3.929 \(\int e^{2 (a+b x)} \coth ^2(a+b x) \, dx\)

Optimal. Leaf size=59 \[ \frac{e^{2 a+2 b x}}{2 b}+\frac{2}{b \left (1-e^{2 a+2 b x}\right )}+\frac{2 \log \left (1-e^{2 a+2 b x}\right )}{b} \]

[Out]

E^(2*a + 2*b*x)/(2*b) + 2/(b*(1 - E^(2*a + 2*b*x))) + (2*Log[1 - E^(2*a + 2*b*x)])/b

________________________________________________________________________________________

Rubi [A]  time = 0.0496781, antiderivative size = 59, normalized size of antiderivative = 1., number of steps used = 4, number of rules used = 3, integrand size = 18, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.167, Rules used = {2282, 444, 43} \[ \frac{e^{2 a+2 b x}}{2 b}+\frac{2}{b \left (1-e^{2 a+2 b x}\right )}+\frac{2 \log \left (1-e^{2 a+2 b x}\right )}{b} \]

Antiderivative was successfully verified.

[In]

Int[E^(2*(a + b*x))*Coth[a + b*x]^2,x]

[Out]

E^(2*a + 2*b*x)/(2*b) + 2/(b*(1 - E^(2*a + 2*b*x))) + (2*Log[1 - E^(2*a + 2*b*x)])/b

Rule 2282

Int[u_, x_Symbol] :> With[{v = FunctionOfExponential[u, x]}, Dist[v/D[v, x], Subst[Int[FunctionOfExponentialFu
nction[u, x]/x, x], x, v], x]] /; FunctionOfExponentialQ[u, x] &&  !MatchQ[u, (w_)*((a_.)*(v_)^(n_))^(m_) /; F
reeQ[{a, m, n}, x] && IntegerQ[m*n]] &&  !MatchQ[u, E^((c_.)*((a_.) + (b_.)*x))*(F_)[v_] /; FreeQ[{a, b, c}, x
] && InverseFunctionQ[F[x]]]

Rule 444

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_))^(q_.), x_Symbol] :> Dist[1/n, Subst[Int
[(a + b*x)^p*(c + d*x)^q, x], x, x^n], x] /; FreeQ[{a, b, c, d, m, n, p, q}, x] && NeQ[b*c - a*d, 0] && EqQ[m
- n + 1, 0]

Rule 43

Int[((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.), x_Symbol] :> Int[ExpandIntegrand[(a + b*x)^m*(c + d
*x)^n, x], x] /; FreeQ[{a, b, c, d, n}, x] && NeQ[b*c - a*d, 0] && IGtQ[m, 0] && ( !IntegerQ[n] || (EqQ[c, 0]
&& LeQ[7*m + 4*n + 4, 0]) || LtQ[9*m + 5*(n + 1), 0] || GtQ[m + n + 2, 0])

Rubi steps

\begin{align*} \int e^{2 (a+b x)} \coth ^2(a+b x) \, dx &=\frac{\operatorname{Subst}\left (\int \frac{x \left (1+x^2\right )^2}{\left (1-x^2\right )^2} \, dx,x,e^{a+b x}\right )}{b}\\ &=\frac{\operatorname{Subst}\left (\int \frac{(1+x)^2}{(1-x)^2} \, dx,x,e^{2 a+2 b x}\right )}{2 b}\\ &=\frac{\operatorname{Subst}\left (\int \left (1+\frac{4}{(-1+x)^2}+\frac{4}{-1+x}\right ) \, dx,x,e^{2 a+2 b x}\right )}{2 b}\\ &=\frac{e^{2 a+2 b x}}{2 b}+\frac{2}{b \left (1-e^{2 a+2 b x}\right )}+\frac{2 \log \left (1-e^{2 a+2 b x}\right )}{b}\\ \end{align*}

Mathematica [A]  time = 0.0620764, size = 48, normalized size = 0.81 \[ \frac{e^{2 (a+b x)}-\frac{4}{e^{2 (a+b x)}-1}+4 \log \left (1-e^{2 (a+b x)}\right )}{2 b} \]

Antiderivative was successfully verified.

[In]

Integrate[E^(2*(a + b*x))*Coth[a + b*x]^2,x]

[Out]

(E^(2*(a + b*x)) - 4/(-1 + E^(2*(a + b*x))) + 4*Log[1 - E^(2*(a + b*x))])/(2*b)

________________________________________________________________________________________

Maple [A]  time = 0.069, size = 57, normalized size = 1. \begin{align*}{\frac{{{\rm e}^{2\,bx+2\,a}}}{2\,b}}-4\,{\frac{a}{b}}-2\,{\frac{1}{b \left ({{\rm e}^{2\,bx+2\,a}}-1 \right ) }}+2\,{\frac{\ln \left ({{\rm e}^{2\,bx+2\,a}}-1 \right ) }{b}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(exp(2*b*x+2*a)*cosh(b*x+a)^2*csch(b*x+a)^2,x)

[Out]

1/2*exp(2*b*x+2*a)/b-4*a/b-2/b/(exp(2*b*x+2*a)-1)+2/b*ln(exp(2*b*x+2*a)-1)

________________________________________________________________________________________

Maxima [A]  time = 1.01709, size = 116, normalized size = 1.97 \begin{align*} \frac{4 \,{\left (b x + a\right )}}{b} + \frac{2 \, \log \left (e^{\left (-b x - a\right )} + 1\right )}{b} + \frac{2 \, \log \left (e^{\left (-b x - a\right )} - 1\right )}{b} - \frac{5 \, e^{\left (-2 \, b x - 2 \, a\right )} - 1}{2 \, b{\left (e^{\left (-2 \, b x - 2 \, a\right )} - e^{\left (-4 \, b x - 4 \, a\right )}\right )}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(exp(2*b*x+2*a)*cosh(b*x+a)^2*csch(b*x+a)^2,x, algorithm="maxima")

[Out]

4*(b*x + a)/b + 2*log(e^(-b*x - a) + 1)/b + 2*log(e^(-b*x - a) - 1)/b - 1/2*(5*e^(-2*b*x - 2*a) - 1)/(b*(e^(-2
*b*x - 2*a) - e^(-4*b*x - 4*a)))

________________________________________________________________________________________

Fricas [B]  time = 1.87767, size = 540, normalized size = 9.15 \begin{align*} \frac{\cosh \left (b x + a\right )^{4} + 4 \, \cosh \left (b x + a\right ) \sinh \left (b x + a\right )^{3} + \sinh \left (b x + a\right )^{4} +{\left (6 \, \cosh \left (b x + a\right )^{2} - 1\right )} \sinh \left (b x + a\right )^{2} - \cosh \left (b x + a\right )^{2} + 4 \,{\left (\cosh \left (b x + a\right )^{2} + 2 \, \cosh \left (b x + a\right ) \sinh \left (b x + a\right ) + \sinh \left (b x + a\right )^{2} - 1\right )} \log \left (\frac{2 \, \sinh \left (b x + a\right )}{\cosh \left (b x + a\right ) - \sinh \left (b x + a\right )}\right ) + 2 \,{\left (2 \, \cosh \left (b x + a\right )^{3} - \cosh \left (b x + a\right )\right )} \sinh \left (b x + a\right ) - 4}{2 \,{\left (b \cosh \left (b x + a\right )^{2} + 2 \, b \cosh \left (b x + a\right ) \sinh \left (b x + a\right ) + b \sinh \left (b x + a\right )^{2} - b\right )}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(exp(2*b*x+2*a)*cosh(b*x+a)^2*csch(b*x+a)^2,x, algorithm="fricas")

[Out]

1/2*(cosh(b*x + a)^4 + 4*cosh(b*x + a)*sinh(b*x + a)^3 + sinh(b*x + a)^4 + (6*cosh(b*x + a)^2 - 1)*sinh(b*x +
a)^2 - cosh(b*x + a)^2 + 4*(cosh(b*x + a)^2 + 2*cosh(b*x + a)*sinh(b*x + a) + sinh(b*x + a)^2 - 1)*log(2*sinh(
b*x + a)/(cosh(b*x + a) - sinh(b*x + a))) + 2*(2*cosh(b*x + a)^3 - cosh(b*x + a))*sinh(b*x + a) - 4)/(b*cosh(b
*x + a)^2 + 2*b*cosh(b*x + a)*sinh(b*x + a) + b*sinh(b*x + a)^2 - b)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(exp(2*b*x+2*a)*cosh(b*x+a)**2*csch(b*x+a)**2,x)

[Out]

Timed out

________________________________________________________________________________________

Giac [A]  time = 1.20936, size = 76, normalized size = 1.29 \begin{align*} -\frac{\frac{4 \, e^{\left (2 \, b x + 2 \, a\right )}}{e^{\left (2 \, b x + 2 \, a\right )} - 1} - e^{\left (2 \, b x + 2 \, a\right )} - 4 \, \log \left ({\left | e^{\left (2 \, b x + 2 \, a\right )} - 1 \right |}\right )}{2 \, b} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(exp(2*b*x+2*a)*cosh(b*x+a)^2*csch(b*x+a)^2,x, algorithm="giac")

[Out]

-1/2*(4*e^(2*b*x + 2*a)/(e^(2*b*x + 2*a) - 1) - e^(2*b*x + 2*a) - 4*log(abs(e^(2*b*x + 2*a) - 1)))/b