### 3.670 $$\int \frac{1}{(-\coth (x)+\text{csch}(x))^2} \, dx$$

Optimal. Leaf size=14 $x+\frac{2 \sinh (x)}{1-\cosh (x)}$

[Out]

x + (2*Sinh[x])/(1 - Cosh[x])

________________________________________________________________________________________

Rubi [A]  time = 0.0513362, antiderivative size = 14, normalized size of antiderivative = 1., number of steps used = 3, number of rules used = 3, integrand size = 9, $$\frac{\text{number of rules}}{\text{integrand size}}$$ = 0.333, Rules used = {4392, 2680, 8} $x+\frac{2 \sinh (x)}{1-\cosh (x)}$

Antiderivative was successfully veriﬁed.

[In]

Int[(-Coth[x] + Csch[x])^(-2),x]

[Out]

x + (2*Sinh[x])/(1 - Cosh[x])

Rule 4392

Int[(cot[(c_.) + (d_.)*(x_)]^(n_.)*(a_.) + csc[(c_.) + (d_.)*(x_)]^(n_.)*(b_.))^(p_)*(u_.), x_Symbol] :> Int[A
ctivateTrig[u]*Csc[c + d*x]^(n*p)*(b + a*Cos[c + d*x]^n)^p, x] /; FreeQ[{a, b, c, d}, x] && IntegersQ[n, p]

Rule 2680

Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_), x_Symbol] :> Simp[(2*g*(
g*Cos[e + f*x])^(p - 1)*(a + b*Sin[e + f*x])^(m + 1))/(b*f*(2*m + p + 1)), x] + Dist[(g^2*(p - 1))/(b^2*(2*m +
p + 1)), Int[(g*Cos[e + f*x])^(p - 2)*(a + b*Sin[e + f*x])^(m + 2), x], x] /; FreeQ[{a, b, e, f, g}, x] && Eq
Q[a^2 - b^2, 0] && LeQ[m, -2] && GtQ[p, 1] && NeQ[2*m + p + 1, 0] &&  !ILtQ[m + p + 1, 0] && IntegersQ[2*m, 2*
p]

Rule 8

Int[a_, x_Symbol] :> Simp[a*x, x] /; FreeQ[a, x]

Rubi steps

\begin{align*} \int \frac{1}{(-\coth (x)+\text{csch}(x))^2} \, dx &=-\int \frac{\sinh ^2(x)}{(i-i \cosh (x))^2} \, dx\\ &=\frac{2 \sinh (x)}{1-\cosh (x)}+\int 1 \, dx\\ &=x+\frac{2 \sinh (x)}{1-\cosh (x)}\\ \end{align*}

Mathematica [C]  time = 0.0086892, size = 24, normalized size = 1.71 $-2 \coth \left (\frac{x}{2}\right ) \, _2F_1\left (-\frac{1}{2},1;\frac{1}{2};\tanh ^2\left (\frac{x}{2}\right )\right )$

Antiderivative was successfully veriﬁed.

[In]

Integrate[(-Coth[x] + Csch[x])^(-2),x]

[Out]

-2*Coth[x/2]*Hypergeometric2F1[-1/2, 1, 1/2, Tanh[x/2]^2]

________________________________________________________________________________________

Maple [A]  time = 0.036, size = 26, normalized size = 1.9 \begin{align*} \ln \left ( \tanh \left ({\frac{x}{2}} \right ) +1 \right ) -2\, \left ( \tanh \left ( x/2 \right ) \right ) ^{-1}-\ln \left ( \tanh \left ({\frac{x}{2}} \right ) -1 \right ) \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

int(1/(-coth(x)+csch(x))^2,x)

[Out]

ln(tanh(1/2*x)+1)-2/tanh(1/2*x)-ln(tanh(1/2*x)-1)

________________________________________________________________________________________

Maxima [A]  time = 1.23996, size = 16, normalized size = 1.14 \begin{align*} x + \frac{4}{e^{\left (-x\right )} - 1} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(-coth(x)+csch(x))^2,x, algorithm="maxima")

[Out]

x + 4/(e^(-x) - 1)

________________________________________________________________________________________

Fricas [A]  time = 2.21153, size = 77, normalized size = 5.5 \begin{align*} \frac{x \cosh \left (x\right ) + x \sinh \left (x\right ) - x - 4}{\cosh \left (x\right ) + \sinh \left (x\right ) - 1} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(-coth(x)+csch(x))^2,x, algorithm="fricas")

[Out]

(x*cosh(x) + x*sinh(x) - x - 4)/(cosh(x) + sinh(x) - 1)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{\left (- \coth{\left (x \right )} + \operatorname{csch}{\left (x \right )}\right )^{2}}\, dx \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(-coth(x)+csch(x))**2,x)

[Out]

Integral((-coth(x) + csch(x))**(-2), x)

________________________________________________________________________________________

Giac [A]  time = 1.13126, size = 14, normalized size = 1. \begin{align*} x - \frac{4}{e^{x} - 1} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(-coth(x)+csch(x))^2,x, algorithm="giac")

[Out]

x - 4/(e^x - 1)