### 3.835 $$\int \frac{\cosh ^3(x)}{a+b \cosh (x)+c \cosh ^2(x)} \, dx$$

Optimal. Leaf size=299 $\frac{2 \left (-\frac{b^3}{\sqrt{b^2-4 a c}}+\frac{3 a b c}{\sqrt{b^2-4 a c}}-a c+b^2\right ) \tanh ^{-1}\left (\frac{\tanh \left (\frac{x}{2}\right ) \sqrt{-\sqrt{b^2-4 a c}+b-2 c}}{\sqrt{-\sqrt{b^2-4 a c}+b+2 c}}\right )}{c^2 \sqrt{-\sqrt{b^2-4 a c}+b-2 c} \sqrt{-\sqrt{b^2-4 a c}+b+2 c}}+\frac{2 \left (\frac{b^3}{\sqrt{b^2-4 a c}}-\frac{3 a b c}{\sqrt{b^2-4 a c}}-a c+b^2\right ) \tanh ^{-1}\left (\frac{\tanh \left (\frac{x}{2}\right ) \sqrt{\sqrt{b^2-4 a c}+b-2 c}}{\sqrt{\sqrt{b^2-4 a c}+b+2 c}}\right )}{c^2 \sqrt{\sqrt{b^2-4 a c}+b-2 c} \sqrt{\sqrt{b^2-4 a c}+b+2 c}}-\frac{b x}{c^2}+\frac{\sinh (x)}{c}$

[Out]

-((b*x)/c^2) + (2*(b^2 - a*c - b^3/Sqrt[b^2 - 4*a*c] + (3*a*b*c)/Sqrt[b^2 - 4*a*c])*ArcTanh[(Sqrt[b - 2*c - Sq
rt[b^2 - 4*a*c]]*Tanh[x/2])/Sqrt[b + 2*c - Sqrt[b^2 - 4*a*c]]])/(c^2*Sqrt[b - 2*c - Sqrt[b^2 - 4*a*c]]*Sqrt[b
+ 2*c - Sqrt[b^2 - 4*a*c]]) + (2*(b^2 - a*c + b^3/Sqrt[b^2 - 4*a*c] - (3*a*b*c)/Sqrt[b^2 - 4*a*c])*ArcTanh[(Sq
rt[b - 2*c + Sqrt[b^2 - 4*a*c]]*Tanh[x/2])/Sqrt[b + 2*c + Sqrt[b^2 - 4*a*c]]])/(c^2*Sqrt[b - 2*c + Sqrt[b^2 -
4*a*c]]*Sqrt[b + 2*c + Sqrt[b^2 - 4*a*c]]) + Sinh[x]/c

________________________________________________________________________________________

Rubi [A]  time = 6.38888, antiderivative size = 299, normalized size of antiderivative = 1., number of steps used = 8, number of rules used = 5, integrand size = 19, $$\frac{\text{number of rules}}{\text{integrand size}}$$ = 0.263, Rules used = {3257, 2637, 3293, 2659, 208} $\frac{2 \left (-\frac{b^3}{\sqrt{b^2-4 a c}}+\frac{3 a b c}{\sqrt{b^2-4 a c}}-a c+b^2\right ) \tanh ^{-1}\left (\frac{\tanh \left (\frac{x}{2}\right ) \sqrt{-\sqrt{b^2-4 a c}+b-2 c}}{\sqrt{-\sqrt{b^2-4 a c}+b+2 c}}\right )}{c^2 \sqrt{-\sqrt{b^2-4 a c}+b-2 c} \sqrt{-\sqrt{b^2-4 a c}+b+2 c}}+\frac{2 \left (\frac{b^3}{\sqrt{b^2-4 a c}}-\frac{3 a b c}{\sqrt{b^2-4 a c}}-a c+b^2\right ) \tanh ^{-1}\left (\frac{\tanh \left (\frac{x}{2}\right ) \sqrt{\sqrt{b^2-4 a c}+b-2 c}}{\sqrt{\sqrt{b^2-4 a c}+b+2 c}}\right )}{c^2 \sqrt{\sqrt{b^2-4 a c}+b-2 c} \sqrt{\sqrt{b^2-4 a c}+b+2 c}}-\frac{b x}{c^2}+\frac{\sinh (x)}{c}$

Antiderivative was successfully veriﬁed.

[In]

Int[Cosh[x]^3/(a + b*Cosh[x] + c*Cosh[x]^2),x]

[Out]

-((b*x)/c^2) + (2*(b^2 - a*c - b^3/Sqrt[b^2 - 4*a*c] + (3*a*b*c)/Sqrt[b^2 - 4*a*c])*ArcTanh[(Sqrt[b - 2*c - Sq
rt[b^2 - 4*a*c]]*Tanh[x/2])/Sqrt[b + 2*c - Sqrt[b^2 - 4*a*c]]])/(c^2*Sqrt[b - 2*c - Sqrt[b^2 - 4*a*c]]*Sqrt[b
+ 2*c - Sqrt[b^2 - 4*a*c]]) + (2*(b^2 - a*c + b^3/Sqrt[b^2 - 4*a*c] - (3*a*b*c)/Sqrt[b^2 - 4*a*c])*ArcTanh[(Sq
rt[b - 2*c + Sqrt[b^2 - 4*a*c]]*Tanh[x/2])/Sqrt[b + 2*c + Sqrt[b^2 - 4*a*c]]])/(c^2*Sqrt[b - 2*c + Sqrt[b^2 -
4*a*c]]*Sqrt[b + 2*c + Sqrt[b^2 - 4*a*c]]) + Sinh[x]/c

Rule 3257

Int[cos[(d_.) + (e_.)*(x_)]^(m_.)*((a_.) + cos[(d_.) + (e_.)*(x_)]^(n_.)*(b_.) + cos[(d_.) + (e_.)*(x_)]^(n2_.
)*(c_.))^(p_), x_Symbol] :> Int[ExpandTrig[cos[d + e*x]^m*(a + b*cos[d + e*x]^n + c*cos[d + e*x]^(2*n))^p, x],
x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[n2, 2*n] && NeQ[b^2 - 4*a*c, 0] && IntegersQ[m, n, p]

Rule 2637

Int[sin[Pi/2 + (c_.) + (d_.)*(x_)], x_Symbol] :> Simp[Sin[c + d*x]/d, x] /; FreeQ[{c, d}, x]

Rule 3293

Int[(cos[(d_.) + (e_.)*(x_)]*(B_.) + (A_))/((a_.) + cos[(d_.) + (e_.)*(x_)]*(b_.) + cos[(d_.) + (e_.)*(x_)]^2*
(c_.)), x_Symbol] :> Module[{q = Rt[b^2 - 4*a*c, 2]}, Dist[B + (b*B - 2*A*c)/q, Int[1/(b + q + 2*c*Cos[d + e*x
]), x], x] + Dist[B - (b*B - 2*A*c)/q, Int[1/(b - q + 2*c*Cos[d + e*x]), x], x]] /; FreeQ[{a, b, c, d, e, A, B
}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 2659

Int[((a_) + (b_.)*sin[Pi/2 + (c_.) + (d_.)*(x_)])^(-1), x_Symbol] :> With[{e = FreeFactors[Tan[(c + d*x)/2], x
]}, Dist[(2*e)/d, Subst[Int[1/(a + b + (a - b)*e^2*x^2), x], x, Tan[(c + d*x)/2]/e], x]] /; FreeQ[{a, b, c, d}
, x] && NeQ[a^2 - b^2, 0]

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rubi steps

\begin{align*} \int \frac{\cosh ^3(x)}{a+b \cosh (x)+c \cosh ^2(x)} \, dx &=\int \left (-\frac{b}{c^2}+\frac{\cosh (x)}{c}+\frac{a b+b^2 \left (1-\frac{a c}{b^2}\right ) \cosh (x)}{c^2 \left (a+b \cosh (x)+c \cosh ^2(x)\right )}\right ) \, dx\\ &=-\frac{b x}{c^2}+\frac{\int \frac{a b+b^2 \left (1-\frac{a c}{b^2}\right ) \cosh (x)}{a+b \cosh (x)+c \cosh ^2(x)} \, dx}{c^2}+\frac{\int \cosh (x) \, dx}{c}\\ &=-\frac{b x}{c^2}+\frac{\sinh (x)}{c}+\frac{\left (b^2-a c+\frac{b^3}{\sqrt{b^2-4 a c}}-\frac{3 a b c}{\sqrt{b^2-4 a c}}\right ) \int \frac{1}{b+\sqrt{b^2-4 a c}+2 c \cosh (x)} \, dx}{c^2}+\frac{\left (b^2-a c-\frac{b^3}{\sqrt{b^2-4 a c}}+\frac{3 a b c}{\sqrt{b^2-4 a c}}\right ) \int \frac{1}{b-\sqrt{b^2-4 a c}+2 c \cosh (x)} \, dx}{c^2}\\ &=-\frac{b x}{c^2}+\frac{\sinh (x)}{c}+\frac{\left (2 \left (b^2-a c+\frac{b^3}{\sqrt{b^2-4 a c}}-\frac{3 a b c}{\sqrt{b^2-4 a c}}\right )\right ) \operatorname{Subst}\left (\int \frac{1}{b+2 c+\sqrt{b^2-4 a c}-\left (b-2 c+\sqrt{b^2-4 a c}\right ) x^2} \, dx,x,\tanh \left (\frac{x}{2}\right )\right )}{c^2}+\frac{\left (2 \left (b^2-a c-\frac{b^3}{\sqrt{b^2-4 a c}}+\frac{3 a b c}{\sqrt{b^2-4 a c}}\right )\right ) \operatorname{Subst}\left (\int \frac{1}{b+2 c-\sqrt{b^2-4 a c}-\left (b-2 c-\sqrt{b^2-4 a c}\right ) x^2} \, dx,x,\tanh \left (\frac{x}{2}\right )\right )}{c^2}\\ &=-\frac{b x}{c^2}+\frac{2 \left (b^2-a c-\frac{b^3}{\sqrt{b^2-4 a c}}+\frac{3 a b c}{\sqrt{b^2-4 a c}}\right ) \tanh ^{-1}\left (\frac{\sqrt{b-2 c-\sqrt{b^2-4 a c}} \tanh \left (\frac{x}{2}\right )}{\sqrt{b+2 c-\sqrt{b^2-4 a c}}}\right )}{c^2 \sqrt{b-2 c-\sqrt{b^2-4 a c}} \sqrt{b+2 c-\sqrt{b^2-4 a c}}}+\frac{2 \left (b^2-a c+\frac{b^3}{\sqrt{b^2-4 a c}}-\frac{3 a b c}{\sqrt{b^2-4 a c}}\right ) \tanh ^{-1}\left (\frac{\sqrt{b-2 c+\sqrt{b^2-4 a c}} \tanh \left (\frac{x}{2}\right )}{\sqrt{b+2 c+\sqrt{b^2-4 a c}}}\right )}{c^2 \sqrt{b-2 c+\sqrt{b^2-4 a c}} \sqrt{b+2 c+\sqrt{b^2-4 a c}}}+\frac{\sinh (x)}{c}\\ \end{align*}

Mathematica [A]  time = 0.766211, size = 309, normalized size = 1.03 $\frac{-\frac{\sqrt{2} \left (b^2 \sqrt{b^2-4 a c}-a c \sqrt{b^2-4 a c}-3 a b c+b^3\right ) \tan ^{-1}\left (\frac{\tanh \left (\frac{x}{2}\right ) \left (\sqrt{b^2-4 a c}+b-2 c\right )}{\sqrt{-2 b \sqrt{b^2-4 a c}+4 c (a+c)-2 b^2}}\right )}{\sqrt{b^2-4 a c} \sqrt{-b \sqrt{b^2-4 a c}+2 c (a+c)-b^2}}+\frac{\sqrt{2} \left (b^2 \sqrt{b^2-4 a c}-a c \sqrt{b^2-4 a c}+3 a b c-b^3\right ) \tan ^{-1}\left (\frac{\tanh \left (\frac{x}{2}\right ) \left (\sqrt{b^2-4 a c}-b+2 c\right )}{\sqrt{2 b \sqrt{b^2-4 a c}+4 c (a+c)-2 b^2}}\right )}{\sqrt{b^2-4 a c} \sqrt{b \sqrt{b^2-4 a c}+2 c (a+c)-b^2}}-b x+c \sinh (x)}{c^2}$

Antiderivative was successfully veriﬁed.

[In]

Integrate[Cosh[x]^3/(a + b*Cosh[x] + c*Cosh[x]^2),x]

[Out]

(-(b*x) - (Sqrt[2]*(b^3 - 3*a*b*c + b^2*Sqrt[b^2 - 4*a*c] - a*c*Sqrt[b^2 - 4*a*c])*ArcTan[((b - 2*c + Sqrt[b^2
- 4*a*c])*Tanh[x/2])/Sqrt[-2*b^2 + 4*c*(a + c) - 2*b*Sqrt[b^2 - 4*a*c]]])/(Sqrt[b^2 - 4*a*c]*Sqrt[-b^2 + 2*c*
(a + c) - b*Sqrt[b^2 - 4*a*c]]) + (Sqrt[2]*(-b^3 + 3*a*b*c + b^2*Sqrt[b^2 - 4*a*c] - a*c*Sqrt[b^2 - 4*a*c])*Ar
cTan[((-b + 2*c + Sqrt[b^2 - 4*a*c])*Tanh[x/2])/Sqrt[-2*b^2 + 4*c*(a + c) + 2*b*Sqrt[b^2 - 4*a*c]]])/(Sqrt[b^2
- 4*a*c]*Sqrt[-b^2 + 2*c*(a + c) + b*Sqrt[b^2 - 4*a*c]]) + c*Sinh[x])/c^2

________________________________________________________________________________________

Maple [B]  time = 0.053, size = 2530, normalized size = 8.5 \begin{align*} \text{result too large to display} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

int(cosh(x)^3/(a+b*cosh(x)+c*cosh(x)^2),x)

[Out]

-1/c^2/(a-b+c)/(((-4*a*c+b^2)^(1/2)-a+c)*(a-b+c))^(1/2)*arctan((a-b+c)*tanh(1/2*x)/(((-4*a*c+b^2)^(1/2)-a+c)*(
a-b+c))^(1/2))*a^2*b+1/c^2/(-4*a*c+b^2)^(1/2)/(a-b+c)/(((-4*a*c+b^2)^(1/2)+a-c)*(a-b+c))^(1/2)*arctanh((-a+b-c
)*tanh(1/2*x)/(((-4*a*c+b^2)^(1/2)+a-c)*(a-b+c))^(1/2))*a^2*b^2-2/c^2*a/(-4*a*c+b^2)^(1/2)/(a-b+c)/(((-4*a*c+b
^2)^(1/2)+a-c)*(a-b+c))^(1/2)*arctanh((-a+b-c)*tanh(1/2*x)/(((-4*a*c+b^2)^(1/2)+a-c)*(a-b+c))^(1/2))*b^3-1/c^2
/(-4*a*c+b^2)^(1/2)/(a-b+c)/(((-4*a*c+b^2)^(1/2)-a+c)*(a-b+c))^(1/2)*arctan((a-b+c)*tanh(1/2*x)/(((-4*a*c+b^2)
^(1/2)-a+c)*(a-b+c))^(1/2))*a^2*b^2+2/c^2*a/(-4*a*c+b^2)^(1/2)/(a-b+c)/(((-4*a*c+b^2)^(1/2)-a+c)*(a-b+c))^(1/2
)*arctan((a-b+c)*tanh(1/2*x)/(((-4*a*c+b^2)^(1/2)-a+c)*(a-b+c))^(1/2))*b^3-a/(a-b+c)/(((-4*a*c+b^2)^(1/2)-a+c)
*(a-b+c))^(1/2)*arctan((a-b+c)*tanh(1/2*x)/(((-4*a*c+b^2)^(1/2)-a+c)*(a-b+c))^(1/2))-a/(a-b+c)/(((-4*a*c+b^2)^
(1/2)+a-c)*(a-b+c))^(1/2)*arctanh((-a+b-c)*tanh(1/2*x)/(((-4*a*c+b^2)^(1/2)+a-c)*(a-b+c))^(1/2))-5/c/(-4*a*c+b
^2)^(1/2)/(a-b+c)/(((-4*a*c+b^2)^(1/2)-a+c)*(a-b+c))^(1/2)*arctan((a-b+c)*tanh(1/2*x)/(((-4*a*c+b^2)^(1/2)-a+c
)*(a-b+c))^(1/2))*a^2*b+2/c*a/(-4*a*c+b^2)^(1/2)/(a-b+c)/(((-4*a*c+b^2)^(1/2)-a+c)*(a-b+c))^(1/2)*arctan((a-b+
c)*tanh(1/2*x)/(((-4*a*c+b^2)^(1/2)-a+c)*(a-b+c))^(1/2))*b^2+5/c/(-4*a*c+b^2)^(1/2)/(a-b+c)/(((-4*a*c+b^2)^(1/
2)+a-c)*(a-b+c))^(1/2)*arctanh((-a+b-c)*tanh(1/2*x)/(((-4*a*c+b^2)^(1/2)+a-c)*(a-b+c))^(1/2))*a^2*b-2/c*a/(-4*
a*c+b^2)^(1/2)/(a-b+c)/(((-4*a*c+b^2)^(1/2)+a-c)*(a-b+c))^(1/2)*arctanh((-a+b-c)*tanh(1/2*x)/(((-4*a*c+b^2)^(1
/2)+a-c)*(a-b+c))^(1/2))*b^2-2/(-4*a*c+b^2)^(1/2)/(a-b+c)/(((-4*a*c+b^2)^(1/2)+a-c)*(a-b+c))^(1/2)*arctanh((-a
+b-c)*tanh(1/2*x)/(((-4*a*c+b^2)^(1/2)+a-c)*(a-b+c))^(1/2))*a^2+2/c/(-4*a*c+b^2)^(1/2)/(a-b+c)/(((-4*a*c+b^2)^
(1/2)-a+c)*(a-b+c))^(1/2)*arctan((a-b+c)*tanh(1/2*x)/(((-4*a*c+b^2)^(1/2)-a+c)*(a-b+c))^(1/2))*a^3-2/c/(-4*a*c
+b^2)^(1/2)/(a-b+c)/(((-4*a*c+b^2)^(1/2)+a-c)*(a-b+c))^(1/2)*arctanh((-a+b-c)*tanh(1/2*x)/(((-4*a*c+b^2)^(1/2)
+a-c)*(a-b+c))^(1/2))*a^3-1/c/(tanh(1/2*x)+1)-1/c^2/(-4*a*c+b^2)^(1/2)/(a-b+c)/(((-4*a*c+b^2)^(1/2)-a+c)*(a-b+
c))^(1/2)*arctan((a-b+c)*tanh(1/2*x)/(((-4*a*c+b^2)^(1/2)-a+c)*(a-b+c))^(1/2))*b^4+1/c^2/(-4*a*c+b^2)^(1/2)/(a
-b+c)/(((-4*a*c+b^2)^(1/2)+a-c)*(a-b+c))^(1/2)*arctanh((-a+b-c)*tanh(1/2*x)/(((-4*a*c+b^2)^(1/2)+a-c)*(a-b+c))
^(1/2))*b^4+2/(-4*a*c+b^2)^(1/2)/(a-b+c)/(((-4*a*c+b^2)^(1/2)-a+c)*(a-b+c))^(1/2)*arctan((a-b+c)*tanh(1/2*x)/(
((-4*a*c+b^2)^(1/2)-a+c)*(a-b+c))^(1/2))*a^2-1/c^2/(a-b+c)/(((-4*a*c+b^2)^(1/2)-a+c)*(a-b+c))^(1/2)*arctan((a-
b+c)*tanh(1/2*x)/(((-4*a*c+b^2)^(1/2)-a+c)*(a-b+c))^(1/2))*b^3-1/c^2/(a-b+c)/(((-4*a*c+b^2)^(1/2)+a-c)*(a-b+c)
)^(1/2)*arctanh((-a+b-c)*tanh(1/2*x)/(((-4*a*c+b^2)^(1/2)+a-c)*(a-b+c))^(1/2))*b^3+1/c/(a-b+c)/(((-4*a*c+b^2)^
(1/2)+a-c)*(a-b+c))^(1/2)*arctanh((-a+b-c)*tanh(1/2*x)/(((-4*a*c+b^2)^(1/2)+a-c)*(a-b+c))^(1/2))*b^2-1/c^2/(a-
b+c)/(((-4*a*c+b^2)^(1/2)+a-c)*(a-b+c))^(1/2)*arctanh((-a+b-c)*tanh(1/2*x)/(((-4*a*c+b^2)^(1/2)+a-c)*(a-b+c))^
(1/2))*a^2*b+1/c/(a-b+c)/(((-4*a*c+b^2)^(1/2)-a+c)*(a-b+c))^(1/2)*arctan((a-b+c)*tanh(1/2*x)/(((-4*a*c+b^2)^(1
/2)-a+c)*(a-b+c))^(1/2))*b^2-1/c/(a-b+c)/(((-4*a*c+b^2)^(1/2)-a+c)*(a-b+c))^(1/2)*arctan((a-b+c)*tanh(1/2*x)/(
((-4*a*c+b^2)^(1/2)-a+c)*(a-b+c))^(1/2))*a^2-1/c/(a-b+c)/(((-4*a*c+b^2)^(1/2)+a-c)*(a-b+c))^(1/2)*arctanh((-a+
b-c)*tanh(1/2*x)/(((-4*a*c+b^2)^(1/2)+a-c)*(a-b+c))^(1/2))*a^2+1/c/(-4*a*c+b^2)^(1/2)/(a-b+c)/(((-4*a*c+b^2)^(
1/2)-a+c)*(a-b+c))^(1/2)*arctan((a-b+c)*tanh(1/2*x)/(((-4*a*c+b^2)^(1/2)-a+c)*(a-b+c))^(1/2))*b^3-1/c/(tanh(1/
2*x)-1)-b/c^2*ln(tanh(1/2*x)+1)+2/c^2*a/(a-b+c)/(((-4*a*c+b^2)^(1/2)-a+c)*(a-b+c))^(1/2)*arctan((a-b+c)*tanh(1
/2*x)/(((-4*a*c+b^2)^(1/2)-a+c)*(a-b+c))^(1/2))*b^2-3*a/(-4*a*c+b^2)^(1/2)/(a-b+c)/(((-4*a*c+b^2)^(1/2)-a+c)*(
a-b+c))^(1/2)*arctan((a-b+c)*tanh(1/2*x)/(((-4*a*c+b^2)^(1/2)-a+c)*(a-b+c))^(1/2))*b+3*a/(-4*a*c+b^2)^(1/2)/(a
-b+c)/(((-4*a*c+b^2)^(1/2)+a-c)*(a-b+c))^(1/2)*arctanh((-a+b-c)*tanh(1/2*x)/(((-4*a*c+b^2)^(1/2)+a-c)*(a-b+c))
^(1/2))*b-1/c/(-4*a*c+b^2)^(1/2)/(a-b+c)/(((-4*a*c+b^2)^(1/2)+a-c)*(a-b+c))^(1/2)*arctanh((-a+b-c)*tanh(1/2*x)
/(((-4*a*c+b^2)^(1/2)+a-c)*(a-b+c))^(1/2))*b^3+b/c^2*ln(tanh(1/2*x)-1)+2/c^2*a/(a-b+c)/(((-4*a*c+b^2)^(1/2)+a-
c)*(a-b+c))^(1/2)*arctanh((-a+b-c)*tanh(1/2*x)/(((-4*a*c+b^2)^(1/2)+a-c)*(a-b+c))^(1/2))*b^2

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} -\frac{{\left (2 \, b x e^{x} - c e^{\left (2 \, x\right )} + c\right )} e^{\left (-x\right )}}{2 \, c^{2}} - \frac{1}{8} \, \int -\frac{16 \,{\left (2 \, a b e^{\left (2 \, x\right )} +{\left (b^{2} - a c\right )} e^{\left (3 \, x\right )} +{\left (b^{2} - a c\right )} e^{x}\right )}}{c^{3} e^{\left (4 \, x\right )} + 2 \, b c^{2} e^{\left (3 \, x\right )} + 2 \, b c^{2} e^{x} + c^{3} + 2 \,{\left (2 \, a c^{2} + c^{3}\right )} e^{\left (2 \, x\right )}}\,{d x} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(cosh(x)^3/(a+b*cosh(x)+c*cosh(x)^2),x, algorithm="maxima")

[Out]

-1/2*(2*b*x*e^x - c*e^(2*x) + c)*e^(-x)/c^2 - 1/8*integrate(-16*(2*a*b*e^(2*x) + (b^2 - a*c)*e^(3*x) + (b^2 -
a*c)*e^x)/(c^3*e^(4*x) + 2*b*c^2*e^(3*x) + 2*b*c^2*e^x + c^3 + 2*(2*a*c^2 + c^3)*e^(2*x)), x)

________________________________________________________________________________________

Fricas [B]  time = 7.91034, size = 13678, normalized size = 45.75 \begin{align*} \text{result too large to display} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(cosh(x)^3/(a+b*cosh(x)+c*cosh(x)^2),x, algorithm="fricas")

[Out]

-1/2*(2*b*x*cosh(x) - c*cosh(x)^2 + sqrt(2)*(c^2*cosh(x) + c^2*sinh(x))*sqrt(-(a^2*b^4 - b^6 + 2*a^3*c^3 + (2*
a^4 - 9*a^2*b^2)*c^2 - 2*(2*a^3*b^2 - 3*a*b^4)*c + (4*a*c^7 + (8*a^2 - b^2)*c^6 + 2*(2*a^3 - 3*a*b^2)*c^5 - (a
^2*b^2 - b^4)*c^4)*sqrt(-(a^4*b^6 - 2*a^2*b^8 + b^10 + 9*a^4*b^2*c^4 + 12*(a^5*b^2 - 2*a^3*b^4)*c^3 + 2*(2*a^6
*b^2 - 11*a^4*b^4 + 11*a^2*b^6)*c^2 - 4*(a^5*b^4 - 3*a^3*b^6 + 2*a*b^8)*c)/(4*a*c^13 + (16*a^2 - b^2)*c^12 + 1
2*(2*a^3 - a*b^2)*c^11 + 2*(8*a^4 - 11*a^2*b^2 + b^4)*c^10 + 4*(a^5 - 3*a^3*b^2 + 2*a*b^4)*c^9 - (a^4*b^2 - 2*
a^2*b^4 + b^6)*c^8)))/(4*a*c^7 + (8*a^2 - b^2)*c^6 + 2*(2*a^3 - 3*a*b^2)*c^5 - (a^2*b^2 - b^4)*c^4))*log(-2*a^
5*b^4 + 2*a^3*b^6 + 6*a^5*b^2*c^2 + 4*(a^6*b^2 - 2*a^4*b^4)*c + sqrt(2)*(12*a^4*b*c^5 + (20*a^5*b - 31*a^3*b^3
)*c^4 + (8*a^6*b - 33*a^4*b^3 + 27*a^2*b^5)*c^3 - 3*(2*a^5*b^3 - 5*a^3*b^5 + 3*a*b^7)*c^2 + (a^4*b^5 - 2*a^2*b
^7 + b^9)*c - (12*a^2*b*c^9 + 7*(4*a^3*b - a*b^3)*c^8 + (20*a^4*b - 27*a^2*b^3 + b^5)*c^7 + (4*a^5*b - 13*a^3*
b^3 + 9*a*b^5)*c^6 - (a^4*b^3 - 2*a^2*b^5 + b^7)*c^5)*sqrt(-(a^4*b^6 - 2*a^2*b^8 + b^10 + 9*a^4*b^2*c^4 + 12*(
a^5*b^2 - 2*a^3*b^4)*c^3 + 2*(2*a^6*b^2 - 11*a^4*b^4 + 11*a^2*b^6)*c^2 - 4*(a^5*b^4 - 3*a^3*b^6 + 2*a*b^8)*c)/
(4*a*c^13 + (16*a^2 - b^2)*c^12 + 12*(2*a^3 - a*b^2)*c^11 + 2*(8*a^4 - 11*a^2*b^2 + b^4)*c^10 + 4*(a^5 - 3*a^3
*b^2 + 2*a*b^4)*c^9 - (a^4*b^2 - 2*a^2*b^4 + b^6)*c^8)))*sqrt(-(a^2*b^4 - b^6 + 2*a^3*c^3 + (2*a^4 - 9*a^2*b^2
)*c^2 - 2*(2*a^3*b^2 - 3*a*b^4)*c + (4*a*c^7 + (8*a^2 - b^2)*c^6 + 2*(2*a^3 - 3*a*b^2)*c^5 - (a^2*b^2 - b^4)*c
^4)*sqrt(-(a^4*b^6 - 2*a^2*b^8 + b^10 + 9*a^4*b^2*c^4 + 12*(a^5*b^2 - 2*a^3*b^4)*c^3 + 2*(2*a^6*b^2 - 11*a^4*b
^4 + 11*a^2*b^6)*c^2 - 4*(a^5*b^4 - 3*a^3*b^6 + 2*a*b^8)*c)/(4*a*c^13 + (16*a^2 - b^2)*c^12 + 12*(2*a^3 - a*b^
2)*c^11 + 2*(8*a^4 - 11*a^2*b^2 + b^4)*c^10 + 4*(a^5 - 3*a^3*b^2 + 2*a*b^4)*c^9 - (a^4*b^2 - 2*a^2*b^4 + b^6)*
c^8)))/(4*a*c^7 + (8*a^2 - b^2)*c^6 + 2*(2*a^3 - 3*a*b^2)*c^5 - (a^2*b^2 - b^4)*c^4)) + 4*(3*a^5*b*c^3 + 2*(a^
6*b - 2*a^4*b^3)*c^2 - (a^5*b^3 - a^3*b^5)*c)*cosh(x) + 4*(3*a^5*b*c^3 + 2*(a^6*b - 2*a^4*b^3)*c^2 - (a^5*b^3
- a^3*b^5)*c)*sinh(x) - 2*(4*a^4*c^7 + (8*a^5 - a^3*b^2)*c^6 + 2*(2*a^6 - 3*a^4*b^2)*c^5 - (a^5*b^2 - a^3*b^4)
*c^4)*sqrt(-(a^4*b^6 - 2*a^2*b^8 + b^10 + 9*a^4*b^2*c^4 + 12*(a^5*b^2 - 2*a^3*b^4)*c^3 + 2*(2*a^6*b^2 - 11*a^4
*b^4 + 11*a^2*b^6)*c^2 - 4*(a^5*b^4 - 3*a^3*b^6 + 2*a*b^8)*c)/(4*a*c^13 + (16*a^2 - b^2)*c^12 + 12*(2*a^3 - a*
b^2)*c^11 + 2*(8*a^4 - 11*a^2*b^2 + b^4)*c^10 + 4*(a^5 - 3*a^3*b^2 + 2*a*b^4)*c^9 - (a^4*b^2 - 2*a^2*b^4 + b^6
)*c^8))) - sqrt(2)*(c^2*cosh(x) + c^2*sinh(x))*sqrt(-(a^2*b^4 - b^6 + 2*a^3*c^3 + (2*a^4 - 9*a^2*b^2)*c^2 - 2*
(2*a^3*b^2 - 3*a*b^4)*c + (4*a*c^7 + (8*a^2 - b^2)*c^6 + 2*(2*a^3 - 3*a*b^2)*c^5 - (a^2*b^2 - b^4)*c^4)*sqrt(-
(a^4*b^6 - 2*a^2*b^8 + b^10 + 9*a^4*b^2*c^4 + 12*(a^5*b^2 - 2*a^3*b^4)*c^3 + 2*(2*a^6*b^2 - 11*a^4*b^4 + 11*a^
2*b^6)*c^2 - 4*(a^5*b^4 - 3*a^3*b^6 + 2*a*b^8)*c)/(4*a*c^13 + (16*a^2 - b^2)*c^12 + 12*(2*a^3 - a*b^2)*c^11 +
2*(8*a^4 - 11*a^2*b^2 + b^4)*c^10 + 4*(a^5 - 3*a^3*b^2 + 2*a*b^4)*c^9 - (a^4*b^2 - 2*a^2*b^4 + b^6)*c^8)))/(4*
a*c^7 + (8*a^2 - b^2)*c^6 + 2*(2*a^3 - 3*a*b^2)*c^5 - (a^2*b^2 - b^4)*c^4))*log(-2*a^5*b^4 + 2*a^3*b^6 + 6*a^5
*b^2*c^2 + 4*(a^6*b^2 - 2*a^4*b^4)*c - sqrt(2)*(12*a^4*b*c^5 + (20*a^5*b - 31*a^3*b^3)*c^4 + (8*a^6*b - 33*a^4
*b^3 + 27*a^2*b^5)*c^3 - 3*(2*a^5*b^3 - 5*a^3*b^5 + 3*a*b^7)*c^2 + (a^4*b^5 - 2*a^2*b^7 + b^9)*c - (12*a^2*b*c
^9 + 7*(4*a^3*b - a*b^3)*c^8 + (20*a^4*b - 27*a^2*b^3 + b^5)*c^7 + (4*a^5*b - 13*a^3*b^3 + 9*a*b^5)*c^6 - (a^4
*b^3 - 2*a^2*b^5 + b^7)*c^5)*sqrt(-(a^4*b^6 - 2*a^2*b^8 + b^10 + 9*a^4*b^2*c^4 + 12*(a^5*b^2 - 2*a^3*b^4)*c^3
+ 2*(2*a^6*b^2 - 11*a^4*b^4 + 11*a^2*b^6)*c^2 - 4*(a^5*b^4 - 3*a^3*b^6 + 2*a*b^8)*c)/(4*a*c^13 + (16*a^2 - b^2
)*c^12 + 12*(2*a^3 - a*b^2)*c^11 + 2*(8*a^4 - 11*a^2*b^2 + b^4)*c^10 + 4*(a^5 - 3*a^3*b^2 + 2*a*b^4)*c^9 - (a^
4*b^2 - 2*a^2*b^4 + b^6)*c^8)))*sqrt(-(a^2*b^4 - b^6 + 2*a^3*c^3 + (2*a^4 - 9*a^2*b^2)*c^2 - 2*(2*a^3*b^2 - 3*
a*b^4)*c + (4*a*c^7 + (8*a^2 - b^2)*c^6 + 2*(2*a^3 - 3*a*b^2)*c^5 - (a^2*b^2 - b^4)*c^4)*sqrt(-(a^4*b^6 - 2*a^
2*b^8 + b^10 + 9*a^4*b^2*c^4 + 12*(a^5*b^2 - 2*a^3*b^4)*c^3 + 2*(2*a^6*b^2 - 11*a^4*b^4 + 11*a^2*b^6)*c^2 - 4*
(a^5*b^4 - 3*a^3*b^6 + 2*a*b^8)*c)/(4*a*c^13 + (16*a^2 - b^2)*c^12 + 12*(2*a^3 - a*b^2)*c^11 + 2*(8*a^4 - 11*a
^2*b^2 + b^4)*c^10 + 4*(a^5 - 3*a^3*b^2 + 2*a*b^4)*c^9 - (a^4*b^2 - 2*a^2*b^4 + b^6)*c^8)))/(4*a*c^7 + (8*a^2
- b^2)*c^6 + 2*(2*a^3 - 3*a*b^2)*c^5 - (a^2*b^2 - b^4)*c^4)) + 4*(3*a^5*b*c^3 + 2*(a^6*b - 2*a^4*b^3)*c^2 - (a
^5*b^3 - a^3*b^5)*c)*cosh(x) + 4*(3*a^5*b*c^3 + 2*(a^6*b - 2*a^4*b^3)*c^2 - (a^5*b^3 - a^3*b^5)*c)*sinh(x) - 2
*(4*a^4*c^7 + (8*a^5 - a^3*b^2)*c^6 + 2*(2*a^6 - 3*a^4*b^2)*c^5 - (a^5*b^2 - a^3*b^4)*c^4)*sqrt(-(a^4*b^6 - 2*
a^2*b^8 + b^10 + 9*a^4*b^2*c^4 + 12*(a^5*b^2 - 2*a^3*b^4)*c^3 + 2*(2*a^6*b^2 - 11*a^4*b^4 + 11*a^2*b^6)*c^2 -
4*(a^5*b^4 - 3*a^3*b^6 + 2*a*b^8)*c)/(4*a*c^13 + (16*a^2 - b^2)*c^12 + 12*(2*a^3 - a*b^2)*c^11 + 2*(8*a^4 - 11
*a^2*b^2 + b^4)*c^10 + 4*(a^5 - 3*a^3*b^2 + 2*a*b^4)*c^9 - (a^4*b^2 - 2*a^2*b^4 + b^6)*c^8))) + sqrt(2)*(c^2*c
osh(x) + c^2*sinh(x))*sqrt(-(a^2*b^4 - b^6 + 2*a^3*c^3 + (2*a^4 - 9*a^2*b^2)*c^2 - 2*(2*a^3*b^2 - 3*a*b^4)*c -
(4*a*c^7 + (8*a^2 - b^2)*c^6 + 2*(2*a^3 - 3*a*b^2)*c^5 - (a^2*b^2 - b^4)*c^4)*sqrt(-(a^4*b^6 - 2*a^2*b^8 + b^
10 + 9*a^4*b^2*c^4 + 12*(a^5*b^2 - 2*a^3*b^4)*c^3 + 2*(2*a^6*b^2 - 11*a^4*b^4 + 11*a^2*b^6)*c^2 - 4*(a^5*b^4 -
3*a^3*b^6 + 2*a*b^8)*c)/(4*a*c^13 + (16*a^2 - b^2)*c^12 + 12*(2*a^3 - a*b^2)*c^11 + 2*(8*a^4 - 11*a^2*b^2 + b
^4)*c^10 + 4*(a^5 - 3*a^3*b^2 + 2*a*b^4)*c^9 - (a^4*b^2 - 2*a^2*b^4 + b^6)*c^8)))/(4*a*c^7 + (8*a^2 - b^2)*c^6
+ 2*(2*a^3 - 3*a*b^2)*c^5 - (a^2*b^2 - b^4)*c^4))*log(-2*a^5*b^4 + 2*a^3*b^6 + 6*a^5*b^2*c^2 + 4*(a^6*b^2 - 2
*a^4*b^4)*c + sqrt(2)*(12*a^4*b*c^5 + (20*a^5*b - 31*a^3*b^3)*c^4 + (8*a^6*b - 33*a^4*b^3 + 27*a^2*b^5)*c^3 -
3*(2*a^5*b^3 - 5*a^3*b^5 + 3*a*b^7)*c^2 + (a^4*b^5 - 2*a^2*b^7 + b^9)*c + (12*a^2*b*c^9 + 7*(4*a^3*b - a*b^3)*
c^8 + (20*a^4*b - 27*a^2*b^3 + b^5)*c^7 + (4*a^5*b - 13*a^3*b^3 + 9*a*b^5)*c^6 - (a^4*b^3 - 2*a^2*b^5 + b^7)*c
^5)*sqrt(-(a^4*b^6 - 2*a^2*b^8 + b^10 + 9*a^4*b^2*c^4 + 12*(a^5*b^2 - 2*a^3*b^4)*c^3 + 2*(2*a^6*b^2 - 11*a^4*b
^4 + 11*a^2*b^6)*c^2 - 4*(a^5*b^4 - 3*a^3*b^6 + 2*a*b^8)*c)/(4*a*c^13 + (16*a^2 - b^2)*c^12 + 12*(2*a^3 - a*b^
2)*c^11 + 2*(8*a^4 - 11*a^2*b^2 + b^4)*c^10 + 4*(a^5 - 3*a^3*b^2 + 2*a*b^4)*c^9 - (a^4*b^2 - 2*a^2*b^4 + b^6)*
c^8)))*sqrt(-(a^2*b^4 - b^6 + 2*a^3*c^3 + (2*a^4 - 9*a^2*b^2)*c^2 - 2*(2*a^3*b^2 - 3*a*b^4)*c - (4*a*c^7 + (8*
a^2 - b^2)*c^6 + 2*(2*a^3 - 3*a*b^2)*c^5 - (a^2*b^2 - b^4)*c^4)*sqrt(-(a^4*b^6 - 2*a^2*b^8 + b^10 + 9*a^4*b^2*
c^4 + 12*(a^5*b^2 - 2*a^3*b^4)*c^3 + 2*(2*a^6*b^2 - 11*a^4*b^4 + 11*a^2*b^6)*c^2 - 4*(a^5*b^4 - 3*a^3*b^6 + 2*
a*b^8)*c)/(4*a*c^13 + (16*a^2 - b^2)*c^12 + 12*(2*a^3 - a*b^2)*c^11 + 2*(8*a^4 - 11*a^2*b^2 + b^4)*c^10 + 4*(a
^5 - 3*a^3*b^2 + 2*a*b^4)*c^9 - (a^4*b^2 - 2*a^2*b^4 + b^6)*c^8)))/(4*a*c^7 + (8*a^2 - b^2)*c^6 + 2*(2*a^3 - 3
*a*b^2)*c^5 - (a^2*b^2 - b^4)*c^4)) + 4*(3*a^5*b*c^3 + 2*(a^6*b - 2*a^4*b^3)*c^2 - (a^5*b^3 - a^3*b^5)*c)*cosh
(x) + 4*(3*a^5*b*c^3 + 2*(a^6*b - 2*a^4*b^3)*c^2 - (a^5*b^3 - a^3*b^5)*c)*sinh(x) + 2*(4*a^4*c^7 + (8*a^5 - a^
3*b^2)*c^6 + 2*(2*a^6 - 3*a^4*b^2)*c^5 - (a^5*b^2 - a^3*b^4)*c^4)*sqrt(-(a^4*b^6 - 2*a^2*b^8 + b^10 + 9*a^4*b^
2*c^4 + 12*(a^5*b^2 - 2*a^3*b^4)*c^3 + 2*(2*a^6*b^2 - 11*a^4*b^4 + 11*a^2*b^6)*c^2 - 4*(a^5*b^4 - 3*a^3*b^6 +
2*a*b^8)*c)/(4*a*c^13 + (16*a^2 - b^2)*c^12 + 12*(2*a^3 - a*b^2)*c^11 + 2*(8*a^4 - 11*a^2*b^2 + b^4)*c^10 + 4*
(a^5 - 3*a^3*b^2 + 2*a*b^4)*c^9 - (a^4*b^2 - 2*a^2*b^4 + b^6)*c^8))) - sqrt(2)*(c^2*cosh(x) + c^2*sinh(x))*sqr
t(-(a^2*b^4 - b^6 + 2*a^3*c^3 + (2*a^4 - 9*a^2*b^2)*c^2 - 2*(2*a^3*b^2 - 3*a*b^4)*c - (4*a*c^7 + (8*a^2 - b^2)
*c^6 + 2*(2*a^3 - 3*a*b^2)*c^5 - (a^2*b^2 - b^4)*c^4)*sqrt(-(a^4*b^6 - 2*a^2*b^8 + b^10 + 9*a^4*b^2*c^4 + 12*(
a^5*b^2 - 2*a^3*b^4)*c^3 + 2*(2*a^6*b^2 - 11*a^4*b^4 + 11*a^2*b^6)*c^2 - 4*(a^5*b^4 - 3*a^3*b^6 + 2*a*b^8)*c)/
(4*a*c^13 + (16*a^2 - b^2)*c^12 + 12*(2*a^3 - a*b^2)*c^11 + 2*(8*a^4 - 11*a^2*b^2 + b^4)*c^10 + 4*(a^5 - 3*a^3
*b^2 + 2*a*b^4)*c^9 - (a^4*b^2 - 2*a^2*b^4 + b^6)*c^8)))/(4*a*c^7 + (8*a^2 - b^2)*c^6 + 2*(2*a^3 - 3*a*b^2)*c^
5 - (a^2*b^2 - b^4)*c^4))*log(-2*a^5*b^4 + 2*a^3*b^6 + 6*a^5*b^2*c^2 + 4*(a^6*b^2 - 2*a^4*b^4)*c - sqrt(2)*(12
*a^4*b*c^5 + (20*a^5*b - 31*a^3*b^3)*c^4 + (8*a^6*b - 33*a^4*b^3 + 27*a^2*b^5)*c^3 - 3*(2*a^5*b^3 - 5*a^3*b^5
+ 3*a*b^7)*c^2 + (a^4*b^5 - 2*a^2*b^7 + b^9)*c + (12*a^2*b*c^9 + 7*(4*a^3*b - a*b^3)*c^8 + (20*a^4*b - 27*a^2*
b^3 + b^5)*c^7 + (4*a^5*b - 13*a^3*b^3 + 9*a*b^5)*c^6 - (a^4*b^3 - 2*a^2*b^5 + b^7)*c^5)*sqrt(-(a^4*b^6 - 2*a^
2*b^8 + b^10 + 9*a^4*b^2*c^4 + 12*(a^5*b^2 - 2*a^3*b^4)*c^3 + 2*(2*a^6*b^2 - 11*a^4*b^4 + 11*a^2*b^6)*c^2 - 4*
(a^5*b^4 - 3*a^3*b^6 + 2*a*b^8)*c)/(4*a*c^13 + (16*a^2 - b^2)*c^12 + 12*(2*a^3 - a*b^2)*c^11 + 2*(8*a^4 - 11*a
^2*b^2 + b^4)*c^10 + 4*(a^5 - 3*a^3*b^2 + 2*a*b^4)*c^9 - (a^4*b^2 - 2*a^2*b^4 + b^6)*c^8)))*sqrt(-(a^2*b^4 - b
^6 + 2*a^3*c^3 + (2*a^4 - 9*a^2*b^2)*c^2 - 2*(2*a^3*b^2 - 3*a*b^4)*c - (4*a*c^7 + (8*a^2 - b^2)*c^6 + 2*(2*a^3
- 3*a*b^2)*c^5 - (a^2*b^2 - b^4)*c^4)*sqrt(-(a^4*b^6 - 2*a^2*b^8 + b^10 + 9*a^4*b^2*c^4 + 12*(a^5*b^2 - 2*a^3
*b^4)*c^3 + 2*(2*a^6*b^2 - 11*a^4*b^4 + 11*a^2*b^6)*c^2 - 4*(a^5*b^4 - 3*a^3*b^6 + 2*a*b^8)*c)/(4*a*c^13 + (16
*a^2 - b^2)*c^12 + 12*(2*a^3 - a*b^2)*c^11 + 2*(8*a^4 - 11*a^2*b^2 + b^4)*c^10 + 4*(a^5 - 3*a^3*b^2 + 2*a*b^4)
*c^9 - (a^4*b^2 - 2*a^2*b^4 + b^6)*c^8)))/(4*a*c^7 + (8*a^2 - b^2)*c^6 + 2*(2*a^3 - 3*a*b^2)*c^5 - (a^2*b^2 -
b^4)*c^4)) + 4*(3*a^5*b*c^3 + 2*(a^6*b - 2*a^4*b^3)*c^2 - (a^5*b^3 - a^3*b^5)*c)*cosh(x) + 4*(3*a^5*b*c^3 + 2*
(a^6*b - 2*a^4*b^3)*c^2 - (a^5*b^3 - a^3*b^5)*c)*sinh(x) + 2*(4*a^4*c^7 + (8*a^5 - a^3*b^2)*c^6 + 2*(2*a^6 - 3
*a^4*b^2)*c^5 - (a^5*b^2 - a^3*b^4)*c^4)*sqrt(-(a^4*b^6 - 2*a^2*b^8 + b^10 + 9*a^4*b^2*c^4 + 12*(a^5*b^2 - 2*a
^3*b^4)*c^3 + 2*(2*a^6*b^2 - 11*a^4*b^4 + 11*a^2*b^6)*c^2 - 4*(a^5*b^4 - 3*a^3*b^6 + 2*a*b^8)*c)/(4*a*c^13 + (
16*a^2 - b^2)*c^12 + 12*(2*a^3 - a*b^2)*c^11 + 2*(8*a^4 - 11*a^2*b^2 + b^4)*c^10 + 4*(a^5 - 3*a^3*b^2 + 2*a*b^
4)*c^9 - (a^4*b^2 - 2*a^2*b^4 + b^6)*c^8))) - c*sinh(x)^2 + 2*(b*x - c*cosh(x))*sinh(x) + c)/(c^2*cosh(x) + c^
2*sinh(x))

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(cosh(x)**3/(a+b*cosh(x)+c*cosh(x)**2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [A]  time = 5.14931, size = 32, normalized size = 0.11 \begin{align*} -\frac{b x}{c^{2}} - \frac{e^{\left (-x\right )}}{2 \, c} + \frac{e^{x}}{2 \, c} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(cosh(x)^3/(a+b*cosh(x)+c*cosh(x)^2),x, algorithm="giac")

[Out]

-b*x/c^2 - 1/2*e^(-x)/c + 1/2*e^x/c