\,b-d \right ) x \right ) }{128\,b-64\,d}}-{\frac{3\,\cosh \left ( 2\,a+c+ \left ( 2\,b+d \right ) x \right ) }{128\,b+64\,d}}+{\frac{\cosh \left ( \left ( 6\,b-d \right ) x+6\,a-c \right ) }{384\,b-64\,d}}+{\frac{\cosh \left ( \left ( 6\,b+d \right ) x+6\,a+c \right ) }{384\,b+64\,d}} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

int(exp(d*x+c)*cosh(b*x+a)^3*sinh(b*x+a)^3,x)

[Out]

3/64*sinh(2*a-c+(2*b-d)*x)/(2*b-d)-3/64*sinh(2*a+c+(2*b+d)*x)/(2*b+d)-1/64/(6*b-d)*sinh((6*b-d)*x+6*a-c)+1/64/
(6*b+d)*sinh((6*b+d)*x+6*a+c)-3/64*cosh(2*a-c+(2*b-d)*x)/(2*b-d)-3/64*cosh(2*a+c+(2*b+d)*x)/(2*b+d)+1/64*cosh(
(6*b-d)*x+6*a-c)/(6*b-d)+1/64*cosh((6*b+d)*x+6*a+c)/(6*b+d)

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(exp(d*x+c)*cosh(b*x+a)^3*sinh(b*x+a)^3,x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [B]  time = 2.02437, size = 1611, normalized size = 11.76 \begin{align*} \text{result too large to display} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(exp(d*x+c)*cosh(b*x+a)^3*sinh(b*x+a)^3,x, algorithm="fricas")

[Out]

-1/16*(10*(4*b^2*d - d^3)*cosh(b*x + a)^3*cosh(d*x + c)*sinh(b*x + a)^3 - 45*(4*b^3 - b*d^2)*cosh(b*x + a)^2*c
osh(d*x + c)*sinh(b*x + a)^4 + 3*(4*b^2*d - d^3)*cosh(b*x + a)*cosh(d*x + c)*sinh(b*x + a)^5 - 3*(4*b^3 - b*d^
2)*cosh(d*x + c)*sinh(b*x + a)^6 - 3*(15*(4*b^3 - b*d^2)*cosh(b*x + a)^4 - 36*b^3 + b*d^2)*cosh(d*x + c)*sinh(
b*x + a)^2 + 3*((4*b^2*d - d^3)*cosh(b*x + a)^5 - (36*b^2*d - d^3)*cosh(b*x + a))*cosh(d*x + c)*sinh(b*x + a)
- 3*((4*b^3 - b*d^2)*cosh(b*x + a)^6 - (36*b^3 - b*d^2)*cosh(b*x + a)^2)*cosh(d*x + c) - (3*(4*b^3 - b*d^2)*co
sh(b*x + a)^6 - 10*(4*b^2*d - d^3)*cosh(b*x + a)^3*sinh(b*x + a)^3 + 45*(4*b^3 - b*d^2)*cosh(b*x + a)^2*sinh(b
*x + a)^4 - 3*(4*b^2*d - d^3)*cosh(b*x + a)*sinh(b*x + a)^5 + 3*(4*b^3 - b*d^2)*sinh(b*x + a)^6 - 3*(36*b^3 -
b*d^2)*cosh(b*x + a)^2 + 3*(15*(4*b^3 - b*d^2)*cosh(b*x + a)^4 - 36*b^3 + b*d^2)*sinh(b*x + a)^2 - 3*((4*b^2*d
- d^3)*cosh(b*x + a)^5 - (36*b^2*d - d^3)*cosh(b*x + a))*sinh(b*x + a))*sinh(d*x + c))/((144*b^4 - 40*b^2*d^2
+ d^4)*cosh(b*x + a)^6 - 3*(144*b^4 - 40*b^2*d^2 + d^4)*cosh(b*x + a)^4*sinh(b*x + a)^2 + 3*(144*b^4 - 40*b^2
*d^2 + d^4)*cosh(b*x + a)^2*sinh(b*x + a)^4 - (144*b^4 - 40*b^2*d^2 + d^4)*sinh(b*x + a)^6)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(exp(d*x+c)*cosh(b*x+a)**3*sinh(b*x+a)**3,x)

[Out]

Timed out

________________________________________________________________________________________

Giac [A]  time = 1.2048, size = 126, normalized size = 0.92 \begin{align*} \frac{e^{\left (6 \, b x + d x + 6 \, a + c\right )}}{64 \,{\left (6 \, b + d\right )}} - \frac{3 \, e^{\left (2 \, b x + d x + 2 \, a + c\right )}}{64 \,{\left (2 \, b + d\right )}} - \frac{3 \, e^{\left (-2 \, b x + d x - 2 \, a + c\right )}}{64 \,{\left (2 \, b - d\right )}} + \frac{e^{\left (-6 \, b x + d x - 6 \, a + c\right )}}{64 \,{\left (6 \, b - d\right )}} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(exp(d*x+c)*cosh(b*x+a)^3*sinh(b*x+a)^3,x, algorithm="giac")

[Out]

1/64*e^(6*b*x + d*x + 6*a + c)/(6*b + d) - 3/64*e^(2*b*x + d*x + 2*a + c)/(2*b + d) - 3/64*e^(-2*b*x + d*x - 2
*a + c)/(2*b - d) + 1/64*e^(-6*b*x + d*x - 6*a + c)/(6*b - d)