### 3.849 $$\int x^2 \text{csch}(x) \text{sech}(x) \sqrt{a \text{sech}^2(x)} \, dx$$

Optimal. Leaf size=187 $-2 x \cosh (x) \text{PolyLog}\left (2,-e^x\right ) \sqrt{a \text{sech}^2(x)}+2 x \cosh (x) \text{PolyLog}\left (2,e^x\right ) \sqrt{a \text{sech}^2(x)}+2 i \cosh (x) \text{PolyLog}\left (2,-i e^x\right ) \sqrt{a \text{sech}^2(x)}-2 i \cosh (x) \text{PolyLog}\left (2,i e^x\right ) \sqrt{a \text{sech}^2(x)}+2 \cosh (x) \text{PolyLog}\left (3,-e^x\right ) \sqrt{a \text{sech}^2(x)}-2 \cosh (x) \text{PolyLog}\left (3,e^x\right ) \sqrt{a \text{sech}^2(x)}+x^2 \sqrt{a \text{sech}^2(x)}-2 x^2 \cosh (x) \tanh ^{-1}\left (e^x\right ) \sqrt{a \text{sech}^2(x)}-4 x \tan ^{-1}\left (e^x\right ) \cosh (x) \sqrt{a \text{sech}^2(x)}$

[Out]

x^2*Sqrt[a*Sech[x]^2] - 4*x*ArcTan[E^x]*Cosh[x]*Sqrt[a*Sech[x]^2] - 2*x^2*ArcTanh[E^x]*Cosh[x]*Sqrt[a*Sech[x]^
2] - 2*x*Cosh[x]*PolyLog[2, -E^x]*Sqrt[a*Sech[x]^2] + (2*I)*Cosh[x]*PolyLog[2, (-I)*E^x]*Sqrt[a*Sech[x]^2] - (
2*I)*Cosh[x]*PolyLog[2, I*E^x]*Sqrt[a*Sech[x]^2] + 2*x*Cosh[x]*PolyLog[2, E^x]*Sqrt[a*Sech[x]^2] + 2*Cosh[x]*P
olyLog[3, -E^x]*Sqrt[a*Sech[x]^2] - 2*Cosh[x]*PolyLog[3, E^x]*Sqrt[a*Sech[x]^2]

________________________________________________________________________________________

Rubi [A]  time = 0.512386, antiderivative size = 187, normalized size of antiderivative = 1., number of steps used = 17, number of rules used = 14, integrand size = 18, $$\frac{\text{number of rules}}{\text{integrand size}}$$ = 0.778, Rules used = {6720, 2622, 321, 207, 5462, 14, 6273, 4182, 2531, 2282, 6589, 4180, 2279, 2391} $-2 x \cosh (x) \text{PolyLog}\left (2,-e^x\right ) \sqrt{a \text{sech}^2(x)}+2 x \cosh (x) \text{PolyLog}\left (2,e^x\right ) \sqrt{a \text{sech}^2(x)}+2 i \cosh (x) \text{PolyLog}\left (2,-i e^x\right ) \sqrt{a \text{sech}^2(x)}-2 i \cosh (x) \text{PolyLog}\left (2,i e^x\right ) \sqrt{a \text{sech}^2(x)}+2 \cosh (x) \text{PolyLog}\left (3,-e^x\right ) \sqrt{a \text{sech}^2(x)}-2 \cosh (x) \text{PolyLog}\left (3,e^x\right ) \sqrt{a \text{sech}^2(x)}+x^2 \sqrt{a \text{sech}^2(x)}-2 x^2 \cosh (x) \tanh ^{-1}\left (e^x\right ) \sqrt{a \text{sech}^2(x)}-4 x \tan ^{-1}\left (e^x\right ) \cosh (x) \sqrt{a \text{sech}^2(x)}$

Antiderivative was successfully veriﬁed.

[In]

Int[x^2*Csch[x]*Sech[x]*Sqrt[a*Sech[x]^2],x]

[Out]

x^2*Sqrt[a*Sech[x]^2] - 4*x*ArcTan[E^x]*Cosh[x]*Sqrt[a*Sech[x]^2] - 2*x^2*ArcTanh[E^x]*Cosh[x]*Sqrt[a*Sech[x]^
2] - 2*x*Cosh[x]*PolyLog[2, -E^x]*Sqrt[a*Sech[x]^2] + (2*I)*Cosh[x]*PolyLog[2, (-I)*E^x]*Sqrt[a*Sech[x]^2] - (
2*I)*Cosh[x]*PolyLog[2, I*E^x]*Sqrt[a*Sech[x]^2] + 2*x*Cosh[x]*PolyLog[2, E^x]*Sqrt[a*Sech[x]^2] + 2*Cosh[x]*P
olyLog[3, -E^x]*Sqrt[a*Sech[x]^2] - 2*Cosh[x]*PolyLog[3, E^x]*Sqrt[a*Sech[x]^2]

Rule 6720

Int[(u_.)*((a_.)*(v_)^(m_.))^(p_), x_Symbol] :> Dist[(a^IntPart[p]*(a*v^m)^FracPart[p])/v^(m*FracPart[p]), Int
[u*v^(m*p), x], x] /; FreeQ[{a, m, p}, x] &&  !IntegerQ[p] &&  !FreeQ[v, x] &&  !(EqQ[a, 1] && EqQ[m, 1]) &&
!(EqQ[v, x] && EqQ[m, 1])

Rule 2622

Int[csc[(e_.) + (f_.)*(x_)]^(n_.)*((a_.)*sec[(e_.) + (f_.)*(x_)])^(m_), x_Symbol] :> Dist[1/(f*a^n), Subst[Int
[x^(m + n - 1)/(-1 + x^2/a^2)^((n + 1)/2), x], x, a*Sec[e + f*x]], x] /; FreeQ[{a, e, f, m}, x] && IntegerQ[(n
+ 1)/2] &&  !(IntegerQ[(m + 1)/2] && LtQ[0, m, n])

Rule 321

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(c^(n - 1)*(c*x)^(m - n + 1)*(a + b*x^n
)^(p + 1))/(b*(m + n*p + 1)), x] - Dist[(a*c^n*(m - n + 1))/(b*(m + n*p + 1)), Int[(c*x)^(m - n)*(a + b*x^n)^p
, x], x] /; FreeQ[{a, b, c, p}, x] && IGtQ[n, 0] && GtQ[m, n - 1] && NeQ[m + n*p + 1, 0] && IntBinomialQ[a, b,
c, n, m, p, x]

Rule 207

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> -Simp[ArcTanh[(Rt[b, 2]*x)/Rt[-a, 2]]/(Rt[-a, 2]*Rt[b, 2]), x] /;
FreeQ[{a, b}, x] && NegQ[a/b] && (LtQ[a, 0] || GtQ[b, 0])

Rule 5462

Int[Csch[(a_.) + (b_.)*(x_)]^(n_.)*((c_.) + (d_.)*(x_))^(m_.)*Sech[(a_.) + (b_.)*(x_)]^(p_.), x_Symbol] :> Wit
h[{u = IntHide[Csch[a + b*x]^n*Sech[a + b*x]^p, x]}, Dist[(c + d*x)^m, u, x] - Dist[d*m, Int[(c + d*x)^(m - 1)
*u, x], x]] /; FreeQ[{a, b, c, d}, x] && IntegersQ[n, p] && GtQ[m, 0] && NeQ[n, p]

Rule 14

Int[(u_)*((c_.)*(x_))^(m_.), x_Symbol] :> Int[ExpandIntegrand[(c*x)^m*u, x], x] /; FreeQ[{c, m}, x] && SumQ[u]
&&  !LinearQ[u, x] &&  !MatchQ[u, (a_) + (b_.)*(v_) /; FreeQ[{a, b}, x] && InverseFunctionQ[v]]

Rule 6273

Int[((a_.) + ArcTanh[u_]*(b_.))*((c_.) + (d_.)*(x_))^(m_.), x_Symbol] :> Simp[((c + d*x)^(m + 1)*(a + b*ArcTan
h[u]))/(d*(m + 1)), x] - Dist[b/(d*(m + 1)), Int[SimplifyIntegrand[((c + d*x)^(m + 1)*D[u, x])/(1 - u^2), x],
x], x] /; FreeQ[{a, b, c, d, m}, x] && NeQ[m, -1] && InverseFunctionFreeQ[u, x] &&  !FunctionOfQ[(c + d*x)^(m
+ 1), u, x] && FalseQ[PowerVariableExpn[u, m + 1, x]]

Rule 4182

Int[csc[(e_.) + (Complex[0, fz_])*(f_.)*(x_)]*((c_.) + (d_.)*(x_))^(m_.), x_Symbol] :> Simp[(-2*(c + d*x)^m*Ar
cTanh[E^(-(I*e) + f*fz*x)])/(f*fz*I), x] + (-Dist[(d*m)/(f*fz*I), Int[(c + d*x)^(m - 1)*Log[1 - E^(-(I*e) + f*
fz*x)], x], x] + Dist[(d*m)/(f*fz*I), Int[(c + d*x)^(m - 1)*Log[1 + E^(-(I*e) + f*fz*x)], x], x]) /; FreeQ[{c,
d, e, f, fz}, x] && IGtQ[m, 0]

Rule 2531

Int[Log[1 + (e_.)*((F_)^((c_.)*((a_.) + (b_.)*(x_))))^(n_.)]*((f_.) + (g_.)*(x_))^(m_.), x_Symbol] :> -Simp[((
f + g*x)^m*PolyLog[2, -(e*(F^(c*(a + b*x)))^n)])/(b*c*n*Log[F]), x] + Dist[(g*m)/(b*c*n*Log[F]), Int[(f + g*x)
^(m - 1)*PolyLog[2, -(e*(F^(c*(a + b*x)))^n)], x], x] /; FreeQ[{F, a, b, c, e, f, g, n}, x] && GtQ[m, 0]

Rule 2282

Int[u_, x_Symbol] :> With[{v = FunctionOfExponential[u, x]}, Dist[v/D[v, x], Subst[Int[FunctionOfExponentialFu
nction[u, x]/x, x], x, v], x]] /; FunctionOfExponentialQ[u, x] &&  !MatchQ[u, (w_)*((a_.)*(v_)^(n_))^(m_) /; F
reeQ[{a, m, n}, x] && IntegerQ[m*n]] &&  !MatchQ[u, E^((c_.)*((a_.) + (b_.)*x))*(F_)[v_] /; FreeQ[{a, b, c}, x
] && InverseFunctionQ[F[x]]]

Rule 6589

Int[PolyLog[n_, (c_.)*((a_.) + (b_.)*(x_))^(p_.)]/((d_.) + (e_.)*(x_)), x_Symbol] :> Simp[PolyLog[n + 1, c*(a
+ b*x)^p]/(e*p), x] /; FreeQ[{a, b, c, d, e, n, p}, x] && EqQ[b*d, a*e]

Rule 4180

Int[csc[(e_.) + Pi*(k_.) + (Complex[0, fz_])*(f_.)*(x_)]*((c_.) + (d_.)*(x_))^(m_.), x_Symbol] :> Simp[(-2*(c
+ d*x)^m*ArcTanh[E^(-(I*e) + f*fz*x)/E^(I*k*Pi)])/(f*fz*I), x] + (-Dist[(d*m)/(f*fz*I), Int[(c + d*x)^(m - 1)*
Log[1 - E^(-(I*e) + f*fz*x)/E^(I*k*Pi)], x], x] + Dist[(d*m)/(f*fz*I), Int[(c + d*x)^(m - 1)*Log[1 + E^(-(I*e)
+ f*fz*x)/E^(I*k*Pi)], x], x]) /; FreeQ[{c, d, e, f, fz}, x] && IntegerQ[2*k] && IGtQ[m, 0]

Rule 2279

Int[Log[(a_) + (b_.)*((F_)^((e_.)*((c_.) + (d_.)*(x_))))^(n_.)], x_Symbol] :> Dist[1/(d*e*n*Log[F]), Subst[Int
[Log[a + b*x]/x, x], x, (F^(e*(c + d*x)))^n], x] /; FreeQ[{F, a, b, c, d, e, n}, x] && GtQ[a, 0]

Rule 2391

Int[Log[(c_.)*((d_) + (e_.)*(x_)^(n_.))]/(x_), x_Symbol] :> -Simp[PolyLog[2, -(c*e*x^n)]/n, x] /; FreeQ[{c, d,
e, n}, x] && EqQ[c*d, 1]

Rubi steps

\begin{align*} \int x^2 \text{csch}(x) \text{sech}(x) \sqrt{a \text{sech}^2(x)} \, dx &=\left (\cosh (x) \sqrt{a \text{sech}^2(x)}\right ) \int x^2 \text{csch}(x) \text{sech}^2(x) \, dx\\ &=x^2 \sqrt{a \text{sech}^2(x)}-x^2 \tanh ^{-1}(\cosh (x)) \cosh (x) \sqrt{a \text{sech}^2(x)}-\left (2 \cosh (x) \sqrt{a \text{sech}^2(x)}\right ) \int x \left (-\tanh ^{-1}(\cosh (x))+\text{sech}(x)\right ) \, dx\\ &=x^2 \sqrt{a \text{sech}^2(x)}-x^2 \tanh ^{-1}(\cosh (x)) \cosh (x) \sqrt{a \text{sech}^2(x)}-\left (2 \cosh (x) \sqrt{a \text{sech}^2(x)}\right ) \int \left (-x \tanh ^{-1}(\cosh (x))+x \text{sech}(x)\right ) \, dx\\ &=x^2 \sqrt{a \text{sech}^2(x)}-x^2 \tanh ^{-1}(\cosh (x)) \cosh (x) \sqrt{a \text{sech}^2(x)}+\left (2 \cosh (x) \sqrt{a \text{sech}^2(x)}\right ) \int x \tanh ^{-1}(\cosh (x)) \, dx-\left (2 \cosh (x) \sqrt{a \text{sech}^2(x)}\right ) \int x \text{sech}(x) \, dx\\ &=x^2 \sqrt{a \text{sech}^2(x)}-4 x \tan ^{-1}\left (e^x\right ) \cosh (x) \sqrt{a \text{sech}^2(x)}+\left (2 i \cosh (x) \sqrt{a \text{sech}^2(x)}\right ) \int \log \left (1-i e^x\right ) \, dx-\left (2 i \cosh (x) \sqrt{a \text{sech}^2(x)}\right ) \int \log \left (1+i e^x\right ) \, dx+\left (\cosh (x) \sqrt{a \text{sech}^2(x)}\right ) \int x^2 \text{csch}(x) \, dx\\ &=x^2 \sqrt{a \text{sech}^2(x)}-4 x \tan ^{-1}\left (e^x\right ) \cosh (x) \sqrt{a \text{sech}^2(x)}-2 x^2 \tanh ^{-1}\left (e^x\right ) \cosh (x) \sqrt{a \text{sech}^2(x)}+\left (2 i \cosh (x) \sqrt{a \text{sech}^2(x)}\right ) \operatorname{Subst}\left (\int \frac{\log (1-i x)}{x} \, dx,x,e^x\right )-\left (2 i \cosh (x) \sqrt{a \text{sech}^2(x)}\right ) \operatorname{Subst}\left (\int \frac{\log (1+i x)}{x} \, dx,x,e^x\right )-\left (2 \cosh (x) \sqrt{a \text{sech}^2(x)}\right ) \int x \log \left (1-e^x\right ) \, dx+\left (2 \cosh (x) \sqrt{a \text{sech}^2(x)}\right ) \int x \log \left (1+e^x\right ) \, dx\\ &=x^2 \sqrt{a \text{sech}^2(x)}-4 x \tan ^{-1}\left (e^x\right ) \cosh (x) \sqrt{a \text{sech}^2(x)}-2 x^2 \tanh ^{-1}\left (e^x\right ) \cosh (x) \sqrt{a \text{sech}^2(x)}-2 x \cosh (x) \text{Li}_2\left (-e^x\right ) \sqrt{a \text{sech}^2(x)}+2 i \cosh (x) \text{Li}_2\left (-i e^x\right ) \sqrt{a \text{sech}^2(x)}-2 i \cosh (x) \text{Li}_2\left (i e^x\right ) \sqrt{a \text{sech}^2(x)}+2 x \cosh (x) \text{Li}_2\left (e^x\right ) \sqrt{a \text{sech}^2(x)}+\left (2 \cosh (x) \sqrt{a \text{sech}^2(x)}\right ) \int \text{Li}_2\left (-e^x\right ) \, dx-\left (2 \cosh (x) \sqrt{a \text{sech}^2(x)}\right ) \int \text{Li}_2\left (e^x\right ) \, dx\\ &=x^2 \sqrt{a \text{sech}^2(x)}-4 x \tan ^{-1}\left (e^x\right ) \cosh (x) \sqrt{a \text{sech}^2(x)}-2 x^2 \tanh ^{-1}\left (e^x\right ) \cosh (x) \sqrt{a \text{sech}^2(x)}-2 x \cosh (x) \text{Li}_2\left (-e^x\right ) \sqrt{a \text{sech}^2(x)}+2 i \cosh (x) \text{Li}_2\left (-i e^x\right ) \sqrt{a \text{sech}^2(x)}-2 i \cosh (x) \text{Li}_2\left (i e^x\right ) \sqrt{a \text{sech}^2(x)}+2 x \cosh (x) \text{Li}_2\left (e^x\right ) \sqrt{a \text{sech}^2(x)}+\left (2 \cosh (x) \sqrt{a \text{sech}^2(x)}\right ) \operatorname{Subst}\left (\int \frac{\text{Li}_2(-x)}{x} \, dx,x,e^x\right )-\left (2 \cosh (x) \sqrt{a \text{sech}^2(x)}\right ) \operatorname{Subst}\left (\int \frac{\text{Li}_2(x)}{x} \, dx,x,e^x\right )\\ &=x^2 \sqrt{a \text{sech}^2(x)}-4 x \tan ^{-1}\left (e^x\right ) \cosh (x) \sqrt{a \text{sech}^2(x)}-2 x^2 \tanh ^{-1}\left (e^x\right ) \cosh (x) \sqrt{a \text{sech}^2(x)}-2 x \cosh (x) \text{Li}_2\left (-e^x\right ) \sqrt{a \text{sech}^2(x)}+2 i \cosh (x) \text{Li}_2\left (-i e^x\right ) \sqrt{a \text{sech}^2(x)}-2 i \cosh (x) \text{Li}_2\left (i e^x\right ) \sqrt{a \text{sech}^2(x)}+2 x \cosh (x) \text{Li}_2\left (e^x\right ) \sqrt{a \text{sech}^2(x)}+2 \cosh (x) \text{Li}_3\left (-e^x\right ) \sqrt{a \text{sech}^2(x)}-2 \cosh (x) \text{Li}_3\left (e^x\right ) \sqrt{a \text{sech}^2(x)}\\ \end{align*}

Mathematica [A]  time = 0.186668, size = 154, normalized size = 0.82 $\sqrt{a \text{sech}^2(x)} \left (2 x \cosh (x) \left (\text{PolyLog}\left (2,-e^{-x}\right )-\text{PolyLog}\left (2,e^{-x}\right )\right )+2 i \cosh (x) \left (\text{PolyLog}\left (2,-i e^{-x}\right )-\text{PolyLog}\left (2,i e^{-x}\right )\right )+2 \cosh (x) \left (\text{PolyLog}\left (3,-e^{-x}\right )-\text{PolyLog}\left (3,e^{-x}\right )\right )+x^2+x^2 \left (\log \left (1-e^{-x}\right )-\log \left (e^{-x}+1\right )\right ) \cosh (x)+2 i x \left (\log \left (1-i e^{-x}\right )-\log \left (1+i e^{-x}\right )\right ) \cosh (x)\right )$

Antiderivative was successfully veriﬁed.

[In]

Integrate[x^2*Csch[x]*Sech[x]*Sqrt[a*Sech[x]^2],x]

[Out]

(x^2 + (2*I)*x*Cosh[x]*(Log[1 - I/E^x] - Log[1 + I/E^x]) + x^2*Cosh[x]*(Log[1 - E^(-x)] - Log[1 + E^(-x)]) + (
2*I)*Cosh[x]*(PolyLog[2, (-I)/E^x] - PolyLog[2, I/E^x]) + 2*x*Cosh[x]*(PolyLog[2, -E^(-x)] - PolyLog[2, E^(-x)
]) + 2*Cosh[x]*(PolyLog[3, -E^(-x)] - PolyLog[3, E^(-x)]))*Sqrt[a*Sech[x]^2]

________________________________________________________________________________________

Maple [F]  time = 0.154, size = 0, normalized size = 0. \begin{align*} \int{x}^{2}{\rm csch} \left (x\right ){\rm sech} \left (x\right )\sqrt{a \left ({\rm sech} \left (x\right ) \right ) ^{2}}\, dx \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

int(x^2*csch(x)*sech(x)*(a*sech(x)^2)^(1/2),x)

[Out]

int(x^2*csch(x)*sech(x)*(a*sech(x)^2)^(1/2),x)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \frac{2 \, \sqrt{a} x^{2} e^{x}}{e^{\left (2 \, x\right )} + 1} -{\left (x^{2} \log \left (e^{x} + 1\right ) + 2 \, x{\rm Li}_2\left (-e^{x}\right ) - 2 \,{\rm Li}_{3}(-e^{x})\right )} \sqrt{a} +{\left (x^{2} \log \left (-e^{x} + 1\right ) + 2 \, x{\rm Li}_2\left (e^{x}\right ) - 2 \,{\rm Li}_{3}(e^{x})\right )} \sqrt{a} - 4 \, \sqrt{a} \int \frac{x e^{x}}{e^{\left (2 \, x\right )} + 1}\,{d x} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2*csch(x)*sech(x)*(a*sech(x)^2)^(1/2),x, algorithm="maxima")

[Out]

2*sqrt(a)*x^2*e^x/(e^(2*x) + 1) - (x^2*log(e^x + 1) + 2*x*dilog(-e^x) - 2*polylog(3, -e^x))*sqrt(a) + (x^2*log
(-e^x + 1) + 2*x*dilog(e^x) - 2*polylog(3, e^x))*sqrt(a) - 4*sqrt(a)*integrate(x*e^x/(e^(2*x) + 1), x)

________________________________________________________________________________________

Fricas [C]  time = 2.46694, size = 2506, normalized size = 13.4 \begin{align*} \text{result too large to display} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2*csch(x)*sech(x)*(a*sech(x)^2)^(1/2),x, algorithm="fricas")

[Out]

-(2*((e^(2*x) + 1)*sinh(x)^2 + cosh(x)^2 + (cosh(x)^2 + 1)*e^(2*x) + 2*(cosh(x)*e^(2*x) + cosh(x))*sinh(x) + 1
)*sqrt(a/(e^(4*x) + 2*e^(2*x) + 1))*e^x*polylog(3, cosh(x) + sinh(x)) - 2*((e^(2*x) + 1)*sinh(x)^2 + cosh(x)^2
+ (cosh(x)^2 + 1)*e^(2*x) + 2*(cosh(x)*e^(2*x) + cosh(x))*sinh(x) + 1)*sqrt(a/(e^(4*x) + 2*e^(2*x) + 1))*e^x*
polylog(3, -cosh(x) - sinh(x)) - (2*x^2*cosh(x)*e^(2*x) + 2*x^2*cosh(x) + 2*(x*cosh(x)^2 + (x*e^(2*x) + x)*sin
h(x)^2 + (x*cosh(x)^2 + x)*e^(2*x) + 2*(x*cosh(x)*e^(2*x) + x*cosh(x))*sinh(x) + x)*dilog(cosh(x) + sinh(x)) +
((-2*I*e^(2*x) - 2*I)*sinh(x)^2 - 2*I*cosh(x)^2 + (-2*I*cosh(x)^2 - 2*I)*e^(2*x) + (-4*I*cosh(x)*e^(2*x) - 4*
I*cosh(x))*sinh(x) - 2*I)*dilog(I*cosh(x) + I*sinh(x)) + ((2*I*e^(2*x) + 2*I)*sinh(x)^2 + 2*I*cosh(x)^2 + (2*I
*cosh(x)^2 + 2*I)*e^(2*x) + (4*I*cosh(x)*e^(2*x) + 4*I*cosh(x))*sinh(x) + 2*I)*dilog(-I*cosh(x) - I*sinh(x)) -
2*(x*cosh(x)^2 + (x*e^(2*x) + x)*sinh(x)^2 + (x*cosh(x)^2 + x)*e^(2*x) + 2*(x*cosh(x)*e^(2*x) + x*cosh(x))*si
nh(x) + x)*dilog(-cosh(x) - sinh(x)) - (x^2*cosh(x)^2 + (x^2*e^(2*x) + x^2)*sinh(x)^2 + x^2 + (x^2*cosh(x)^2 +
x^2)*e^(2*x) + 2*(x^2*cosh(x)*e^(2*x) + x^2*cosh(x))*sinh(x))*log(cosh(x) + sinh(x) + 1) + (2*I*x*cosh(x)^2 +
(2*I*x*e^(2*x) + 2*I*x)*sinh(x)^2 + (2*I*x*cosh(x)^2 + 2*I*x)*e^(2*x) + (4*I*x*cosh(x)*e^(2*x) + 4*I*x*cosh(x
))*sinh(x) + 2*I*x)*log(I*cosh(x) + I*sinh(x) + 1) + (-2*I*x*cosh(x)^2 + (-2*I*x*e^(2*x) - 2*I*x)*sinh(x)^2 +
(-2*I*x*cosh(x)^2 - 2*I*x)*e^(2*x) + (-4*I*x*cosh(x)*e^(2*x) - 4*I*x*cosh(x))*sinh(x) - 2*I*x)*log(-I*cosh(x)
- I*sinh(x) + 1) + (x^2*cosh(x)^2 + (x^2*e^(2*x) + x^2)*sinh(x)^2 + x^2 + (x^2*cosh(x)^2 + x^2)*e^(2*x) + 2*(x
^2*cosh(x)*e^(2*x) + x^2*cosh(x))*sinh(x))*log(-cosh(x) - sinh(x) + 1) + 2*(x^2*e^(2*x) + x^2)*sinh(x))*sqrt(a
/(e^(4*x) + 2*e^(2*x) + 1))*e^x)/(2*cosh(x)*e^x*sinh(x) + e^x*sinh(x)^2 + (cosh(x)^2 + 1)*e^x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int x^{2} \sqrt{a \operatorname{sech}^{2}{\left (x \right )}} \operatorname{csch}{\left (x \right )} \operatorname{sech}{\left (x \right )}\, dx \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**2*csch(x)*sech(x)*(a*sech(x)**2)**(1/2),x)

[Out]

Integral(x**2*sqrt(a*sech(x)**2)*csch(x)*sech(x), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \sqrt{a \operatorname{sech}\left (x\right )^{2}} x^{2} \operatorname{csch}\left (x\right ) \operatorname{sech}\left (x\right )\,{d x} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2*csch(x)*sech(x)*(a*sech(x)^2)^(1/2),x, algorithm="giac")

[Out]

integrate(sqrt(a*sech(x)^2)*x^2*csch(x)*sech(x), x)