3.62 $$\int \frac{\sqrt [3]{\cosh (a+b x)}}{\sqrt [3]{\sinh (a+b x)}} \, dx$$

Optimal. Leaf size=128 $-\frac{\log \left (1-\frac{\cosh ^{\frac{2}{3}}(a+b x)}{\sinh ^{\frac{2}{3}}(a+b x)}\right )}{2 b}+\frac{\log \left (\frac{\cosh ^{\frac{4}{3}}(a+b x)}{\sinh ^{\frac{4}{3}}(a+b x)}+\frac{\cosh ^{\frac{2}{3}}(a+b x)}{\sinh ^{\frac{2}{3}}(a+b x)}+1\right )}{4 b}-\frac{\sqrt{3} \tan ^{-1}\left (\frac{\frac{2 \cosh ^{\frac{2}{3}}(a+b x)}{\sinh ^{\frac{2}{3}}(a+b x)}+1}{\sqrt{3}}\right )}{2 b}$

[Out]

-(Sqrt[3]*ArcTan[(1 + (2*Cosh[a + b*x]^(2/3))/Sinh[a + b*x]^(2/3))/Sqrt[3]])/(2*b) - Log[1 - Cosh[a + b*x]^(2/
3)/Sinh[a + b*x]^(2/3)]/(2*b) + Log[1 + Cosh[a + b*x]^(4/3)/Sinh[a + b*x]^(4/3) + Cosh[a + b*x]^(2/3)/Sinh[a +
b*x]^(2/3)]/(4*b)

________________________________________________________________________________________

Rubi [A]  time = 0.0887767, antiderivative size = 128, normalized size of antiderivative = 1., number of steps used = 8, number of rules used = 8, integrand size = 21, $$\frac{\text{number of rules}}{\text{integrand size}}$$ = 0.381, Rules used = {2575, 275, 292, 31, 634, 618, 204, 628} $-\frac{\log \left (1-\frac{\cosh ^{\frac{2}{3}}(a+b x)}{\sinh ^{\frac{2}{3}}(a+b x)}\right )}{2 b}+\frac{\log \left (\frac{\cosh ^{\frac{4}{3}}(a+b x)}{\sinh ^{\frac{4}{3}}(a+b x)}+\frac{\cosh ^{\frac{2}{3}}(a+b x)}{\sinh ^{\frac{2}{3}}(a+b x)}+1\right )}{4 b}-\frac{\sqrt{3} \tan ^{-1}\left (\frac{\frac{2 \cosh ^{\frac{2}{3}}(a+b x)}{\sinh ^{\frac{2}{3}}(a+b x)}+1}{\sqrt{3}}\right )}{2 b}$

Antiderivative was successfully veriﬁed.

[In]

Int[Cosh[a + b*x]^(1/3)/Sinh[a + b*x]^(1/3),x]

[Out]

-(Sqrt[3]*ArcTan[(1 + (2*Cosh[a + b*x]^(2/3))/Sinh[a + b*x]^(2/3))/Sqrt[3]])/(2*b) - Log[1 - Cosh[a + b*x]^(2/
3)/Sinh[a + b*x]^(2/3)]/(2*b) + Log[1 + Cosh[a + b*x]^(4/3)/Sinh[a + b*x]^(4/3) + Cosh[a + b*x]^(2/3)/Sinh[a +
b*x]^(2/3)]/(4*b)

Rule 2575

Int[(cos[(e_.) + (f_.)*(x_)]*(a_.))^(m_)*((b_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> With[{k = Denomina
tor[m]}, -Dist[(k*a*b)/f, Subst[Int[x^(k*(m + 1) - 1)/(a^2 + b^2*x^(2*k)), x], x, (a*Cos[e + f*x])^(1/k)/(b*Si
n[e + f*x])^(1/k)], x]] /; FreeQ[{a, b, e, f}, x] && EqQ[m + n, 0] && GtQ[m, 0] && LtQ[m, 1]

Rule 275

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> With[{k = GCD[m + 1, n]}, Dist[1/k, Subst[Int[x^((m
+ 1)/k - 1)*(a + b*x^(n/k))^p, x], x, x^k], x] /; k != 1] /; FreeQ[{a, b, p}, x] && IGtQ[n, 0] && IntegerQ[m]

Rule 292

Int[(x_)/((a_) + (b_.)*(x_)^3), x_Symbol] :> -Dist[(3*Rt[a, 3]*Rt[b, 3])^(-1), Int[1/(Rt[a, 3] + Rt[b, 3]*x),
x], x] + Dist[1/(3*Rt[a, 3]*Rt[b, 3]), Int[(Rt[a, 3] + Rt[b, 3]*x)/(Rt[a, 3]^2 - Rt[a, 3]*Rt[b, 3]*x + Rt[b, 3
]^2*x^2), x], x] /; FreeQ[{a, b}, x]

Rule 31

Int[((a_) + (b_.)*(x_))^(-1), x_Symbol] :> Simp[Log[RemoveContent[a + b*x, x]]/b, x] /; FreeQ[{a, b}, x]

Rule 634

Int[((d_.) + (e_.)*(x_))/((a_) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Dist[(2*c*d - b*e)/(2*c), Int[1/(a +
b*x + c*x^2), x], x] + Dist[e/(2*c), Int[(b + 2*c*x)/(a + b*x + c*x^2), x], x] /; FreeQ[{a, b, c, d, e}, x] &
& NeQ[2*c*d - b*e, 0] && NeQ[b^2 - 4*a*c, 0] &&  !NiceSqrtQ[b^2 - 4*a*c]

Rule 618

Int[((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> Dist[-2, Subst[Int[1/Simp[b^2 - 4*a*c - x^2, x], x]
, x, b + 2*c*x], x] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 204

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> -Simp[ArcTan[(Rt[-b, 2]*x)/Rt[-a, 2]]/(Rt[-a, 2]*Rt[-b, 2]), x] /
; FreeQ[{a, b}, x] && PosQ[a/b] && (LtQ[a, 0] || LtQ[b, 0])

Rule 628

Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Simp[(d*Log[RemoveContent[a + b*x +
c*x^2, x]])/b, x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[2*c*d - b*e, 0]

Rubi steps

\begin{align*} \int \frac{\sqrt [3]{\cosh (a+b x)}}{\sqrt [3]{\sinh (a+b x)}} \, dx &=\frac{3 \operatorname{Subst}\left (\int \frac{x^3}{1-x^6} \, dx,x,\frac{\sqrt [3]{\cosh (a+b x)}}{\sqrt [3]{\sinh (a+b x)}}\right )}{b}\\ &=\frac{3 \operatorname{Subst}\left (\int \frac{x}{1-x^3} \, dx,x,\frac{\cosh ^{\frac{2}{3}}(a+b x)}{\sinh ^{\frac{2}{3}}(a+b x)}\right )}{2 b}\\ &=\frac{\operatorname{Subst}\left (\int \frac{1}{1-x} \, dx,x,\frac{\cosh ^{\frac{2}{3}}(a+b x)}{\sinh ^{\frac{2}{3}}(a+b x)}\right )}{2 b}-\frac{\operatorname{Subst}\left (\int \frac{1-x}{1+x+x^2} \, dx,x,\frac{\cosh ^{\frac{2}{3}}(a+b x)}{\sinh ^{\frac{2}{3}}(a+b x)}\right )}{2 b}\\ &=-\frac{\log \left (1-\frac{\cosh ^{\frac{2}{3}}(a+b x)}{\sinh ^{\frac{2}{3}}(a+b x)}\right )}{2 b}+\frac{\operatorname{Subst}\left (\int \frac{1+2 x}{1+x+x^2} \, dx,x,\frac{\cosh ^{\frac{2}{3}}(a+b x)}{\sinh ^{\frac{2}{3}}(a+b x)}\right )}{4 b}-\frac{3 \operatorname{Subst}\left (\int \frac{1}{1+x+x^2} \, dx,x,\frac{\cosh ^{\frac{2}{3}}(a+b x)}{\sinh ^{\frac{2}{3}}(a+b x)}\right )}{4 b}\\ &=-\frac{\log \left (1-\frac{\cosh ^{\frac{2}{3}}(a+b x)}{\sinh ^{\frac{2}{3}}(a+b x)}\right )}{2 b}+\frac{\log \left (1+\frac{\cosh ^{\frac{4}{3}}(a+b x)}{\sinh ^{\frac{4}{3}}(a+b x)}+\frac{\cosh ^{\frac{2}{3}}(a+b x)}{\sinh ^{\frac{2}{3}}(a+b x)}\right )}{4 b}+\frac{3 \operatorname{Subst}\left (\int \frac{1}{-3-x^2} \, dx,x,1+\frac{2 \cosh ^{\frac{2}{3}}(a+b x)}{\sinh ^{\frac{2}{3}}(a+b x)}\right )}{2 b}\\ &=-\frac{\sqrt{3} \tan ^{-1}\left (\frac{1+\frac{2 \cosh ^{\frac{2}{3}}(a+b x)}{\sinh ^{\frac{2}{3}}(a+b x)}}{\sqrt{3}}\right )}{2 b}-\frac{\log \left (1-\frac{\cosh ^{\frac{2}{3}}(a+b x)}{\sinh ^{\frac{2}{3}}(a+b x)}\right )}{2 b}+\frac{\log \left (1+\frac{\cosh ^{\frac{4}{3}}(a+b x)}{\sinh ^{\frac{4}{3}}(a+b x)}+\frac{\cosh ^{\frac{2}{3}}(a+b x)}{\sinh ^{\frac{2}{3}}(a+b x)}\right )}{4 b}\\ \end{align*}

Mathematica [C]  time = 0.0243457, size = 59, normalized size = 0.46 $\frac{3 \sinh ^{\frac{2}{3}}(a+b x) \sqrt [3]{\cosh ^2(a+b x)} \, _2F_1\left (\frac{1}{3},\frac{1}{3};\frac{4}{3};-\sinh ^2(a+b x)\right )}{2 b \cosh ^{\frac{2}{3}}(a+b x)}$

Antiderivative was successfully veriﬁed.

[In]

Integrate[Cosh[a + b*x]^(1/3)/Sinh[a + b*x]^(1/3),x]

[Out]

(3*(Cosh[a + b*x]^2)^(1/3)*Hypergeometric2F1[1/3, 1/3, 4/3, -Sinh[a + b*x]^2]*Sinh[a + b*x]^(2/3))/(2*b*Cosh[a
+ b*x]^(2/3))

________________________________________________________________________________________

Maple [F]  time = 0.039, size = 0, normalized size = 0. \begin{align*} \int{\sqrt [3]{\cosh \left ( bx+a \right ) }{\frac{1}{\sqrt [3]{\sinh \left ( bx+a \right ) }}}}\, dx \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

int(cosh(b*x+a)^(1/3)/sinh(b*x+a)^(1/3),x)

[Out]

int(cosh(b*x+a)^(1/3)/sinh(b*x+a)^(1/3),x)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\cosh \left (b x + a\right )^{\frac{1}{3}}}{\sinh \left (b x + a\right )^{\frac{1}{3}}}\,{d x} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(cosh(b*x+a)^(1/3)/sinh(b*x+a)^(1/3),x, algorithm="maxima")

[Out]

integrate(cosh(b*x + a)^(1/3)/sinh(b*x + a)^(1/3), x)

________________________________________________________________________________________

Fricas [B]  time = 1.95119, size = 1694, normalized size = 13.23 \begin{align*} \text{result too large to display} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(cosh(b*x+a)^(1/3)/sinh(b*x+a)^(1/3),x, algorithm="fricas")

[Out]

-1/4*(2*sqrt(3)*arctan(1/3*(sqrt(3)*cosh(b*x + a)^2 + 2*sqrt(3)*cosh(b*x + a)*sinh(b*x + a) + sqrt(3)*sinh(b*x
+ a)^2 + 4*(sqrt(3)*cosh(b*x + a) + sqrt(3)*sinh(b*x + a))*cosh(b*x + a)^(2/3)*sinh(b*x + a)^(1/3) - sqrt(3))
/(cosh(b*x + a)^2 + 2*cosh(b*x + a)*sinh(b*x + a) + sinh(b*x + a)^2 - 1)) - log((cosh(b*x + a)^4 + 4*cosh(b*x
+ a)*sinh(b*x + a)^3 + sinh(b*x + a)^4 + 2*(3*cosh(b*x + a)^2 - 1)*sinh(b*x + a)^2 - 2*cosh(b*x + a)^2 + 2*(co
sh(b*x + a)^3 + 3*cosh(b*x + a)*sinh(b*x + a)^2 + sinh(b*x + a)^3 + (3*cosh(b*x + a)^2 - 1)*sinh(b*x + a) - co
sh(b*x + a))*cosh(b*x + a)^(2/3)*sinh(b*x + a)^(1/3) + 2*(cosh(b*x + a)^3 + 3*cosh(b*x + a)*sinh(b*x + a)^2 +
sinh(b*x + a)^3 + (3*cosh(b*x + a)^2 + 1)*sinh(b*x + a) + cosh(b*x + a))*cosh(b*x + a)^(1/3)*sinh(b*x + a)^(2/
3) + 4*(cosh(b*x + a)^3 - cosh(b*x + a))*sinh(b*x + a) + 1)/(cosh(b*x + a)^4 + 4*cosh(b*x + a)*sinh(b*x + a)^3
+ sinh(b*x + a)^4 + 2*(3*cosh(b*x + a)^2 - 1)*sinh(b*x + a)^2 - 2*cosh(b*x + a)^2 + 4*(cosh(b*x + a)^3 - cosh
(b*x + a))*sinh(b*x + a) + 1)) + 2*log(-(cosh(b*x + a)^2 - 2*(cosh(b*x + a) + sinh(b*x + a))*cosh(b*x + a)^(2/
3)*sinh(b*x + a)^(1/3) + 2*cosh(b*x + a)*sinh(b*x + a) + sinh(b*x + a)^2 - 1)/(cosh(b*x + a)^2 + 2*cosh(b*x +
a)*sinh(b*x + a) + sinh(b*x + a)^2 - 1)))/b

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sqrt [3]{\cosh{\left (a + b x \right )}}}{\sqrt [3]{\sinh{\left (a + b x \right )}}}\, dx \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(cosh(b*x+a)**(1/3)/sinh(b*x+a)**(1/3),x)

[Out]

Integral(cosh(a + b*x)**(1/3)/sinh(a + b*x)**(1/3), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\cosh \left (b x + a\right )^{\frac{1}{3}}}{\sinh \left (b x + a\right )^{\frac{1}{3}}}\,{d x} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(cosh(b*x+a)^(1/3)/sinh(b*x+a)^(1/3),x, algorithm="giac")

[Out]

integrate(cosh(b*x + a)^(1/3)/sinh(b*x + a)^(1/3), x)