### 3.724 $$\int \frac{A+C \sinh (x)}{b \cosh (x)+c \sinh (x)} \, dx$$

Optimal. Leaf size=80 $\frac{A \tan ^{-1}\left (\frac{b \sinh (x)+c \cosh (x)}{\sqrt{b^2-c^2}}\right )}{\sqrt{b^2-c^2}}-\frac{c C x}{b^2-c^2}+\frac{b C \log (b \cosh (x)+c \sinh (x))}{b^2-c^2}$

[Out]

-((c*C*x)/(b^2 - c^2)) + (A*ArcTan[(c*Cosh[x] + b*Sinh[x])/Sqrt[b^2 - c^2]])/Sqrt[b^2 - c^2] + (b*C*Log[b*Cosh
[x] + c*Sinh[x]])/(b^2 - c^2)

________________________________________________________________________________________

Rubi [A]  time = 0.0816141, antiderivative size = 80, normalized size of antiderivative = 1., number of steps used = 3, number of rules used = 3, integrand size = 18, $$\frac{\text{number of rules}}{\text{integrand size}}$$ = 0.167, Rules used = {3137, 3074, 206} $\frac{A \tan ^{-1}\left (\frac{b \sinh (x)+c \cosh (x)}{\sqrt{b^2-c^2}}\right )}{\sqrt{b^2-c^2}}-\frac{c C x}{b^2-c^2}+\frac{b C \log (b \cosh (x)+c \sinh (x))}{b^2-c^2}$

Antiderivative was successfully veriﬁed.

[In]

Int[(A + C*Sinh[x])/(b*Cosh[x] + c*Sinh[x]),x]

[Out]

-((c*C*x)/(b^2 - c^2)) + (A*ArcTan[(c*Cosh[x] + b*Sinh[x])/Sqrt[b^2 - c^2]])/Sqrt[b^2 - c^2] + (b*C*Log[b*Cosh
[x] + c*Sinh[x]])/(b^2 - c^2)

Rule 3137

Int[((A_.) + (C_.)*sin[(d_.) + (e_.)*(x_)])/((a_.) + cos[(d_.) + (e_.)*(x_)]*(b_.) + (c_.)*sin[(d_.) + (e_.)*(
x_)]), x_Symbol] :> Simp[(c*C*(d + e*x))/(e*(b^2 + c^2)), x] + (Dist[(A*(b^2 + c^2) - a*c*C)/(b^2 + c^2), Int[
1/(a + b*Cos[d + e*x] + c*Sin[d + e*x]), x], x] - Simp[(b*C*Log[a + b*Cos[d + e*x] + c*Sin[d + e*x]])/(e*(b^2
+ c^2)), x]) /; FreeQ[{a, b, c, d, e, A, C}, x] && NeQ[b^2 + c^2, 0] && NeQ[A*(b^2 + c^2) - a*c*C, 0]

Rule 3074

Int[(cos[(c_.) + (d_.)*(x_)]*(a_.) + (b_.)*sin[(c_.) + (d_.)*(x_)])^(-1), x_Symbol] :> -Dist[d^(-1), Subst[Int
[1/(a^2 + b^2 - x^2), x], x, b*Cos[c + d*x] - a*Sin[c + d*x]], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 + b^2,
0]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
/; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rubi steps

\begin{align*} \int \frac{A+C \sinh (x)}{b \cosh (x)+c \sinh (x)} \, dx &=-\frac{c C x}{b^2-c^2}+\frac{b C \log (b \cosh (x)+c \sinh (x))}{b^2-c^2}+A \int \frac{1}{b \cosh (x)+c \sinh (x)} \, dx\\ &=-\frac{c C x}{b^2-c^2}+\frac{b C \log (b \cosh (x)+c \sinh (x))}{b^2-c^2}+(i A) \operatorname{Subst}\left (\int \frac{1}{b^2-c^2-x^2} \, dx,x,-i c \cosh (x)-i b \sinh (x)\right )\\ &=-\frac{c C x}{b^2-c^2}+\frac{A \tan ^{-1}\left (\frac{c \cosh (x)+b \sinh (x)}{\sqrt{b^2-c^2}}\right )}{\sqrt{b^2-c^2}}+\frac{b C \log (b \cosh (x)+c \sinh (x))}{b^2-c^2}\\ \end{align*}

Mathematica [A]  time = 0.224408, size = 78, normalized size = 0.98 $\frac{2 A \tan ^{-1}\left (\frac{b \tanh \left (\frac{x}{2}\right )+c}{\sqrt{b-c} \sqrt{b+c}}\right )}{\sqrt{b-c} \sqrt{b+c}}+\frac{C (b \log (b \cosh (x)+c \sinh (x))-c x)}{b^2-c^2}$

Antiderivative was successfully veriﬁed.

[In]

Integrate[(A + C*Sinh[x])/(b*Cosh[x] + c*Sinh[x]),x]

[Out]

(2*A*ArcTan[(c + b*Tanh[x/2])/(Sqrt[b - c]*Sqrt[b + c])])/(Sqrt[b - c]*Sqrt[b + c]) + (C*(-(c*x) + b*Log[b*Cos
h[x] + c*Sinh[x]]))/(b^2 - c^2)

________________________________________________________________________________________

Maple [B]  time = 0.057, size = 181, normalized size = 2.3 \begin{align*} -2\,{\frac{C\ln \left ( \tanh \left ( x/2 \right ) +1 \right ) }{2\,b-2\,c}}+{\frac{bC}{ \left ( b-c \right ) \left ( b+c \right ) }\ln \left ( \left ( \tanh \left ({\frac{x}{2}} \right ) \right ) ^{2}b+2\,c\tanh \left ( x/2 \right ) +b \right ) }+2\,{\frac{A{b}^{2}}{ \left ( b-c \right ) \left ( b+c \right ) \sqrt{{b}^{2}-{c}^{2}}}\arctan \left ( 1/2\,{\frac{2\,\tanh \left ( x/2 \right ) b+2\,c}{\sqrt{{b}^{2}-{c}^{2}}}} \right ) }-2\,{\frac{A{c}^{2}}{ \left ( b-c \right ) \left ( b+c \right ) \sqrt{{b}^{2}-{c}^{2}}}\arctan \left ( 1/2\,{\frac{2\,\tanh \left ( x/2 \right ) b+2\,c}{\sqrt{{b}^{2}-{c}^{2}}}} \right ) }-2\,{\frac{C\ln \left ( \tanh \left ( x/2 \right ) -1 \right ) }{2\,b+2\,c}} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

int((A+C*sinh(x))/(b*cosh(x)+c*sinh(x)),x)

[Out]

-2*C/(2*b-2*c)*ln(tanh(1/2*x)+1)+1/(b-c)/(b+c)*b*C*ln(tanh(1/2*x)^2*b+2*c*tanh(1/2*x)+b)+2/(b-c)/(b+c)/(b^2-c^
2)^(1/2)*arctan(1/2*(2*tanh(1/2*x)*b+2*c)/(b^2-c^2)^(1/2))*A*b^2-2/(b-c)/(b+c)/(b^2-c^2)^(1/2)*arctan(1/2*(2*t
anh(1/2*x)*b+2*c)/(b^2-c^2)^(1/2))*A*c^2-2*C/(2*b+2*c)*ln(tanh(1/2*x)-1)

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+C*sinh(x))/(b*cosh(x)+c*sinh(x)),x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [A]  time = 2.49732, size = 644, normalized size = 8.05 \begin{align*} \left [\frac{C b \log \left (\frac{2 \,{\left (b \cosh \left (x\right ) + c \sinh \left (x\right )\right )}}{\cosh \left (x\right ) - \sinh \left (x\right )}\right ) - \sqrt{-b^{2} + c^{2}} A \log \left (\frac{{\left (b + c\right )} \cosh \left (x\right )^{2} + 2 \,{\left (b + c\right )} \cosh \left (x\right ) \sinh \left (x\right ) +{\left (b + c\right )} \sinh \left (x\right )^{2} - 2 \, \sqrt{-b^{2} + c^{2}}{\left (\cosh \left (x\right ) + \sinh \left (x\right )\right )} - b + c}{{\left (b + c\right )} \cosh \left (x\right )^{2} + 2 \,{\left (b + c\right )} \cosh \left (x\right ) \sinh \left (x\right ) +{\left (b + c\right )} \sinh \left (x\right )^{2} + b - c}\right ) -{\left (C b + C c\right )} x}{b^{2} - c^{2}}, \frac{C b \log \left (\frac{2 \,{\left (b \cosh \left (x\right ) + c \sinh \left (x\right )\right )}}{\cosh \left (x\right ) - \sinh \left (x\right )}\right ) - 2 \, \sqrt{b^{2} - c^{2}} A \arctan \left (\frac{\sqrt{b^{2} - c^{2}}}{{\left (b + c\right )} \cosh \left (x\right ) +{\left (b + c\right )} \sinh \left (x\right )}\right ) -{\left (C b + C c\right )} x}{b^{2} - c^{2}}\right ] \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+C*sinh(x))/(b*cosh(x)+c*sinh(x)),x, algorithm="fricas")

[Out]

[(C*b*log(2*(b*cosh(x) + c*sinh(x))/(cosh(x) - sinh(x))) - sqrt(-b^2 + c^2)*A*log(((b + c)*cosh(x)^2 + 2*(b +
c)*cosh(x)*sinh(x) + (b + c)*sinh(x)^2 - 2*sqrt(-b^2 + c^2)*(cosh(x) + sinh(x)) - b + c)/((b + c)*cosh(x)^2 +
2*(b + c)*cosh(x)*sinh(x) + (b + c)*sinh(x)^2 + b - c)) - (C*b + C*c)*x)/(b^2 - c^2), (C*b*log(2*(b*cosh(x) +
c*sinh(x))/(cosh(x) - sinh(x))) - 2*sqrt(b^2 - c^2)*A*arctan(sqrt(b^2 - c^2)/((b + c)*cosh(x) + (b + c)*sinh(x
))) - (C*b + C*c)*x)/(b^2 - c^2)]

________________________________________________________________________________________

Sympy [A]  time = 47.2688, size = 367, normalized size = 4.59 \begin{align*} \begin{cases} \tilde{\infty } \left (A \log{\left (\tanh{\left (\frac{x}{2} \right )} \right )} + C x\right ) & \text{for}\: b = 0 \wedge c = 0 \\\frac{A \log{\left (\tanh{\left (\frac{x}{2} \right )} \right )} + C x}{c} & \text{for}\: b = 0 \\- \frac{2 A}{- 2 c \sinh{\left (x \right )} + 2 c \cosh{\left (x \right )}} - \frac{C x \sinh{\left (x \right )}}{- 2 c \sinh{\left (x \right )} + 2 c \cosh{\left (x \right )}} + \frac{C x \cosh{\left (x \right )}}{- 2 c \sinh{\left (x \right )} + 2 c \cosh{\left (x \right )}} - \frac{C \cosh{\left (x \right )}}{- 2 c \sinh{\left (x \right )} + 2 c \cosh{\left (x \right )}} & \text{for}\: b = - c \\- \frac{2 A}{2 c \sinh{\left (x \right )} + 2 c \cosh{\left (x \right )}} + \frac{C x \sinh{\left (x \right )}}{2 c \sinh{\left (x \right )} + 2 c \cosh{\left (x \right )}} + \frac{C x \cosh{\left (x \right )}}{2 c \sinh{\left (x \right )} + 2 c \cosh{\left (x \right )}} + \frac{C \cosh{\left (x \right )}}{2 c \sinh{\left (x \right )} + 2 c \cosh{\left (x \right )}} & \text{for}\: b = c \\- \frac{A \sqrt{- b^{2} + c^{2}} \log{\left (\tanh{\left (\frac{x}{2} \right )} + \frac{c}{b} - \frac{\sqrt{- b^{2} + c^{2}}}{b} \right )}}{b^{2} - c^{2}} + \frac{A \sqrt{- b^{2} + c^{2}} \log{\left (\tanh{\left (\frac{x}{2} \right )} + \frac{c}{b} + \frac{\sqrt{- b^{2} + c^{2}}}{b} \right )}}{b^{2} - c^{2}} + \frac{C b x}{b^{2} - c^{2}} - \frac{2 C b \log{\left (\tanh{\left (\frac{x}{2} \right )} + 1 \right )}}{b^{2} - c^{2}} + \frac{C b \log{\left (\tanh{\left (\frac{x}{2} \right )} + \frac{c}{b} - \frac{\sqrt{- b^{2} + c^{2}}}{b} \right )}}{b^{2} - c^{2}} + \frac{C b \log{\left (\tanh{\left (\frac{x}{2} \right )} + \frac{c}{b} + \frac{\sqrt{- b^{2} + c^{2}}}{b} \right )}}{b^{2} - c^{2}} - \frac{C c x}{b^{2} - c^{2}} & \text{otherwise} \end{cases} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+C*sinh(x))/(b*cosh(x)+c*sinh(x)),x)

[Out]

Piecewise((zoo*(A*log(tanh(x/2)) + C*x), Eq(b, 0) & Eq(c, 0)), ((A*log(tanh(x/2)) + C*x)/c, Eq(b, 0)), (-2*A/(
-2*c*sinh(x) + 2*c*cosh(x)) - C*x*sinh(x)/(-2*c*sinh(x) + 2*c*cosh(x)) + C*x*cosh(x)/(-2*c*sinh(x) + 2*c*cosh(
x)) - C*cosh(x)/(-2*c*sinh(x) + 2*c*cosh(x)), Eq(b, -c)), (-2*A/(2*c*sinh(x) + 2*c*cosh(x)) + C*x*sinh(x)/(2*c
*sinh(x) + 2*c*cosh(x)) + C*x*cosh(x)/(2*c*sinh(x) + 2*c*cosh(x)) + C*cosh(x)/(2*c*sinh(x) + 2*c*cosh(x)), Eq(
b, c)), (-A*sqrt(-b**2 + c**2)*log(tanh(x/2) + c/b - sqrt(-b**2 + c**2)/b)/(b**2 - c**2) + A*sqrt(-b**2 + c**2
)*log(tanh(x/2) + c/b + sqrt(-b**2 + c**2)/b)/(b**2 - c**2) + C*b*x/(b**2 - c**2) - 2*C*b*log(tanh(x/2) + 1)/(
b**2 - c**2) + C*b*log(tanh(x/2) + c/b - sqrt(-b**2 + c**2)/b)/(b**2 - c**2) + C*b*log(tanh(x/2) + c/b + sqrt(
-b**2 + c**2)/b)/(b**2 - c**2) - C*c*x/(b**2 - c**2), True))

________________________________________________________________________________________

Giac [A]  time = 1.15959, size = 108, normalized size = 1.35 \begin{align*} \frac{C b \log \left (b e^{\left (2 \, x\right )} + c e^{\left (2 \, x\right )} + b - c\right )}{b^{2} - c^{2}} + \frac{2 \, A \arctan \left (\frac{b e^{x} + c e^{x}}{\sqrt{b^{2} - c^{2}}}\right )}{\sqrt{b^{2} - c^{2}}} - \frac{C x}{b - c} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+C*sinh(x))/(b*cosh(x)+c*sinh(x)),x, algorithm="giac")

[Out]

C*b*log(b*e^(2*x) + c*e^(2*x) + b - c)/(b^2 - c^2) + 2*A*arctan((b*e^x + c*e^x)/sqrt(b^2 - c^2))/sqrt(b^2 - c^
2) - C*x/(b - c)