### 3.869 $$\int \frac{x}{a+b \cosh (x) \sinh (x)} \, dx$$

Optimal. Leaf size=186 $\frac{\text{PolyLog}\left (2,-\frac{b e^{2 x}}{2 a-\sqrt{4 a^2+b^2}}\right )}{2 \sqrt{4 a^2+b^2}}-\frac{\text{PolyLog}\left (2,-\frac{b e^{2 x}}{\sqrt{4 a^2+b^2}+2 a}\right )}{2 \sqrt{4 a^2+b^2}}+\frac{x \log \left (\frac{b e^{2 x}}{2 a-\sqrt{4 a^2+b^2}}+1\right )}{\sqrt{4 a^2+b^2}}-\frac{x \log \left (\frac{b e^{2 x}}{\sqrt{4 a^2+b^2}+2 a}+1\right )}{\sqrt{4 a^2+b^2}}$

[Out]

(x*Log[1 + (b*E^(2*x))/(2*a - Sqrt[4*a^2 + b^2])])/Sqrt[4*a^2 + b^2] - (x*Log[1 + (b*E^(2*x))/(2*a + Sqrt[4*a^
2 + b^2])])/Sqrt[4*a^2 + b^2] + PolyLog[2, -((b*E^(2*x))/(2*a - Sqrt[4*a^2 + b^2]))]/(2*Sqrt[4*a^2 + b^2]) - P
olyLog[2, -((b*E^(2*x))/(2*a + Sqrt[4*a^2 + b^2]))]/(2*Sqrt[4*a^2 + b^2])

________________________________________________________________________________________

Rubi [A]  time = 0.30264, antiderivative size = 186, normalized size of antiderivative = 1., number of steps used = 9, number of rules used = 6, integrand size = 12, $$\frac{\text{number of rules}}{\text{integrand size}}$$ = 0.5, Rules used = {5628, 3322, 2264, 2190, 2279, 2391} $\frac{\text{PolyLog}\left (2,-\frac{b e^{2 x}}{2 a-\sqrt{4 a^2+b^2}}\right )}{2 \sqrt{4 a^2+b^2}}-\frac{\text{PolyLog}\left (2,-\frac{b e^{2 x}}{\sqrt{4 a^2+b^2}+2 a}\right )}{2 \sqrt{4 a^2+b^2}}+\frac{x \log \left (\frac{b e^{2 x}}{2 a-\sqrt{4 a^2+b^2}}+1\right )}{\sqrt{4 a^2+b^2}}-\frac{x \log \left (\frac{b e^{2 x}}{\sqrt{4 a^2+b^2}+2 a}+1\right )}{\sqrt{4 a^2+b^2}}$

Antiderivative was successfully veriﬁed.

[In]

Int[x/(a + b*Cosh[x]*Sinh[x]),x]

[Out]

(x*Log[1 + (b*E^(2*x))/(2*a - Sqrt[4*a^2 + b^2])])/Sqrt[4*a^2 + b^2] - (x*Log[1 + (b*E^(2*x))/(2*a + Sqrt[4*a^
2 + b^2])])/Sqrt[4*a^2 + b^2] + PolyLog[2, -((b*E^(2*x))/(2*a - Sqrt[4*a^2 + b^2]))]/(2*Sqrt[4*a^2 + b^2]) - P
olyLog[2, -((b*E^(2*x))/(2*a + Sqrt[4*a^2 + b^2]))]/(2*Sqrt[4*a^2 + b^2])

Rule 5628

Int[((e_.) + (f_.)*(x_))^(m_.)*((a_) + Cosh[(c_.) + (d_.)*(x_)]*(b_.)*Sinh[(c_.) + (d_.)*(x_)])^(n_.), x_Symbo
l] :> Int[(e + f*x)^m*(a + (b*Sinh[2*c + 2*d*x])/2)^n, x] /; FreeQ[{a, b, c, d, e, f, m, n}, x]

Rule 3322

Int[((c_.) + (d_.)*(x_))^(m_.)/((a_) + (b_.)*sin[(e_.) + (Complex[0, fz_])*(f_.)*(x_)]), x_Symbol] :> Dist[2,
Int[((c + d*x)^m*E^(-(I*e) + f*fz*x))/(-(I*b) + 2*a*E^(-(I*e) + f*fz*x) + I*b*E^(2*(-(I*e) + f*fz*x))), x], x]
/; FreeQ[{a, b, c, d, e, f, fz}, x] && NeQ[a^2 - b^2, 0] && IGtQ[m, 0]

Rule 2264

Int[((F_)^(u_)*((f_.) + (g_.)*(x_))^(m_.))/((a_.) + (b_.)*(F_)^(u_) + (c_.)*(F_)^(v_)), x_Symbol] :> With[{q =
Rt[b^2 - 4*a*c, 2]}, Dist[(2*c)/q, Int[((f + g*x)^m*F^u)/(b - q + 2*c*F^u), x], x] - Dist[(2*c)/q, Int[((f +
g*x)^m*F^u)/(b + q + 2*c*F^u), x], x]] /; FreeQ[{F, a, b, c, f, g}, x] && EqQ[v, 2*u] && LinearQ[u, x] && NeQ[
b^2 - 4*a*c, 0] && IGtQ[m, 0]

Rule 2190

Int[(((F_)^((g_.)*((e_.) + (f_.)*(x_))))^(n_.)*((c_.) + (d_.)*(x_))^(m_.))/((a_) + (b_.)*((F_)^((g_.)*((e_.) +
(f_.)*(x_))))^(n_.)), x_Symbol] :> Simp[((c + d*x)^m*Log[1 + (b*(F^(g*(e + f*x)))^n)/a])/(b*f*g*n*Log[F]), x]
- Dist[(d*m)/(b*f*g*n*Log[F]), Int[(c + d*x)^(m - 1)*Log[1 + (b*(F^(g*(e + f*x)))^n)/a], x], x] /; FreeQ[{F,
a, b, c, d, e, f, g, n}, x] && IGtQ[m, 0]

Rule 2279

Int[Log[(a_) + (b_.)*((F_)^((e_.)*((c_.) + (d_.)*(x_))))^(n_.)], x_Symbol] :> Dist[1/(d*e*n*Log[F]), Subst[Int
[Log[a + b*x]/x, x], x, (F^(e*(c + d*x)))^n], x] /; FreeQ[{F, a, b, c, d, e, n}, x] && GtQ[a, 0]

Rule 2391

Int[Log[(c_.)*((d_) + (e_.)*(x_)^(n_.))]/(x_), x_Symbol] :> -Simp[PolyLog[2, -(c*e*x^n)]/n, x] /; FreeQ[{c, d,
e, n}, x] && EqQ[c*d, 1]

Rubi steps

\begin{align*} \int \frac{x}{a+b \cosh (x) \sinh (x)} \, dx &=\int \frac{x}{a+\frac{1}{2} b \sinh (2 x)} \, dx\\ &=2 \int \frac{e^{2 x} x}{-\frac{b}{2}+2 a e^{2 x}+\frac{1}{2} b e^{4 x}} \, dx\\ &=\frac{(2 b) \int \frac{e^{2 x} x}{2 a-\sqrt{4 a^2+b^2}+b e^{2 x}} \, dx}{\sqrt{4 a^2+b^2}}-\frac{(2 b) \int \frac{e^{2 x} x}{2 a+\sqrt{4 a^2+b^2}+b e^{2 x}} \, dx}{\sqrt{4 a^2+b^2}}\\ &=\frac{x \log \left (1+\frac{b e^{2 x}}{2 a-\sqrt{4 a^2+b^2}}\right )}{\sqrt{4 a^2+b^2}}-\frac{x \log \left (1+\frac{b e^{2 x}}{2 a+\sqrt{4 a^2+b^2}}\right )}{\sqrt{4 a^2+b^2}}-\frac{\int \log \left (1+\frac{b e^{2 x}}{2 a-\sqrt{4 a^2+b^2}}\right ) \, dx}{\sqrt{4 a^2+b^2}}+\frac{\int \log \left (1+\frac{b e^{2 x}}{2 a+\sqrt{4 a^2+b^2}}\right ) \, dx}{\sqrt{4 a^2+b^2}}\\ &=\frac{x \log \left (1+\frac{b e^{2 x}}{2 a-\sqrt{4 a^2+b^2}}\right )}{\sqrt{4 a^2+b^2}}-\frac{x \log \left (1+\frac{b e^{2 x}}{2 a+\sqrt{4 a^2+b^2}}\right )}{\sqrt{4 a^2+b^2}}-\frac{\operatorname{Subst}\left (\int \frac{\log \left (1+\frac{b x}{2 a-\sqrt{4 a^2+b^2}}\right )}{x} \, dx,x,e^{2 x}\right )}{2 \sqrt{4 a^2+b^2}}+\frac{\operatorname{Subst}\left (\int \frac{\log \left (1+\frac{b x}{2 a+\sqrt{4 a^2+b^2}}\right )}{x} \, dx,x,e^{2 x}\right )}{2 \sqrt{4 a^2+b^2}}\\ &=\frac{x \log \left (1+\frac{b e^{2 x}}{2 a-\sqrt{4 a^2+b^2}}\right )}{\sqrt{4 a^2+b^2}}-\frac{x \log \left (1+\frac{b e^{2 x}}{2 a+\sqrt{4 a^2+b^2}}\right )}{\sqrt{4 a^2+b^2}}+\frac{\text{Li}_2\left (-\frac{b e^{2 x}}{2 a-\sqrt{4 a^2+b^2}}\right )}{2 \sqrt{4 a^2+b^2}}-\frac{\text{Li}_2\left (-\frac{b e^{2 x}}{2 a+\sqrt{4 a^2+b^2}}\right )}{2 \sqrt{4 a^2+b^2}}\\ \end{align*}

Mathematica [C]  time = 1.47401, size = 956, normalized size = 5.14 $\frac{1}{2} \left (-\frac{i \pi \tanh ^{-1}\left (\frac{2 a \tanh (x)-b}{\sqrt{4 a^2+b^2}}\right )}{\sqrt{4 a^2+b^2}}-\frac{2 \cos ^{-1}\left (-\frac{2 i a}{b}\right ) \tanh ^{-1}\left (\frac{(2 a+i b) \cot \left (\frac{1}{4} (4 i x+\pi )\right )}{\sqrt{-4 a^2-b^2}}\right )+(\pi -4 i x) \tanh ^{-1}\left (\frac{(2 a-i b) \tan \left (\frac{1}{4} (4 i x+\pi )\right )}{\sqrt{-4 a^2-b^2}}\right )-\left (\cos ^{-1}\left (-\frac{2 i a}{b}\right )+2 i \tanh ^{-1}\left (\frac{(2 a+i b) \cot \left (\frac{1}{4} (4 i x+\pi )\right )}{\sqrt{-4 a^2-b^2}}\right )\right ) \log \left (\frac{(2 i a+b) \left (-2 i a+b+\sqrt{-4 a^2-b^2}\right ) \left (i \cot \left (\frac{1}{4} (4 i x+\pi )\right )+1\right )}{b \left (2 i a+b+i \sqrt{-4 a^2-b^2} \cot \left (\frac{1}{4} (4 i x+\pi )\right )\right )}\right )-\left (\cos ^{-1}\left (-\frac{2 i a}{b}\right )-2 i \tanh ^{-1}\left (\frac{(2 a+i b) \cot \left (\frac{1}{4} (4 i x+\pi )\right )}{\sqrt{-4 a^2-b^2}}\right )\right ) \log \left (\frac{(2 i a+b) \left (2 i a-b+\sqrt{-4 a^2-b^2}\right ) \left (\cot \left (\frac{1}{4} (4 i x+\pi )\right )+i\right )}{b \left (2 a-i b+\sqrt{-4 a^2-b^2} \cot \left (\frac{1}{4} (4 i x+\pi )\right )\right )}\right )+\left (\cos ^{-1}\left (-\frac{2 i a}{b}\right )-2 i \tanh ^{-1}\left (\frac{(2 a+i b) \cot \left (\frac{1}{4} (4 i x+\pi )\right )}{\sqrt{-4 a^2-b^2}}\right )-2 i \tanh ^{-1}\left (\frac{(2 a-i b) \tan \left (\frac{1}{4} (4 i x+\pi )\right )}{\sqrt{-4 a^2-b^2}}\right )\right ) \log \left (-\frac{(-1)^{3/4} \sqrt{-4 a^2-b^2} e^{-x}}{2 \sqrt{-i b} \sqrt{a+b \cosh (x) \sinh (x)}}\right )+\left (\cos ^{-1}\left (-\frac{2 i a}{b}\right )+2 i \left (\tanh ^{-1}\left (\frac{(2 a+i b) \cot \left (\frac{1}{4} (4 i x+\pi )\right )}{\sqrt{-4 a^2-b^2}}\right )+\tanh ^{-1}\left (\frac{(2 a-i b) \tan \left (\frac{1}{4} (4 i x+\pi )\right )}{\sqrt{-4 a^2-b^2}}\right )\right )\right ) \log \left (\frac{\sqrt [4]{-1} \sqrt{-4 a^2-b^2} e^x}{2 \sqrt{-i b} \sqrt{a+b \cosh (x) \sinh (x)}}\right )+i \left (\text{PolyLog}\left (2,\frac{\left (2 i a+\sqrt{-4 a^2-b^2}\right ) \left (2 i a+b-i \sqrt{-4 a^2-b^2} \cot \left (\frac{1}{4} (4 i x+\pi )\right )\right )}{b \left (2 i a+b+i \sqrt{-4 a^2-b^2} \cot \left (\frac{1}{4} (4 i x+\pi )\right )\right )}\right )-\text{PolyLog}\left (2,\frac{\left (2 a+i \sqrt{-4 a^2-b^2}\right ) \left (-2 a+i b+\sqrt{-4 a^2-b^2} \cot \left (\frac{1}{4} (4 i x+\pi )\right )\right )}{b \left (2 i a+b+i \sqrt{-4 a^2-b^2} \cot \left (\frac{1}{4} (4 i x+\pi )\right )\right )}\right )\right )}{\sqrt{-4 a^2-b^2}}\right )$

Antiderivative was successfully veriﬁed.

[In]

Integrate[x/(a + b*Cosh[x]*Sinh[x]),x]

[Out]

(((-I)*Pi*ArcTanh[(-b + 2*a*Tanh[x])/Sqrt[4*a^2 + b^2]])/Sqrt[4*a^2 + b^2] - (2*ArcCos[((-2*I)*a)/b]*ArcTanh[(
(2*a + I*b)*Cot[(Pi + (4*I)*x)/4])/Sqrt[-4*a^2 - b^2]] + (Pi - (4*I)*x)*ArcTanh[((2*a - I*b)*Tan[(Pi + (4*I)*x
)/4])/Sqrt[-4*a^2 - b^2]] - (ArcCos[((-2*I)*a)/b] + (2*I)*ArcTanh[((2*a + I*b)*Cot[(Pi + (4*I)*x)/4])/Sqrt[-4*
a^2 - b^2]])*Log[(((2*I)*a + b)*((-2*I)*a + b + Sqrt[-4*a^2 - b^2])*(1 + I*Cot[(Pi + (4*I)*x)/4]))/(b*((2*I)*a
+ b + I*Sqrt[-4*a^2 - b^2]*Cot[(Pi + (4*I)*x)/4]))] - (ArcCos[((-2*I)*a)/b] - (2*I)*ArcTanh[((2*a + I*b)*Cot[
(Pi + (4*I)*x)/4])/Sqrt[-4*a^2 - b^2]])*Log[(((2*I)*a + b)*((2*I)*a - b + Sqrt[-4*a^2 - b^2])*(I + Cot[(Pi + (
4*I)*x)/4]))/(b*(2*a - I*b + Sqrt[-4*a^2 - b^2]*Cot[(Pi + (4*I)*x)/4]))] + (ArcCos[((-2*I)*a)/b] - (2*I)*ArcTa
nh[((2*a + I*b)*Cot[(Pi + (4*I)*x)/4])/Sqrt[-4*a^2 - b^2]] - (2*I)*ArcTanh[((2*a - I*b)*Tan[(Pi + (4*I)*x)/4])
/Sqrt[-4*a^2 - b^2]])*Log[-((-1)^(3/4)*Sqrt[-4*a^2 - b^2])/(2*Sqrt[(-I)*b]*E^x*Sqrt[a + b*Cosh[x]*Sinh[x]])] +
(ArcCos[((-2*I)*a)/b] + (2*I)*(ArcTanh[((2*a + I*b)*Cot[(Pi + (4*I)*x)/4])/Sqrt[-4*a^2 - b^2]] + ArcTanh[((2*
a - I*b)*Tan[(Pi + (4*I)*x)/4])/Sqrt[-4*a^2 - b^2]]))*Log[((-1)^(1/4)*Sqrt[-4*a^2 - b^2]*E^x)/(2*Sqrt[(-I)*b]*
Sqrt[a + b*Cosh[x]*Sinh[x]])] + I*(PolyLog[2, (((2*I)*a + Sqrt[-4*a^2 - b^2])*((2*I)*a + b - I*Sqrt[-4*a^2 - b
^2]*Cot[(Pi + (4*I)*x)/4]))/(b*((2*I)*a + b + I*Sqrt[-4*a^2 - b^2]*Cot[(Pi + (4*I)*x)/4]))] - PolyLog[2, ((2*a
+ I*Sqrt[-4*a^2 - b^2])*(-2*a + I*b + Sqrt[-4*a^2 - b^2]*Cot[(Pi + (4*I)*x)/4]))/(b*((2*I)*a + b + I*Sqrt[-4*
a^2 - b^2]*Cot[(Pi + (4*I)*x)/4]))]))/Sqrt[-4*a^2 - b^2])/2

________________________________________________________________________________________

Maple [B]  time = 0.05, size = 376, normalized size = 2. \begin{align*}{x\ln \left ( 1-{b{{\rm e}^{2\,x}} \left ( -2\,a-\sqrt{4\,{a}^{2}+{b}^{2}} \right ) ^{-1}} \right ) \left ( -2\,a-\sqrt{4\,{a}^{2}+{b}^{2}} \right ) ^{-1}}-{{x}^{2} \left ( -2\,a-\sqrt{4\,{a}^{2}+{b}^{2}} \right ) ^{-1}}+2\,{\frac{ax}{\sqrt{4\,{a}^{2}+{b}^{2}} \left ( -2\,a-\sqrt{4\,{a}^{2}+{b}^{2}} \right ) }\ln \left ( 1-{\frac{b{{\rm e}^{2\,x}}}{-2\,a-\sqrt{4\,{a}^{2}+{b}^{2}}}} \right ) }-2\,{\frac{a{x}^{2}}{\sqrt{4\,{a}^{2}+{b}^{2}} \left ( -2\,a-\sqrt{4\,{a}^{2}+{b}^{2}} \right ) }}+{\frac{1}{2}{\it polylog} \left ( 2,{b{{\rm e}^{2\,x}} \left ( -2\,a-\sqrt{4\,{a}^{2}+{b}^{2}} \right ) ^{-1}} \right ) \left ( -2\,a-\sqrt{4\,{a}^{2}+{b}^{2}} \right ) ^{-1}}+{a{\it polylog} \left ( 2,{b{{\rm e}^{2\,x}} \left ( -2\,a-\sqrt{4\,{a}^{2}+{b}^{2}} \right ) ^{-1}} \right ){\frac{1}{\sqrt{4\,{a}^{2}+{b}^{2}}}} \left ( -2\,a-\sqrt{4\,{a}^{2}+{b}^{2}} \right ) ^{-1}}+{x\ln \left ( 1-{b{{\rm e}^{2\,x}} \left ( \sqrt{4\,{a}^{2}+{b}^{2}}-2\,a \right ) ^{-1}} \right ){\frac{1}{\sqrt{4\,{a}^{2}+{b}^{2}}}}}-{{x}^{2}{\frac{1}{\sqrt{4\,{a}^{2}+{b}^{2}}}}}+{\frac{1}{2}{\it polylog} \left ( 2,{b{{\rm e}^{2\,x}} \left ( \sqrt{4\,{a}^{2}+{b}^{2}}-2\,a \right ) ^{-1}} \right ){\frac{1}{\sqrt{4\,{a}^{2}+{b}^{2}}}}} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

int(x/(a+b*cosh(x)*sinh(x)),x)

[Out]

1/(-2*a-(4*a^2+b^2)^(1/2))*ln(1-b*exp(2*x)/(-2*a-(4*a^2+b^2)^(1/2)))*x-1/(-2*a-(4*a^2+b^2)^(1/2))*x^2+2/(4*a^2
+b^2)^(1/2)/(-2*a-(4*a^2+b^2)^(1/2))*ln(1-b*exp(2*x)/(-2*a-(4*a^2+b^2)^(1/2)))*a*x-2/(4*a^2+b^2)^(1/2)/(-2*a-(
4*a^2+b^2)^(1/2))*a*x^2+1/2/(-2*a-(4*a^2+b^2)^(1/2))*polylog(2,b*exp(2*x)/(-2*a-(4*a^2+b^2)^(1/2)))+1/(4*a^2+b
^2)^(1/2)/(-2*a-(4*a^2+b^2)^(1/2))*polylog(2,b*exp(2*x)/(-2*a-(4*a^2+b^2)^(1/2)))*a+1/(4*a^2+b^2)^(1/2)*x*ln(1
-b*exp(2*x)/((4*a^2+b^2)^(1/2)-2*a))-1/(4*a^2+b^2)^(1/2)*x^2+1/2/(4*a^2+b^2)^(1/2)*polylog(2,b*exp(2*x)/((4*a^
2+b^2)^(1/2)-2*a))

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{x}{b \cosh \left (x\right ) \sinh \left (x\right ) + a}\,{d x} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(x/(a+b*cosh(x)*sinh(x)),x, algorithm="maxima")

[Out]

integrate(x/(b*cosh(x)*sinh(x) + a), x)

________________________________________________________________________________________

Fricas [B]  time = 1.87469, size = 1814, normalized size = 9.75 \begin{align*} \text{result too large to display} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(x/(a+b*cosh(x)*sinh(x)),x, algorithm="fricas")

[Out]

-(b*x*sqrt((4*a^2 + b^2)/b^2)*log(((2*a*cosh(x) + 2*a*sinh(x) - (b*cosh(x) + b*sinh(x))*sqrt((4*a^2 + b^2)/b^2
))*sqrt(-(b*sqrt((4*a^2 + b^2)/b^2) + 2*a)/b) + b)/b) + b*x*sqrt((4*a^2 + b^2)/b^2)*log(-((2*a*cosh(x) + 2*a*s
inh(x) - (b*cosh(x) + b*sinh(x))*sqrt((4*a^2 + b^2)/b^2))*sqrt(-(b*sqrt((4*a^2 + b^2)/b^2) + 2*a)/b) - b)/b) -
b*x*sqrt((4*a^2 + b^2)/b^2)*log(((2*a*cosh(x) + 2*a*sinh(x) + (b*cosh(x) + b*sinh(x))*sqrt((4*a^2 + b^2)/b^2)
)*sqrt((b*sqrt((4*a^2 + b^2)/b^2) - 2*a)/b) + b)/b) - b*x*sqrt((4*a^2 + b^2)/b^2)*log(-((2*a*cosh(x) + 2*a*sin
h(x) + (b*cosh(x) + b*sinh(x))*sqrt((4*a^2 + b^2)/b^2))*sqrt((b*sqrt((4*a^2 + b^2)/b^2) - 2*a)/b) - b)/b) + b*
sqrt((4*a^2 + b^2)/b^2)*dilog(-((2*a*cosh(x) + 2*a*sinh(x) - (b*cosh(x) + b*sinh(x))*sqrt((4*a^2 + b^2)/b^2))*
sqrt(-(b*sqrt((4*a^2 + b^2)/b^2) + 2*a)/b) + b)/b + 1) + b*sqrt((4*a^2 + b^2)/b^2)*dilog(((2*a*cosh(x) + 2*a*s
inh(x) - (b*cosh(x) + b*sinh(x))*sqrt((4*a^2 + b^2)/b^2))*sqrt(-(b*sqrt((4*a^2 + b^2)/b^2) + 2*a)/b) - b)/b +
1) - b*sqrt((4*a^2 + b^2)/b^2)*dilog(-((2*a*cosh(x) + 2*a*sinh(x) + (b*cosh(x) + b*sinh(x))*sqrt((4*a^2 + b^2)
/b^2))*sqrt((b*sqrt((4*a^2 + b^2)/b^2) - 2*a)/b) + b)/b + 1) - b*sqrt((4*a^2 + b^2)/b^2)*dilog(((2*a*cosh(x) +
2*a*sinh(x) + (b*cosh(x) + b*sinh(x))*sqrt((4*a^2 + b^2)/b^2))*sqrt((b*sqrt((4*a^2 + b^2)/b^2) - 2*a)/b) - b)
/b + 1))/(4*a^2 + b^2)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{x}{a + b \sinh{\left (x \right )} \cosh{\left (x \right )}}\, dx \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(x/(a+b*cosh(x)*sinh(x)),x)

[Out]

Integral(x/(a + b*sinh(x)*cosh(x)), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{x}{b \cosh \left (x\right ) \sinh \left (x\right ) + a}\,{d x} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(x/(a+b*cosh(x)*sinh(x)),x, algorithm="giac")

[Out]

integrate(x/(b*cosh(x)*sinh(x) + a), x)