### 3.611 $$\int \frac{1}{(a \cosh (c+d x)-a \sinh (c+d x))^3} \, dx$$

Optimal. Leaf size=27 $\frac{1}{3 d (a \cosh (c+d x)-a \sinh (c+d x))^3}$

[Out]

1/(3*d*(a*Cosh[c + d*x] - a*Sinh[c + d*x])^3)

________________________________________________________________________________________

Rubi [A]  time = 0.0155465, antiderivative size = 27, normalized size of antiderivative = 1., number of steps used = 1, number of rules used = 1, integrand size = 20, $$\frac{\text{number of rules}}{\text{integrand size}}$$ = 0.05, Rules used = {3071} $\frac{1}{3 d (a \cosh (c+d x)-a \sinh (c+d x))^3}$

Antiderivative was successfully veriﬁed.

[In]

Int[(a*Cosh[c + d*x] - a*Sinh[c + d*x])^(-3),x]

[Out]

1/(3*d*(a*Cosh[c + d*x] - a*Sinh[c + d*x])^3)

Rule 3071

Int[(cos[(c_.) + (d_.)*(x_)]*(a_.) + (b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[(a*(a*Cos[c + d*x]
+ b*Sin[c + d*x])^n)/(b*d*n), x] /; FreeQ[{a, b, c, d, n}, x] && EqQ[a^2 + b^2, 0]

Rubi steps

\begin{align*} \int \frac{1}{(a \cosh (c+d x)-a \sinh (c+d x))^3} \, dx &=\frac{1}{3 d (a \cosh (c+d x)-a \sinh (c+d x))^3}\\ \end{align*}

Mathematica [A]  time = 0.0683504, size = 27, normalized size = 1. $\frac{1}{3 d (a \cosh (c+d x)-a \sinh (c+d x))^3}$

Antiderivative was successfully veriﬁed.

[In]

Integrate[(a*Cosh[c + d*x] - a*Sinh[c + d*x])^(-3),x]

[Out]

1/(3*d*(a*Cosh[c + d*x] - a*Sinh[c + d*x])^3)

________________________________________________________________________________________

Maple [A]  time = 0.001, size = 26, normalized size = 1. \begin{align*}{\frac{1}{3\,d{a}^{3} \left ( \cosh \left ( dx+c \right ) -\sinh \left ( dx+c \right ) \right ) ^{3}}} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

int(1/(a*cosh(d*x+c)-a*sinh(d*x+c))^3,x)

[Out]

1/3/d/a^3/(cosh(d*x+c)-sinh(d*x+c))^3

________________________________________________________________________________________

Maxima [A]  time = 1.08383, size = 23, normalized size = 0.85 \begin{align*} \frac{e^{\left (3 \, d x + 3 \, c\right )}}{3 \, a^{3} d} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a*cosh(d*x+c)-a*sinh(d*x+c))^3,x, algorithm="maxima")

[Out]

1/3*e^(3*d*x + 3*c)/(a^3*d)

________________________________________________________________________________________

Fricas [B]  time = 2.36608, size = 158, normalized size = 5.85 \begin{align*} \frac{\cosh \left (d x + c\right )^{2} + 2 \, \cosh \left (d x + c\right ) \sinh \left (d x + c\right ) + \sinh \left (d x + c\right )^{2}}{3 \,{\left (a^{3} d \cosh \left (d x + c\right ) - a^{3} d \sinh \left (d x + c\right )\right )}} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a*cosh(d*x+c)-a*sinh(d*x+c))^3,x, algorithm="fricas")

[Out]

1/3*(cosh(d*x + c)^2 + 2*cosh(d*x + c)*sinh(d*x + c) + sinh(d*x + c)^2)/(a^3*d*cosh(d*x + c) - a^3*d*sinh(d*x
+ c))

________________________________________________________________________________________

Sympy [A]  time = 1.74038, size = 88, normalized size = 3.26 \begin{align*} \begin{cases} \frac{1}{- 3 a^{3} d \sinh ^{3}{\left (c + d x \right )} + 9 a^{3} d \sinh ^{2}{\left (c + d x \right )} \cosh{\left (c + d x \right )} - 9 a^{3} d \sinh{\left (c + d x \right )} \cosh ^{2}{\left (c + d x \right )} + 3 a^{3} d \cosh ^{3}{\left (c + d x \right )}} & \text{for}\: d \neq 0 \\\frac{x}{\left (- a \sinh{\left (c \right )} + a \cosh{\left (c \right )}\right )^{3}} & \text{otherwise} \end{cases} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a*cosh(d*x+c)-a*sinh(d*x+c))**3,x)

[Out]

Piecewise((1/(-3*a**3*d*sinh(c + d*x)**3 + 9*a**3*d*sinh(c + d*x)**2*cosh(c + d*x) - 9*a**3*d*sinh(c + d*x)*co
sh(c + d*x)**2 + 3*a**3*d*cosh(c + d*x)**3), Ne(d, 0)), (x/(-a*sinh(c) + a*cosh(c))**3, True))

________________________________________________________________________________________

Giac [A]  time = 1.13889, size = 23, normalized size = 0.85 \begin{align*} \frac{e^{\left (3 \, d x + 3 \, c\right )}}{3 \, a^{3} d} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a*cosh(d*x+c)-a*sinh(d*x+c))^3,x, algorithm="giac")

[Out]

1/3*e^(3*d*x + 3*c)/(a^3*d)