### 3.672 $$\int \frac{1}{(-\coth (x)+\text{csch}(x))^4} \, dx$$

Optimal. Leaf size=30 $x+\frac{2 \sinh ^3(x)}{3 (1-\cosh (x))^3}+\frac{2 \sinh (x)}{1-\cosh (x)}$

[Out]

x + (2*Sinh[x])/(1 - Cosh[x]) + (2*Sinh[x]^3)/(3*(1 - Cosh[x])^3)

________________________________________________________________________________________

Rubi [A]  time = 0.0830563, antiderivative size = 30, normalized size of antiderivative = 1., number of steps used = 4, number of rules used = 3, integrand size = 9, $$\frac{\text{number of rules}}{\text{integrand size}}$$ = 0.333, Rules used = {4392, 2680, 8} $x+\frac{2 \sinh ^3(x)}{3 (1-\cosh (x))^3}+\frac{2 \sinh (x)}{1-\cosh (x)}$

Antiderivative was successfully veriﬁed.

[In]

Int[(-Coth[x] + Csch[x])^(-4),x]

[Out]

x + (2*Sinh[x])/(1 - Cosh[x]) + (2*Sinh[x]^3)/(3*(1 - Cosh[x])^3)

Rule 4392

Int[(cot[(c_.) + (d_.)*(x_)]^(n_.)*(a_.) + csc[(c_.) + (d_.)*(x_)]^(n_.)*(b_.))^(p_)*(u_.), x_Symbol] :> Int[A
ctivateTrig[u]*Csc[c + d*x]^(n*p)*(b + a*Cos[c + d*x]^n)^p, x] /; FreeQ[{a, b, c, d}, x] && IntegersQ[n, p]

Rule 2680

Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_), x_Symbol] :> Simp[(2*g*(
g*Cos[e + f*x])^(p - 1)*(a + b*Sin[e + f*x])^(m + 1))/(b*f*(2*m + p + 1)), x] + Dist[(g^2*(p - 1))/(b^2*(2*m +
p + 1)), Int[(g*Cos[e + f*x])^(p - 2)*(a + b*Sin[e + f*x])^(m + 2), x], x] /; FreeQ[{a, b, e, f, g}, x] && Eq
Q[a^2 - b^2, 0] && LeQ[m, -2] && GtQ[p, 1] && NeQ[2*m + p + 1, 0] &&  !ILtQ[m + p + 1, 0] && IntegersQ[2*m, 2*
p]

Rule 8

Int[a_, x_Symbol] :> Simp[a*x, x] /; FreeQ[a, x]

Rubi steps

\begin{align*} \int \frac{1}{(-\coth (x)+\text{csch}(x))^4} \, dx &=\int \frac{\sinh ^4(x)}{(i-i \cosh (x))^4} \, dx\\ &=\frac{2 \sinh ^3(x)}{3 (1-\cosh (x))^3}-\int \frac{\sinh ^2(x)}{(i-i \cosh (x))^2} \, dx\\ &=\frac{2 \sinh (x)}{1-\cosh (x)}+\frac{2 \sinh ^3(x)}{3 (1-\cosh (x))^3}+\int 1 \, dx\\ &=x+\frac{2 \sinh (x)}{1-\cosh (x)}+\frac{2 \sinh ^3(x)}{3 (1-\cosh (x))^3}\\ \end{align*}

Mathematica [C]  time = 0.0076706, size = 28, normalized size = 0.93 $-\frac{2}{3} \coth ^3\left (\frac{x}{2}\right ) \, _2F_1\left (-\frac{3}{2},1;-\frac{1}{2};\tanh ^2\left (\frac{x}{2}\right )\right )$

Antiderivative was successfully veriﬁed.

[In]

Integrate[(-Coth[x] + Csch[x])^(-4),x]

[Out]

(-2*Coth[x/2]^3*Hypergeometric2F1[-3/2, 1, -1/2, Tanh[x/2]^2])/3

________________________________________________________________________________________

Maple [A]  time = 0.068, size = 34, normalized size = 1.1 \begin{align*} \ln \left ( \tanh \left ({\frac{x}{2}} \right ) +1 \right ) -{\frac{2}{3} \left ( \tanh \left ({\frac{x}{2}} \right ) \right ) ^{-3}}-2\, \left ( \tanh \left ( x/2 \right ) \right ) ^{-1}-\ln \left ( \tanh \left ({\frac{x}{2}} \right ) -1 \right ) \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

int(1/(-coth(x)+csch(x))^4,x)

[Out]

ln(tanh(1/2*x)+1)-2/3/tanh(1/2*x)^3-2/tanh(1/2*x)-ln(tanh(1/2*x)-1)

________________________________________________________________________________________

Maxima [A]  time = 1.30636, size = 51, normalized size = 1.7 \begin{align*} x - \frac{8 \,{\left (3 \, e^{\left (-x\right )} - 3 \, e^{\left (-2 \, x\right )} - 2\right )}}{3 \,{\left (3 \, e^{\left (-x\right )} - 3 \, e^{\left (-2 \, x\right )} + e^{\left (-3 \, x\right )} - 1\right )}} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(-coth(x)+csch(x))^4,x, algorithm="maxima")

[Out]

x - 8/3*(3*e^(-x) - 3*e^(-2*x) - 2)/(3*e^(-x) - 3*e^(-2*x) + e^(-3*x) - 1)

________________________________________________________________________________________

Fricas [B]  time = 2.38497, size = 234, normalized size = 7.8 \begin{align*} \frac{3 \, x \cosh \left (x\right )^{2} + 3 \, x \sinh \left (x\right )^{2} - 4 \,{\left (3 \, x + 10\right )} \cosh \left (x\right ) + 2 \,{\left (3 \, x \cosh \left (x\right ) - 3 \, x - 4\right )} \sinh \left (x\right ) + 9 \, x + 24}{3 \,{\left (\cosh \left (x\right )^{2} + 2 \,{\left (\cosh \left (x\right ) - 1\right )} \sinh \left (x\right ) + \sinh \left (x\right )^{2} - 4 \, \cosh \left (x\right ) + 3\right )}} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(-coth(x)+csch(x))^4,x, algorithm="fricas")

[Out]

1/3*(3*x*cosh(x)^2 + 3*x*sinh(x)^2 - 4*(3*x + 10)*cosh(x) + 2*(3*x*cosh(x) - 3*x - 4)*sinh(x) + 9*x + 24)/(cos
h(x)^2 + 2*(cosh(x) - 1)*sinh(x) + sinh(x)^2 - 4*cosh(x) + 3)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{\left (- \coth{\left (x \right )} + \operatorname{csch}{\left (x \right )}\right )^{4}}\, dx \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(-coth(x)+csch(x))**4,x)

[Out]

Integral((-coth(x) + csch(x))**(-4), x)

________________________________________________________________________________________

Giac [A]  time = 1.16775, size = 30, normalized size = 1. \begin{align*} x - \frac{8 \,{\left (3 \, e^{\left (2 \, x\right )} - 3 \, e^{x} + 2\right )}}{3 \,{\left (e^{x} - 1\right )}^{3}} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(-coth(x)+csch(x))^4,x, algorithm="giac")

[Out]

x - 8/3*(3*e^(2*x) - 3*e^x + 2)/(e^x - 1)^3