### 3.64 $$\int \frac{\cosh ^{\frac{4}{3}}(a+b x)}{\sinh ^{\frac{4}{3}}(a+b x)} \, dx$$

Optimal. Leaf size=243 $-\frac{3 \sqrt [3]{\cosh (a+b x)}}{b \sqrt [3]{\sinh (a+b x)}}-\frac{\log \left (\frac{\sinh ^{\frac{2}{3}}(a+b x)}{\cosh ^{\frac{2}{3}}(a+b x)}-\frac{\sqrt [3]{\sinh (a+b x)}}{\sqrt [3]{\cosh (a+b x)}}+1\right )}{4 b}+\frac{\log \left (\frac{\sinh ^{\frac{2}{3}}(a+b x)}{\cosh ^{\frac{2}{3}}(a+b x)}+\frac{\sqrt [3]{\sinh (a+b x)}}{\sqrt [3]{\cosh (a+b x)}}+1\right )}{4 b}+\frac{\sqrt{3} \tan ^{-1}\left (\frac{1-\frac{2 \sqrt [3]{\sinh (a+b x)}}{\sqrt [3]{\cosh (a+b x)}}}{\sqrt{3}}\right )}{2 b}-\frac{\sqrt{3} \tan ^{-1}\left (\frac{\frac{2 \sqrt [3]{\sinh (a+b x)}}{\sqrt [3]{\cosh (a+b x)}}+1}{\sqrt{3}}\right )}{2 b}+\frac{\tanh ^{-1}\left (\frac{\sqrt [3]{\sinh (a+b x)}}{\sqrt [3]{\cosh (a+b x)}}\right )}{b}$

[Out]

(Sqrt[3]*ArcTan[(1 - (2*Sinh[a + b*x]^(1/3))/Cosh[a + b*x]^(1/3))/Sqrt[3]])/(2*b) - (Sqrt[3]*ArcTan[(1 + (2*Si
nh[a + b*x]^(1/3))/Cosh[a + b*x]^(1/3))/Sqrt[3]])/(2*b) + ArcTanh[Sinh[a + b*x]^(1/3)/Cosh[a + b*x]^(1/3)]/b -
Log[1 - Sinh[a + b*x]^(1/3)/Cosh[a + b*x]^(1/3) + Sinh[a + b*x]^(2/3)/Cosh[a + b*x]^(2/3)]/(4*b) + Log[1 + Si
nh[a + b*x]^(1/3)/Cosh[a + b*x]^(1/3) + Sinh[a + b*x]^(2/3)/Cosh[a + b*x]^(2/3)]/(4*b) - (3*Cosh[a + b*x]^(1/3
))/(b*Sinh[a + b*x]^(1/3))

________________________________________________________________________________________

Rubi [A]  time = 0.235853, antiderivative size = 243, normalized size of antiderivative = 1., number of steps used = 12, number of rules used = 8, integrand size = 21, $$\frac{\text{number of rules}}{\text{integrand size}}$$ = 0.381, Rules used = {2567, 2574, 296, 634, 618, 204, 628, 206} $-\frac{3 \sqrt [3]{\cosh (a+b x)}}{b \sqrt [3]{\sinh (a+b x)}}-\frac{\log \left (\frac{\sinh ^{\frac{2}{3}}(a+b x)}{\cosh ^{\frac{2}{3}}(a+b x)}-\frac{\sqrt [3]{\sinh (a+b x)}}{\sqrt [3]{\cosh (a+b x)}}+1\right )}{4 b}+\frac{\log \left (\frac{\sinh ^{\frac{2}{3}}(a+b x)}{\cosh ^{\frac{2}{3}}(a+b x)}+\frac{\sqrt [3]{\sinh (a+b x)}}{\sqrt [3]{\cosh (a+b x)}}+1\right )}{4 b}+\frac{\sqrt{3} \tan ^{-1}\left (\frac{1-\frac{2 \sqrt [3]{\sinh (a+b x)}}{\sqrt [3]{\cosh (a+b x)}}}{\sqrt{3}}\right )}{2 b}-\frac{\sqrt{3} \tan ^{-1}\left (\frac{\frac{2 \sqrt [3]{\sinh (a+b x)}}{\sqrt [3]{\cosh (a+b x)}}+1}{\sqrt{3}}\right )}{2 b}+\frac{\tanh ^{-1}\left (\frac{\sqrt [3]{\sinh (a+b x)}}{\sqrt [3]{\cosh (a+b x)}}\right )}{b}$

Antiderivative was successfully veriﬁed.

[In]

Int[Cosh[a + b*x]^(4/3)/Sinh[a + b*x]^(4/3),x]

[Out]

(Sqrt[3]*ArcTan[(1 - (2*Sinh[a + b*x]^(1/3))/Cosh[a + b*x]^(1/3))/Sqrt[3]])/(2*b) - (Sqrt[3]*ArcTan[(1 + (2*Si
nh[a + b*x]^(1/3))/Cosh[a + b*x]^(1/3))/Sqrt[3]])/(2*b) + ArcTanh[Sinh[a + b*x]^(1/3)/Cosh[a + b*x]^(1/3)]/b -
Log[1 - Sinh[a + b*x]^(1/3)/Cosh[a + b*x]^(1/3) + Sinh[a + b*x]^(2/3)/Cosh[a + b*x]^(2/3)]/(4*b) + Log[1 + Si
nh[a + b*x]^(1/3)/Cosh[a + b*x]^(1/3) + Sinh[a + b*x]^(2/3)/Cosh[a + b*x]^(2/3)]/(4*b) - (3*Cosh[a + b*x]^(1/3
))/(b*Sinh[a + b*x]^(1/3))

Rule 2567

Int[(cos[(e_.) + (f_.)*(x_)]*(a_.))^(m_)*((b_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[(a*(a*Cos[e +
f*x])^(m - 1)*(b*Sin[e + f*x])^(n + 1))/(b*f*(n + 1)), x] + Dist[(a^2*(m - 1))/(b^2*(n + 1)), Int[(a*Cos[e +
f*x])^(m - 2)*(b*Sin[e + f*x])^(n + 2), x], x] /; FreeQ[{a, b, e, f}, x] && GtQ[m, 1] && LtQ[n, -1] && (Intege
rsQ[2*m, 2*n] || EqQ[m + n, 0])

Rule 2574

Int[(cos[(e_.) + (f_.)*(x_)]*(b_.))^(n_)*((a_.)*sin[(e_.) + (f_.)*(x_)])^(m_), x_Symbol] :> With[{k = Denomina
tor[m]}, Dist[(k*a*b)/f, Subst[Int[x^(k*(m + 1) - 1)/(a^2 + b^2*x^(2*k)), x], x, (a*Sin[e + f*x])^(1/k)/(b*Cos
[e + f*x])^(1/k)], x]] /; FreeQ[{a, b, e, f}, x] && EqQ[m + n, 0] && GtQ[m, 0] && LtQ[m, 1]

Rule 296

Int[(x_)^(m_.)/((a_) + (b_.)*(x_)^(n_)), x_Symbol] :> Module[{r = Numerator[Rt[-(a/b), n]], s = Denominator[Rt
[-(a/b), n]], k, u}, Simp[u = Int[(r*Cos[(2*k*m*Pi)/n] - s*Cos[(2*k*(m + 1)*Pi)/n]*x)/(r^2 - 2*r*s*Cos[(2*k*Pi
)/n]*x + s^2*x^2), x] + Int[(r*Cos[(2*k*m*Pi)/n] + s*Cos[(2*k*(m + 1)*Pi)/n]*x)/(r^2 + 2*r*s*Cos[(2*k*Pi)/n]*x
+ s^2*x^2), x]; (2*r^(m + 2)*Int[1/(r^2 - s^2*x^2), x])/(a*n*s^m) + Dist[(2*r^(m + 1))/(a*n*s^m), Sum[u, {k,
1, (n - 2)/4}], x], x]] /; FreeQ[{a, b}, x] && IGtQ[(n - 2)/4, 0] && IGtQ[m, 0] && LtQ[m, n - 1] && NegQ[a/b]

Rule 634

Int[((d_.) + (e_.)*(x_))/((a_) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Dist[(2*c*d - b*e)/(2*c), Int[1/(a +
b*x + c*x^2), x], x] + Dist[e/(2*c), Int[(b + 2*c*x)/(a + b*x + c*x^2), x], x] /; FreeQ[{a, b, c, d, e}, x] &
& NeQ[2*c*d - b*e, 0] && NeQ[b^2 - 4*a*c, 0] &&  !NiceSqrtQ[b^2 - 4*a*c]

Rule 618

Int[((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> Dist[-2, Subst[Int[1/Simp[b^2 - 4*a*c - x^2, x], x]
, x, b + 2*c*x], x] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 204

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> -Simp[ArcTan[(Rt[-b, 2]*x)/Rt[-a, 2]]/(Rt[-a, 2]*Rt[-b, 2]), x] /
; FreeQ[{a, b}, x] && PosQ[a/b] && (LtQ[a, 0] || LtQ[b, 0])

Rule 628

Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Simp[(d*Log[RemoveContent[a + b*x +
c*x^2, x]])/b, x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[2*c*d - b*e, 0]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
/; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rubi steps

\begin{align*} \int \frac{\cosh ^{\frac{4}{3}}(a+b x)}{\sinh ^{\frac{4}{3}}(a+b x)} \, dx &=-\frac{3 \sqrt [3]{\cosh (a+b x)}}{b \sqrt [3]{\sinh (a+b x)}}+\int \frac{\sinh ^{\frac{2}{3}}(a+b x)}{\cosh ^{\frac{2}{3}}(a+b x)} \, dx\\ &=-\frac{3 \sqrt [3]{\cosh (a+b x)}}{b \sqrt [3]{\sinh (a+b x)}}-\frac{3 \operatorname{Subst}\left (\int \frac{x^4}{-1+x^6} \, dx,x,\frac{\sqrt [3]{\sinh (a+b x)}}{\sqrt [3]{\cosh (a+b x)}}\right )}{b}\\ &=-\frac{3 \sqrt [3]{\cosh (a+b x)}}{b \sqrt [3]{\sinh (a+b x)}}+\frac{\operatorname{Subst}\left (\int \frac{1}{1-x^2} \, dx,x,\frac{\sqrt [3]{\sinh (a+b x)}}{\sqrt [3]{\cosh (a+b x)}}\right )}{b}+\frac{\operatorname{Subst}\left (\int \frac{-\frac{1}{2}-\frac{x}{2}}{1-x+x^2} \, dx,x,\frac{\sqrt [3]{\sinh (a+b x)}}{\sqrt [3]{\cosh (a+b x)}}\right )}{b}+\frac{\operatorname{Subst}\left (\int \frac{-\frac{1}{2}+\frac{x}{2}}{1+x+x^2} \, dx,x,\frac{\sqrt [3]{\sinh (a+b x)}}{\sqrt [3]{\cosh (a+b x)}}\right )}{b}\\ &=\frac{\tanh ^{-1}\left (\frac{\sqrt [3]{\sinh (a+b x)}}{\sqrt [3]{\cosh (a+b x)}}\right )}{b}-\frac{3 \sqrt [3]{\cosh (a+b x)}}{b \sqrt [3]{\sinh (a+b x)}}-\frac{\operatorname{Subst}\left (\int \frac{-1+2 x}{1-x+x^2} \, dx,x,\frac{\sqrt [3]{\sinh (a+b x)}}{\sqrt [3]{\cosh (a+b x)}}\right )}{4 b}+\frac{\operatorname{Subst}\left (\int \frac{1+2 x}{1+x+x^2} \, dx,x,\frac{\sqrt [3]{\sinh (a+b x)}}{\sqrt [3]{\cosh (a+b x)}}\right )}{4 b}-\frac{3 \operatorname{Subst}\left (\int \frac{1}{1-x+x^2} \, dx,x,\frac{\sqrt [3]{\sinh (a+b x)}}{\sqrt [3]{\cosh (a+b x)}}\right )}{4 b}-\frac{3 \operatorname{Subst}\left (\int \frac{1}{1+x+x^2} \, dx,x,\frac{\sqrt [3]{\sinh (a+b x)}}{\sqrt [3]{\cosh (a+b x)}}\right )}{4 b}\\ &=\frac{\tanh ^{-1}\left (\frac{\sqrt [3]{\sinh (a+b x)}}{\sqrt [3]{\cosh (a+b x)}}\right )}{b}-\frac{\log \left (1-\frac{\sqrt [3]{\sinh (a+b x)}}{\sqrt [3]{\cosh (a+b x)}}+\frac{\sinh ^{\frac{2}{3}}(a+b x)}{\cosh ^{\frac{2}{3}}(a+b x)}\right )}{4 b}+\frac{\log \left (1+\frac{\sqrt [3]{\sinh (a+b x)}}{\sqrt [3]{\cosh (a+b x)}}+\frac{\sinh ^{\frac{2}{3}}(a+b x)}{\cosh ^{\frac{2}{3}}(a+b x)}\right )}{4 b}-\frac{3 \sqrt [3]{\cosh (a+b x)}}{b \sqrt [3]{\sinh (a+b x)}}+\frac{3 \operatorname{Subst}\left (\int \frac{1}{-3-x^2} \, dx,x,-1+\frac{2 \sqrt [3]{\sinh (a+b x)}}{\sqrt [3]{\cosh (a+b x)}}\right )}{2 b}+\frac{3 \operatorname{Subst}\left (\int \frac{1}{-3-x^2} \, dx,x,1+\frac{2 \sqrt [3]{\sinh (a+b x)}}{\sqrt [3]{\cosh (a+b x)}}\right )}{2 b}\\ &=\frac{\sqrt{3} \tan ^{-1}\left (\frac{1-\frac{2 \sqrt [3]{\sinh (a+b x)}}{\sqrt [3]{\cosh (a+b x)}}}{\sqrt{3}}\right )}{2 b}-\frac{\sqrt{3} \tan ^{-1}\left (\frac{1+\frac{2 \sqrt [3]{\sinh (a+b x)}}{\sqrt [3]{\cosh (a+b x)}}}{\sqrt{3}}\right )}{2 b}+\frac{\tanh ^{-1}\left (\frac{\sqrt [3]{\sinh (a+b x)}}{\sqrt [3]{\cosh (a+b x)}}\right )}{b}-\frac{\log \left (1-\frac{\sqrt [3]{\sinh (a+b x)}}{\sqrt [3]{\cosh (a+b x)}}+\frac{\sinh ^{\frac{2}{3}}(a+b x)}{\cosh ^{\frac{2}{3}}(a+b x)}\right )}{4 b}+\frac{\log \left (1+\frac{\sqrt [3]{\sinh (a+b x)}}{\sqrt [3]{\cosh (a+b x)}}+\frac{\sinh ^{\frac{2}{3}}(a+b x)}{\cosh ^{\frac{2}{3}}(a+b x)}\right )}{4 b}-\frac{3 \sqrt [3]{\cosh (a+b x)}}{b \sqrt [3]{\sinh (a+b x)}}\\ \end{align*}

Mathematica [C]  time = 0.0283752, size = 57, normalized size = 0.23 $-\frac{3 \cosh ^2(a+b x)^{5/6} \, _2F_1\left (-\frac{1}{6},-\frac{1}{6};\frac{5}{6};-\sinh ^2(a+b x)\right )}{b \sqrt [3]{\sinh (a+b x)} \cosh ^{\frac{5}{3}}(a+b x)}$

Antiderivative was successfully veriﬁed.

[In]

Integrate[Cosh[a + b*x]^(4/3)/Sinh[a + b*x]^(4/3),x]

[Out]

(-3*(Cosh[a + b*x]^2)^(5/6)*Hypergeometric2F1[-1/6, -1/6, 5/6, -Sinh[a + b*x]^2])/(b*Cosh[a + b*x]^(5/3)*Sinh[
a + b*x]^(1/3))

________________________________________________________________________________________

Maple [F]  time = 0.038, size = 0, normalized size = 0. \begin{align*} \int{ \left ( \cosh \left ( bx+a \right ) \right ) ^{{\frac{4}{3}}} \left ( \sinh \left ( bx+a \right ) \right ) ^{-{\frac{4}{3}}}}\, dx \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

int(cosh(b*x+a)^(4/3)/sinh(b*x+a)^(4/3),x)

[Out]

int(cosh(b*x+a)^(4/3)/sinh(b*x+a)^(4/3),x)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\cosh \left (b x + a\right )^{\frac{4}{3}}}{\sinh \left (b x + a\right )^{\frac{4}{3}}}\,{d x} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(cosh(b*x+a)^(4/3)/sinh(b*x+a)^(4/3),x, algorithm="maxima")

[Out]

integrate(cosh(b*x + a)^(4/3)/sinh(b*x + a)^(4/3), x)

________________________________________________________________________________________

Fricas [B]  time = 2.13265, size = 3081, normalized size = 12.68 \begin{align*} \text{result too large to display} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(cosh(b*x+a)^(4/3)/sinh(b*x+a)^(4/3),x, algorithm="fricas")

[Out]

1/4*(2*(sqrt(3)*cosh(b*x + a)^2 + 2*sqrt(3)*cosh(b*x + a)*sinh(b*x + a) + sqrt(3)*sinh(b*x + a)^2 - sqrt(3))*a
rctan(1/3*(sqrt(3)*cosh(b*x + a)^2 + 2*sqrt(3)*cosh(b*x + a)*sinh(b*x + a) + sqrt(3)*sinh(b*x + a)^2 + 4*(sqrt
(3)*cosh(b*x + a) + sqrt(3)*sinh(b*x + a))*cosh(b*x + a)^(1/3)*sinh(b*x + a)^(2/3) - sqrt(3))/(cosh(b*x + a)^2
+ 2*cosh(b*x + a)*sinh(b*x + a) + sinh(b*x + a)^2 - 1)) + 2*(sqrt(3)*cosh(b*x + a)^2 + 2*sqrt(3)*cosh(b*x + a
)*sinh(b*x + a) + sqrt(3)*sinh(b*x + a)^2 - sqrt(3))*arctan(-1/3*(sqrt(3)*cosh(b*x + a)^2 + 2*sqrt(3)*cosh(b*x
+ a)*sinh(b*x + a) + sqrt(3)*sinh(b*x + a)^2 - 4*(sqrt(3)*cosh(b*x + a) + sqrt(3)*sinh(b*x + a))*cosh(b*x + a
)^(1/3)*sinh(b*x + a)^(2/3) - sqrt(3))/(cosh(b*x + a)^2 + 2*cosh(b*x + a)*sinh(b*x + a) + sinh(b*x + a)^2 - 1)
) + (cosh(b*x + a)^2 + 2*cosh(b*x + a)*sinh(b*x + a) + sinh(b*x + a)^2 - 1)*log((cosh(b*x + a)^2 + 2*(cosh(b*x
+ a) + sinh(b*x + a))*cosh(b*x + a)^(2/3)*sinh(b*x + a)^(1/3) + 2*(cosh(b*x + a) + sinh(b*x + a))*cosh(b*x +
a)^(1/3)*sinh(b*x + a)^(2/3) + 2*cosh(b*x + a)*sinh(b*x + a) + sinh(b*x + a)^2 - 1)/(cosh(b*x + a)^2 + 2*cosh(
b*x + a)*sinh(b*x + a) + sinh(b*x + a)^2 - 1)) - (cosh(b*x + a)^2 + 2*cosh(b*x + a)*sinh(b*x + a) + sinh(b*x +
a)^2 - 1)*log((cosh(b*x + a)^2 + 2*(cosh(b*x + a) + sinh(b*x + a))*cosh(b*x + a)^(2/3)*sinh(b*x + a)^(1/3) -
2*(cosh(b*x + a) + sinh(b*x + a))*cosh(b*x + a)^(1/3)*sinh(b*x + a)^(2/3) + 2*cosh(b*x + a)*sinh(b*x + a) + si
nh(b*x + a)^2 - 1)/(cosh(b*x + a)^2 + 2*cosh(b*x + a)*sinh(b*x + a) + sinh(b*x + a)^2 - 1)) + 2*(cosh(b*x + a)
^2 + 2*cosh(b*x + a)*sinh(b*x + a) + sinh(b*x + a)^2 - 1)*log((cosh(b*x + a)^2 + 2*(cosh(b*x + a) + sinh(b*x +
a))*cosh(b*x + a)^(1/3)*sinh(b*x + a)^(2/3) + 2*cosh(b*x + a)*sinh(b*x + a) + sinh(b*x + a)^2 - 1)/(cosh(b*x
+ a)^2 + 2*cosh(b*x + a)*sinh(b*x + a) + sinh(b*x + a)^2 - 1)) - 2*(cosh(b*x + a)^2 + 2*cosh(b*x + a)*sinh(b*x
+ a) + sinh(b*x + a)^2 - 1)*log(-(cosh(b*x + a)^2 - 2*(cosh(b*x + a) + sinh(b*x + a))*cosh(b*x + a)^(1/3)*sin
h(b*x + a)^(2/3) + 2*cosh(b*x + a)*sinh(b*x + a) + sinh(b*x + a)^2 - 1)/(cosh(b*x + a)^2 + 2*cosh(b*x + a)*sin
h(b*x + a) + sinh(b*x + a)^2 - 1)) - 24*(cosh(b*x + a) + sinh(b*x + a))*cosh(b*x + a)^(1/3)*sinh(b*x + a)^(2/3
))/(b*cosh(b*x + a)^2 + 2*b*cosh(b*x + a)*sinh(b*x + a) + b*sinh(b*x + a)^2 - b)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(cosh(b*x+a)**(4/3)/sinh(b*x+a)**(4/3),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\cosh \left (b x + a\right )^{\frac{4}{3}}}{\sinh \left (b x + a\right )^{\frac{4}{3}}}\,{d x} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(cosh(b*x+a)^(4/3)/sinh(b*x+a)^(4/3),x, algorithm="giac")

[Out]

integrate(cosh(b*x + a)^(4/3)/sinh(b*x + a)^(4/3), x)