3.792 \(\int \frac{A+B \cosh (x)}{a+b \cosh (x)+c \sinh (x)} \, dx\)

Optimal. Leaf size=121 \[ \frac{2 \left (a b B-A \left (b^2-c^2\right )\right ) \tanh ^{-1}\left (\frac{c-(a-b) \tanh \left (\frac{x}{2}\right )}{\sqrt{a^2-b^2+c^2}}\right )}{\left (b^2-c^2\right ) \sqrt{a^2-b^2+c^2}}-\frac{B c \log (a+b \cosh (x)+c \sinh (x))}{b^2-c^2}+\frac{b B x}{b^2-c^2} \]

[Out]

(b*B*x)/(b^2 - c^2) + (2*(a*b*B - A*(b^2 - c^2))*ArcTanh[(c - (a - b)*Tanh[x/2])/Sqrt[a^2 - b^2 + c^2]])/((b^2
 - c^2)*Sqrt[a^2 - b^2 + c^2]) - (B*c*Log[a + b*Cosh[x] + c*Sinh[x]])/(b^2 - c^2)

________________________________________________________________________________________

Rubi [A]  time = 0.1179, antiderivative size = 121, normalized size of antiderivative = 1., number of steps used = 4, number of rules used = 4, integrand size = 19, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.21, Rules used = {3138, 3124, 618, 206} \[ \frac{2 \left (a b B-A \left (b^2-c^2\right )\right ) \tanh ^{-1}\left (\frac{c-(a-b) \tanh \left (\frac{x}{2}\right )}{\sqrt{a^2-b^2+c^2}}\right )}{\left (b^2-c^2\right ) \sqrt{a^2-b^2+c^2}}-\frac{B c \log (a+b \cosh (x)+c \sinh (x))}{b^2-c^2}+\frac{b B x}{b^2-c^2} \]

Antiderivative was successfully verified.

[In]

Int[(A + B*Cosh[x])/(a + b*Cosh[x] + c*Sinh[x]),x]

[Out]

(b*B*x)/(b^2 - c^2) + (2*(a*b*B - A*(b^2 - c^2))*ArcTanh[(c - (a - b)*Tanh[x/2])/Sqrt[a^2 - b^2 + c^2]])/((b^2
 - c^2)*Sqrt[a^2 - b^2 + c^2]) - (B*c*Log[a + b*Cosh[x] + c*Sinh[x]])/(b^2 - c^2)

Rule 3138

Int[((A_.) + cos[(d_.) + (e_.)*(x_)]*(B_.))/((a_.) + cos[(d_.) + (e_.)*(x_)]*(b_.) + (c_.)*sin[(d_.) + (e_.)*(
x_)]), x_Symbol] :> Simp[(b*B*(d + e*x))/(e*(b^2 + c^2)), x] + (Dist[(A*(b^2 + c^2) - a*b*B)/(b^2 + c^2), Int[
1/(a + b*Cos[d + e*x] + c*Sin[d + e*x]), x], x] + Simp[(c*B*Log[a + b*Cos[d + e*x] + c*Sin[d + e*x]])/(e*(b^2
+ c^2)), x]) /; FreeQ[{a, b, c, d, e, A, B}, x] && NeQ[b^2 + c^2, 0] && NeQ[A*(b^2 + c^2) - a*b*B, 0]

Rule 3124

Int[(cos[(d_.) + (e_.)*(x_)]*(b_.) + (a_) + (c_.)*sin[(d_.) + (e_.)*(x_)])^(-1), x_Symbol] :> Module[{f = Free
Factors[Tan[(d + e*x)/2], x]}, Dist[(2*f)/e, Subst[Int[1/(a + b + 2*c*f*x + (a - b)*f^2*x^2), x], x, Tan[(d +
e*x)/2]/f], x]] /; FreeQ[{a, b, c, d, e}, x] && NeQ[a^2 - b^2 - c^2, 0]

Rule 618

Int[((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> Dist[-2, Subst[Int[1/Simp[b^2 - 4*a*c - x^2, x], x]
, x, b + 2*c*x], x] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rubi steps

\begin{align*} \int \frac{A+B \cosh (x)}{a+b \cosh (x)+c \sinh (x)} \, dx &=\frac{b B x}{b^2-c^2}-\frac{B c \log (a+b \cosh (x)+c \sinh (x))}{b^2-c^2}+\left (A-\frac{a b B}{b^2-c^2}\right ) \int \frac{1}{a+b \cosh (x)+c \sinh (x)} \, dx\\ &=\frac{b B x}{b^2-c^2}-\frac{B c \log (a+b \cosh (x)+c \sinh (x))}{b^2-c^2}+\left (2 \left (A-\frac{a b B}{b^2-c^2}\right )\right ) \operatorname{Subst}\left (\int \frac{1}{a+b+2 c x-(a-b) x^2} \, dx,x,\tanh \left (\frac{x}{2}\right )\right )\\ &=\frac{b B x}{b^2-c^2}-\frac{B c \log (a+b \cosh (x)+c \sinh (x))}{b^2-c^2}-\left (4 \left (A-\frac{a b B}{b^2-c^2}\right )\right ) \operatorname{Subst}\left (\int \frac{1}{4 \left (a^2-b^2+c^2\right )-x^2} \, dx,x,2 c+2 (-a+b) \tanh \left (\frac{x}{2}\right )\right )\\ &=\frac{b B x}{b^2-c^2}-\frac{2 \left (A-\frac{a b B}{b^2-c^2}\right ) \tanh ^{-1}\left (\frac{c-(a-b) \tanh \left (\frac{x}{2}\right )}{\sqrt{a^2-b^2+c^2}}\right )}{\sqrt{a^2-b^2+c^2}}-\frac{B c \log (a+b \cosh (x)+c \sinh (x))}{b^2-c^2}\\ \end{align*}

Mathematica [A]  time = 0.179444, size = 104, normalized size = 0.86 \[ \frac{B (b x-c \log (a+b \cosh (x)+c \sinh (x)))-\frac{2 \left (a b B+A \left (c^2-b^2\right )\right ) \tan ^{-1}\left (\frac{(b-a) \tanh \left (\frac{x}{2}\right )+c}{\sqrt{-a^2+b^2-c^2}}\right )}{\sqrt{-a^2+b^2-c^2}}}{(b-c) (b+c)} \]

Antiderivative was successfully verified.

[In]

Integrate[(A + B*Cosh[x])/(a + b*Cosh[x] + c*Sinh[x]),x]

[Out]

((-2*(a*b*B + A*(-b^2 + c^2))*ArcTan[(c + (-a + b)*Tanh[x/2])/Sqrt[-a^2 + b^2 - c^2]])/Sqrt[-a^2 + b^2 - c^2]
+ B*(b*x - c*Log[a + b*Cosh[x] + c*Sinh[x]]))/((b - c)*(b + c))

________________________________________________________________________________________

Maple [B]  time = 0.051, size = 574, normalized size = 4.7 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((A+B*cosh(x))/(a+b*cosh(x)+c*sinh(x)),x)

[Out]

2*B/(2*b-2*c)*ln(tanh(1/2*x)+1)-2*B/(2*b+2*c)*ln(tanh(1/2*x)-1)-1/(b-c)/(b+c)/(a-b)*ln(a*tanh(1/2*x)^2-tanh(1/
2*x)^2*b-2*c*tanh(1/2*x)-a-b)*a*B*c+1/(b-c)/(b+c)/(a-b)*ln(a*tanh(1/2*x)^2-tanh(1/2*x)^2*b-2*c*tanh(1/2*x)-a-b
)*b*B*c-2/(b-c)/(b+c)/(-a^2+b^2-c^2)^(1/2)*arctan(1/2*(2*(a-b)*tanh(1/2*x)-2*c)/(-a^2+b^2-c^2)^(1/2))*A*b^2+2/
(b-c)/(b+c)/(-a^2+b^2-c^2)^(1/2)*arctan(1/2*(2*(a-b)*tanh(1/2*x)-2*c)/(-a^2+b^2-c^2)^(1/2))*A*c^2+2/(b-c)/(b+c
)/(-a^2+b^2-c^2)^(1/2)*arctan(1/2*(2*(a-b)*tanh(1/2*x)-2*c)/(-a^2+b^2-c^2)^(1/2))*a*b*B+2/(b-c)/(b+c)/(-a^2+b^
2-c^2)^(1/2)*arctan(1/2*(2*(a-b)*tanh(1/2*x)-2*c)/(-a^2+b^2-c^2)^(1/2))*B*c^2-2/(b-c)/(b+c)/(-a^2+b^2-c^2)^(1/
2)*arctan(1/2*(2*(a-b)*tanh(1/2*x)-2*c)/(-a^2+b^2-c^2)^(1/2))*c^2/(a-b)*a*B+2/(b-c)/(b+c)/(-a^2+b^2-c^2)^(1/2)
*arctan(1/2*(2*(a-b)*tanh(1/2*x)-2*c)/(-a^2+b^2-c^2)^(1/2))*c^2/(a-b)*b*B

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*cosh(x))/(a+b*cosh(x)+c*sinh(x)),x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [A]  time = 2.38994, size = 1214, normalized size = 10.03 \begin{align*} \left [-\frac{{\left (B a b - A b^{2} + A c^{2}\right )} \sqrt{a^{2} - b^{2} + c^{2}} \log \left (\frac{{\left (b^{2} + 2 \, b c + c^{2}\right )} \cosh \left (x\right )^{2} +{\left (b^{2} + 2 \, b c + c^{2}\right )} \sinh \left (x\right )^{2} + 2 \, a^{2} - b^{2} + c^{2} + 2 \,{\left (a b + a c\right )} \cosh \left (x\right ) + 2 \,{\left (a b + a c +{\left (b^{2} + 2 \, b c + c^{2}\right )} \cosh \left (x\right )\right )} \sinh \left (x\right ) - 2 \, \sqrt{a^{2} - b^{2} + c^{2}}{\left ({\left (b + c\right )} \cosh \left (x\right ) +{\left (b + c\right )} \sinh \left (x\right ) + a\right )}}{{\left (b + c\right )} \cosh \left (x\right )^{2} +{\left (b + c\right )} \sinh \left (x\right )^{2} + 2 \, a \cosh \left (x\right ) + 2 \,{\left ({\left (b + c\right )} \cosh \left (x\right ) + a\right )} \sinh \left (x\right ) + b - c}\right ) -{\left (B a^{2} b - B b^{3} + B b c^{2} + B c^{3} +{\left (B a^{2} - B b^{2}\right )} c\right )} x +{\left (B c^{3} +{\left (B a^{2} - B b^{2}\right )} c\right )} \log \left (\frac{2 \,{\left (b \cosh \left (x\right ) + c \sinh \left (x\right ) + a\right )}}{\cosh \left (x\right ) - \sinh \left (x\right )}\right )}{a^{2} b^{2} - b^{4} - c^{4} -{\left (a^{2} - 2 \, b^{2}\right )} c^{2}}, -\frac{2 \,{\left (B a b - A b^{2} + A c^{2}\right )} \sqrt{-a^{2} + b^{2} - c^{2}} \arctan \left (\frac{\sqrt{-a^{2} + b^{2} - c^{2}}{\left ({\left (b + c\right )} \cosh \left (x\right ) +{\left (b + c\right )} \sinh \left (x\right ) + a\right )}}{a^{2} - b^{2} + c^{2}}\right ) -{\left (B a^{2} b - B b^{3} + B b c^{2} + B c^{3} +{\left (B a^{2} - B b^{2}\right )} c\right )} x +{\left (B c^{3} +{\left (B a^{2} - B b^{2}\right )} c\right )} \log \left (\frac{2 \,{\left (b \cosh \left (x\right ) + c \sinh \left (x\right ) + a\right )}}{\cosh \left (x\right ) - \sinh \left (x\right )}\right )}{a^{2} b^{2} - b^{4} - c^{4} -{\left (a^{2} - 2 \, b^{2}\right )} c^{2}}\right ] \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*cosh(x))/(a+b*cosh(x)+c*sinh(x)),x, algorithm="fricas")

[Out]

[-((B*a*b - A*b^2 + A*c^2)*sqrt(a^2 - b^2 + c^2)*log(((b^2 + 2*b*c + c^2)*cosh(x)^2 + (b^2 + 2*b*c + c^2)*sinh
(x)^2 + 2*a^2 - b^2 + c^2 + 2*(a*b + a*c)*cosh(x) + 2*(a*b + a*c + (b^2 + 2*b*c + c^2)*cosh(x))*sinh(x) - 2*sq
rt(a^2 - b^2 + c^2)*((b + c)*cosh(x) + (b + c)*sinh(x) + a))/((b + c)*cosh(x)^2 + (b + c)*sinh(x)^2 + 2*a*cosh
(x) + 2*((b + c)*cosh(x) + a)*sinh(x) + b - c)) - (B*a^2*b - B*b^3 + B*b*c^2 + B*c^3 + (B*a^2 - B*b^2)*c)*x +
(B*c^3 + (B*a^2 - B*b^2)*c)*log(2*(b*cosh(x) + c*sinh(x) + a)/(cosh(x) - sinh(x))))/(a^2*b^2 - b^4 - c^4 - (a^
2 - 2*b^2)*c^2), -(2*(B*a*b - A*b^2 + A*c^2)*sqrt(-a^2 + b^2 - c^2)*arctan(sqrt(-a^2 + b^2 - c^2)*((b + c)*cos
h(x) + (b + c)*sinh(x) + a)/(a^2 - b^2 + c^2)) - (B*a^2*b - B*b^3 + B*b*c^2 + B*c^3 + (B*a^2 - B*b^2)*c)*x + (
B*c^3 + (B*a^2 - B*b^2)*c)*log(2*(b*cosh(x) + c*sinh(x) + a)/(cosh(x) - sinh(x))))/(a^2*b^2 - b^4 - c^4 - (a^2
 - 2*b^2)*c^2)]

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*cosh(x))/(a+b*cosh(x)+c*sinh(x)),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [A]  time = 1.14437, size = 165, normalized size = 1.36 \begin{align*} -\frac{B c \log \left (b e^{\left (2 \, x\right )} + c e^{\left (2 \, x\right )} + 2 \, a e^{x} + b - c\right )}{b^{2} - c^{2}} + \frac{B x}{b - c} - \frac{2 \,{\left (B a b - A b^{2} + A c^{2}\right )} \arctan \left (\frac{b e^{x} + c e^{x} + a}{\sqrt{-a^{2} + b^{2} - c^{2}}}\right )}{\sqrt{-a^{2} + b^{2} - c^{2}}{\left (b^{2} - c^{2}\right )}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*cosh(x))/(a+b*cosh(x)+c*sinh(x)),x, algorithm="giac")

[Out]

-B*c*log(b*e^(2*x) + c*e^(2*x) + 2*a*e^x + b - c)/(b^2 - c^2) + B*x/(b - c) - 2*(B*a*b - A*b^2 + A*c^2)*arctan
((b*e^x + c*e^x + a)/sqrt(-a^2 + b^2 - c^2))/(sqrt(-a^2 + b^2 - c^2)*(b^2 - c^2))