3.633 \(\int \frac{1}{(\text{sech}(x)+i \tanh (x))^5} \, dx\)

Optimal. Leaf size=42 \[ -\frac{4 i}{1+i \sinh (x)}+\frac{2 i}{(1+i \sinh (x))^2}-i \log (-\sinh (x)+i) \]

[Out]

(-I)*Log[I - Sinh[x]] + (2*I)/(1 + I*Sinh[x])^2 - (4*I)/(1 + I*Sinh[x])

________________________________________________________________________________________

Rubi [A]  time = 0.0554388, antiderivative size = 42, normalized size of antiderivative = 1., number of steps used = 4, number of rules used = 3, integrand size = 11, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.273, Rules used = {4391, 2667, 43} \[ -\frac{4 i}{1+i \sinh (x)}+\frac{2 i}{(1+i \sinh (x))^2}-i \log (-\sinh (x)+i) \]

Antiderivative was successfully verified.

[In]

Int[(Sech[x] + I*Tanh[x])^(-5),x]

[Out]

(-I)*Log[I - Sinh[x]] + (2*I)/(1 + I*Sinh[x])^2 - (4*I)/(1 + I*Sinh[x])

Rule 4391

Int[(u_.)*((b_.)*sec[(c_.) + (d_.)*(x_)]^(n_.) + (a_.)*tan[(c_.) + (d_.)*(x_)]^(n_.))^(p_), x_Symbol] :> Int[A
ctivateTrig[u]*Sec[c + d*x]^(n*p)*(b + a*Sin[c + d*x]^n)^p, x] /; FreeQ[{a, b, c, d}, x] && IntegersQ[n, p]

Rule 2667

Int[cos[(e_.) + (f_.)*(x_)]^(p_.)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.), x_Symbol] :> Dist[1/(b^p*f), S
ubst[Int[(a + x)^(m + (p - 1)/2)*(a - x)^((p - 1)/2), x], x, b*Sin[e + f*x]], x] /; FreeQ[{a, b, e, f, m}, x]
&& IntegerQ[(p - 1)/2] && EqQ[a^2 - b^2, 0] && (GeQ[p, -1] ||  !IntegerQ[m + 1/2])

Rule 43

Int[((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.), x_Symbol] :> Int[ExpandIntegrand[(a + b*x)^m*(c + d
*x)^n, x], x] /; FreeQ[{a, b, c, d, n}, x] && NeQ[b*c - a*d, 0] && IGtQ[m, 0] && ( !IntegerQ[n] || (EqQ[c, 0]
&& LeQ[7*m + 4*n + 4, 0]) || LtQ[9*m + 5*(n + 1), 0] || GtQ[m + n + 2, 0])

Rubi steps

\begin{align*} \int \frac{1}{(\text{sech}(x)+i \tanh (x))^5} \, dx &=\int \frac{\cosh ^5(x)}{(1+i \sinh (x))^5} \, dx\\ &=-\left (i \operatorname{Subst}\left (\int \frac{(1-x)^2}{(1+x)^3} \, dx,x,i \sinh (x)\right )\right )\\ &=-\left (i \operatorname{Subst}\left (\int \left (\frac{4}{(1+x)^3}-\frac{4}{(1+x)^2}+\frac{1}{1+x}\right ) \, dx,x,i \sinh (x)\right )\right )\\ &=-i \log (i-\sinh (x))+\frac{2 i}{(1+i \sinh (x))^2}-\frac{4 i}{1+i \sinh (x)}\\ \end{align*}

Mathematica [A]  time = 0.0986096, size = 45, normalized size = 1.07 \[ 2 \tan ^{-1}\left (\tanh \left (\frac{x}{2}\right )\right )-i \log (\cosh (x))+\frac{4 \sinh (x)-2 i}{\left (\cosh \left (\frac{x}{2}\right )+i \sinh \left (\frac{x}{2}\right )\right )^4} \]

Antiderivative was successfully verified.

[In]

Integrate[(Sech[x] + I*Tanh[x])^(-5),x]

[Out]

2*ArcTan[Tanh[x/2]] - I*Log[Cosh[x]] + (-2*I + 4*Sinh[x])/(Cosh[x/2] + I*Sinh[x/2])^4

________________________________________________________________________________________

Maple [A]  time = 0.106, size = 68, normalized size = 1.6 \begin{align*} i\ln \left ( \tanh \left ({\frac{x}{2}} \right ) +1 \right ) +{8\,i \left ( \tanh \left ({\frac{x}{2}} \right ) -i \right ) ^{-4}}-2\,i\ln \left ( \tanh \left ({\frac{x}{2}} \right ) -i \right ) -{8\,i \left ( \tanh \left ({\frac{x}{2}} \right ) -i \right ) ^{-2}}+16\, \left ( \tanh \left ( x/2 \right ) -i \right ) ^{-3}+i\ln \left ( \tanh \left ({\frac{x}{2}} \right ) -1 \right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(sech(x)+I*tanh(x))^5,x)

[Out]

I*ln(tanh(1/2*x)+1)+8*I/(tanh(1/2*x)-I)^4-2*I*ln(tanh(1/2*x)-I)-8*I/(tanh(1/2*x)-I)^2+16/(tanh(1/2*x)-I)^3+I*l
n(tanh(1/2*x)-1)

________________________________________________________________________________________

Maxima [A]  time = 1.0906, size = 81, normalized size = 1.93 \begin{align*} -i \, x - \frac{8 \, e^{\left (-x\right )} - 8 i \, e^{\left (-2 \, x\right )} - 8 \, e^{\left (-3 \, x\right )}}{-4 i \, e^{\left (-x\right )} - 6 \, e^{\left (-2 \, x\right )} + 4 i \, e^{\left (-3 \, x\right )} + e^{\left (-4 \, x\right )} + 1} - 2 i \, \log \left (e^{\left (-x\right )} + i\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(sech(x)+I*tanh(x))^5,x, algorithm="maxima")

[Out]

-I*x - (8*e^(-x) - 8*I*e^(-2*x) - 8*e^(-3*x))/(-4*I*e^(-x) - 6*e^(-2*x) + 4*I*e^(-3*x) + e^(-4*x) + 1) - 2*I*l
og(e^(-x) + I)

________________________________________________________________________________________

Fricas [B]  time = 2.14075, size = 274, normalized size = 6.52 \begin{align*} \frac{i \, x e^{\left (4 \, x\right )} + 4 \,{\left (x - 2\right )} e^{\left (3 \, x\right )} +{\left (-6 i \, x + 8 i\right )} e^{\left (2 \, x\right )} - 4 \,{\left (x - 2\right )} e^{x} +{\left (-2 i \, e^{\left (4 \, x\right )} - 8 \, e^{\left (3 \, x\right )} + 12 i \, e^{\left (2 \, x\right )} + 8 \, e^{x} - 2 i\right )} \log \left (e^{x} - i\right ) + i \, x}{e^{\left (4 \, x\right )} - 4 i \, e^{\left (3 \, x\right )} - 6 \, e^{\left (2 \, x\right )} + 4 i \, e^{x} + 1} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(sech(x)+I*tanh(x))^5,x, algorithm="fricas")

[Out]

(I*x*e^(4*x) + 4*(x - 2)*e^(3*x) + (-6*I*x + 8*I)*e^(2*x) - 4*(x - 2)*e^x + (-2*I*e^(4*x) - 8*e^(3*x) + 12*I*e
^(2*x) + 8*e^x - 2*I)*log(e^x - I) + I*x)/(e^(4*x) - 4*I*e^(3*x) - 6*e^(2*x) + 4*I*e^x + 1)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(sech(x)+I*tanh(x))**5,x)

[Out]

Timed out

________________________________________________________________________________________

Giac [A]  time = 1.16191, size = 54, normalized size = 1.29 \begin{align*} -\frac{8 \, e^{\left (3 \, x\right )} - 8 i \, e^{\left (2 \, x\right )} - 8 \, e^{x}}{{\left (e^{x} - i\right )}^{4}} + i \, \log \left (i \, e^{x}\right ) - 2 i \, \log \left (e^{x} - i\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(sech(x)+I*tanh(x))^5,x, algorithm="giac")

[Out]

-(8*e^(3*x) - 8*I*e^(2*x) - 8*e^x)/(e^x - I)^4 + I*log(I*e^x) - 2*I*log(e^x - I)