### 3.677 $$\int \sqrt{\text{csch}(x)+\sinh (x)} \, dx$$

Optimal. Leaf size=13 $2 \tanh (x) \sqrt{\cosh (x) \coth (x)}$

[Out]

2*Sqrt[Cosh[x]*Coth[x]]*Tanh[x]

________________________________________________________________________________________

Rubi [A]  time = 0.0700452, antiderivative size = 13, normalized size of antiderivative = 1., number of steps used = 4, number of rules used = 4, integrand size = 9, $$\frac{\text{number of rules}}{\text{integrand size}}$$ = 0.444, Rules used = {4397, 4398, 4400, 2589} $2 \tanh (x) \sqrt{\cosh (x) \coth (x)}$

Antiderivative was successfully veriﬁed.

[In]

Int[Sqrt[Csch[x] + Sinh[x]],x]

[Out]

2*Sqrt[Cosh[x]*Coth[x]]*Tanh[x]

Rule 4397

Int[u_, x_Symbol] :> Int[TrigSimplify[u], x] /; TrigSimplifyQ[u]

Rule 4398

Int[(u_.)*((a_)*(v_))^(p_), x_Symbol] :> With[{uu = ActivateTrig[u], vv = ActivateTrig[v]}, Dist[(a^IntPart[p]
*(a*vv)^FracPart[p])/vv^FracPart[p], Int[uu*vv^p, x], x]] /; FreeQ[{a, p}, x] &&  !IntegerQ[p] &&  !InertTrigF
reeQ[v]

Rule 4400

Int[(u_.)*((v_)^(m_.)*(w_)^(n_.))^(p_), x_Symbol] :> With[{uu = ActivateTrig[u], vv = ActivateTrig[v], ww = Ac
tivateTrig[w]}, Dist[(vv^m*ww^n)^FracPart[p]/(vv^(m*FracPart[p])*ww^(n*FracPart[p])), Int[uu*vv^(m*p)*ww^(n*p)
, x], x]] /; FreeQ[{m, n, p}, x] &&  !IntegerQ[p] && ( !InertTrigFreeQ[v] ||  !InertTrigFreeQ[w])

Rule 2589

Int[((a_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((b_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> -Simp[(b*(a*Sin[e
+ f*x])^m*(b*Tan[e + f*x])^(n - 1))/(f*m), x] /; FreeQ[{a, b, e, f, m, n}, x] && EqQ[m + n - 1, 0]

Rubi steps

\begin{align*} \int \sqrt{\text{csch}(x)+\sinh (x)} \, dx &=\int \sqrt{\cosh (x) \coth (x)} \, dx\\ &=\frac{\sqrt{\cosh (x) \coth (x)} \int \sqrt{-i \cosh (x) \coth (x)} \, dx}{\sqrt{-i \cosh (x) \coth (x)}}\\ &=\frac{\sqrt{\cosh (x) \coth (x)} \int \sqrt{\cosh (x)} \sqrt{-i \coth (x)} \, dx}{\sqrt{\cosh (x)} \sqrt{-i \coth (x)}}\\ &=2 \sqrt{\cosh (x) \coth (x)} \tanh (x)\\ \end{align*}

Mathematica [B]  time = 0.0693421, size = 35, normalized size = 2.69 $\frac{2 \left (\sqrt [4]{-\sinh ^2(x)}-1\right ) \tanh (x) \sqrt{\cosh (x) \coth (x)}}{\sqrt [4]{-\sinh ^2(x)}}$

Antiderivative was successfully veriﬁed.

[In]

Integrate[Sqrt[Csch[x] + Sinh[x]],x]

[Out]

(2*Sqrt[Cosh[x]*Coth[x]]*(-1 + (-Sinh[x]^2)^(1/4))*Tanh[x])/(-Sinh[x]^2)^(1/4)

________________________________________________________________________________________

Maple [B]  time = 0.121, size = 42, normalized size = 3.2 \begin{align*}{\frac{\sqrt{2} \left ({{\rm e}^{2\,x}}-1 \right ) }{{{\rm e}^{2\,x}}+1}\sqrt{{\frac{ \left ({{\rm e}^{2\,x}}+1 \right ) ^{2}{{\rm e}^{-x}}}{{{\rm e}^{2\,x}}-1}}}} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

int((csch(x)+sinh(x))^(1/2),x)

[Out]

2^(1/2)*((exp(2*x)+1)^2*exp(-x)/(exp(2*x)-1))^(1/2)/(exp(2*x)+1)*(exp(2*x)-1)

________________________________________________________________________________________

Maxima [B]  time = 1.81146, size = 73, normalized size = 5.62 \begin{align*} \frac{\sqrt{2} e^{\left (\frac{1}{2} \, x\right )}}{\sqrt{e^{\left (-x\right )} + 1} \sqrt{-e^{\left (-x\right )} + 1}} - \frac{\sqrt{2} e^{\left (-\frac{3}{2} \, x\right )}}{\sqrt{e^{\left (-x\right )} + 1} \sqrt{-e^{\left (-x\right )} + 1}} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate((csch(x)+sinh(x))^(1/2),x, algorithm="maxima")

[Out]

sqrt(2)*e^(1/2*x)/(sqrt(e^(-x) + 1)*sqrt(-e^(-x) + 1)) - sqrt(2)*e^(-3/2*x)/(sqrt(e^(-x) + 1)*sqrt(-e^(-x) + 1
))

________________________________________________________________________________________

Fricas [B]  time = 1.71093, size = 201, normalized size = 15.46 \begin{align*} \frac{2 \, \sqrt{\frac{1}{2}}{\left (\cosh \left (x\right )^{2} + 2 \, \cosh \left (x\right ) \sinh \left (x\right ) + \sinh \left (x\right )^{2} - 1\right )}}{\sqrt{\cosh \left (x\right )^{3} + 3 \, \cosh \left (x\right ) \sinh \left (x\right )^{2} + \sinh \left (x\right )^{3} +{\left (3 \, \cosh \left (x\right )^{2} - 1\right )} \sinh \left (x\right ) - \cosh \left (x\right )}} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate((csch(x)+sinh(x))^(1/2),x, algorithm="fricas")

[Out]

2*sqrt(1/2)*(cosh(x)^2 + 2*cosh(x)*sinh(x) + sinh(x)^2 - 1)/sqrt(cosh(x)^3 + 3*cosh(x)*sinh(x)^2 + sinh(x)^3 +
(3*cosh(x)^2 - 1)*sinh(x) - cosh(x))

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \sqrt{\sinh{\left (x \right )} + \operatorname{csch}{\left (x \right )}}\, dx \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate((csch(x)+sinh(x))**(1/2),x)

[Out]

Integral(sqrt(sinh(x) + csch(x)), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \sqrt{\operatorname{csch}\left (x\right ) + \sinh \left (x\right )}\,{d x} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate((csch(x)+sinh(x))^(1/2),x, algorithm="giac")

[Out]

integrate(sqrt(csch(x) + sinh(x)), x)