### 3.528 $$\int x \cosh ^{\frac{5}{2}}(a+b x) \sinh (a+b x) \, dx$$

Optimal. Leaf size=87 $\frac{20 i \text{EllipticF}\left (\frac{1}{2} i (a+b x),2\right )}{147 b^2}-\frac{4 \sinh (a+b x) \cosh ^{\frac{5}{2}}(a+b x)}{49 b^2}-\frac{20 \sinh (a+b x) \sqrt{\cosh (a+b x)}}{147 b^2}+\frac{2 x \cosh ^{\frac{7}{2}}(a+b x)}{7 b}$

[Out]

(2*x*Cosh[a + b*x]^(7/2))/(7*b) + (((20*I)/147)*EllipticF[(I/2)*(a + b*x), 2])/b^2 - (20*Sqrt[Cosh[a + b*x]]*S
inh[a + b*x])/(147*b^2) - (4*Cosh[a + b*x]^(5/2)*Sinh[a + b*x])/(49*b^2)

________________________________________________________________________________________

Rubi [A]  time = 0.0578226, antiderivative size = 87, normalized size of antiderivative = 1., number of steps used = 4, number of rules used = 3, integrand size = 18, $$\frac{\text{number of rules}}{\text{integrand size}}$$ = 0.167, Rules used = {5373, 2635, 2641} $\frac{20 i F\left (\left .\frac{1}{2} i (a+b x)\right |2\right )}{147 b^2}-\frac{4 \sinh (a+b x) \cosh ^{\frac{5}{2}}(a+b x)}{49 b^2}-\frac{20 \sinh (a+b x) \sqrt{\cosh (a+b x)}}{147 b^2}+\frac{2 x \cosh ^{\frac{7}{2}}(a+b x)}{7 b}$

Antiderivative was successfully veriﬁed.

[In]

Int[x*Cosh[a + b*x]^(5/2)*Sinh[a + b*x],x]

[Out]

(2*x*Cosh[a + b*x]^(7/2))/(7*b) + (((20*I)/147)*EllipticF[(I/2)*(a + b*x), 2])/b^2 - (20*Sqrt[Cosh[a + b*x]]*S
inh[a + b*x])/(147*b^2) - (4*Cosh[a + b*x]^(5/2)*Sinh[a + b*x])/(49*b^2)

Rule 5373

Int[Cosh[(a_.) + (b_.)*(x_)^(n_.)]^(p_.)*(x_)^(m_.)*Sinh[(a_.) + (b_.)*(x_)^(n_.)], x_Symbol] :> Simp[(x^(m -
n + 1)*Cosh[a + b*x^n]^(p + 1))/(b*n*(p + 1)), x] - Dist[(m - n + 1)/(b*n*(p + 1)), Int[x^(m - n)*Cosh[a + b*x
^n]^(p + 1), x], x] /; FreeQ[{a, b, p}, x] && LtQ[0, n, m + 1] && NeQ[p, -1]

Rule 2635

Int[((b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> -Simp[(b*Cos[c + d*x]*(b*Sin[c + d*x])^(n - 1))/(d*n),
x] + Dist[(b^2*(n - 1))/n, Int[(b*Sin[c + d*x])^(n - 2), x], x] /; FreeQ[{b, c, d}, x] && GtQ[n, 1] && Integer
Q[2*n]

Rule 2641

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticF[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ
[{c, d}, x]

Rubi steps

\begin{align*} \int x \cosh ^{\frac{5}{2}}(a+b x) \sinh (a+b x) \, dx &=\frac{2 x \cosh ^{\frac{7}{2}}(a+b x)}{7 b}-\frac{2 \int \cosh ^{\frac{7}{2}}(a+b x) \, dx}{7 b}\\ &=\frac{2 x \cosh ^{\frac{7}{2}}(a+b x)}{7 b}-\frac{4 \cosh ^{\frac{5}{2}}(a+b x) \sinh (a+b x)}{49 b^2}-\frac{10 \int \cosh ^{\frac{3}{2}}(a+b x) \, dx}{49 b}\\ &=\frac{2 x \cosh ^{\frac{7}{2}}(a+b x)}{7 b}-\frac{20 \sqrt{\cosh (a+b x)} \sinh (a+b x)}{147 b^2}-\frac{4 \cosh ^{\frac{5}{2}}(a+b x) \sinh (a+b x)}{49 b^2}-\frac{10 \int \frac{1}{\sqrt{\cosh (a+b x)}} \, dx}{147 b}\\ &=\frac{2 x \cosh ^{\frac{7}{2}}(a+b x)}{7 b}+\frac{20 i F\left (\left .\frac{1}{2} i (a+b x)\right |2\right )}{147 b^2}-\frac{20 \sqrt{\cosh (a+b x)} \sinh (a+b x)}{147 b^2}-\frac{4 \cosh ^{\frac{5}{2}}(a+b x) \sinh (a+b x)}{49 b^2}\\ \end{align*}

Mathematica [A]  time = 0.343983, size = 77, normalized size = 0.89 $\frac{\sqrt{\cosh (a+b x)} (-46 \sinh (a+b x)-6 \sinh (3 (a+b x))+63 b x \cosh (a+b x)+21 b x \cosh (3 (a+b x)))+40 i \text{EllipticF}\left (\frac{1}{2} i (a+b x),2\right )}{294 b^2}$

Antiderivative was successfully veriﬁed.

[In]

Integrate[x*Cosh[a + b*x]^(5/2)*Sinh[a + b*x],x]

[Out]

((40*I)*EllipticF[(I/2)*(a + b*x), 2] + Sqrt[Cosh[a + b*x]]*(63*b*x*Cosh[a + b*x] + 21*b*x*Cosh[3*(a + b*x)] -
46*Sinh[a + b*x] - 6*Sinh[3*(a + b*x)]))/(294*b^2)

________________________________________________________________________________________

Maple [F]  time = 0.028, size = 0, normalized size = 0. \begin{align*} \int x \left ( \cosh \left ( bx+a \right ) \right ) ^{{\frac{5}{2}}}\sinh \left ( bx+a \right ) \, dx \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

int(x*cosh(b*x+a)^(5/2)*sinh(b*x+a),x)

[Out]

int(x*cosh(b*x+a)^(5/2)*sinh(b*x+a),x)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int x \cosh \left (b x + a\right )^{\frac{5}{2}} \sinh \left (b x + a\right )\,{d x} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*cosh(b*x+a)^(5/2)*sinh(b*x+a),x, algorithm="maxima")

[Out]

integrate(x*cosh(b*x + a)^(5/2)*sinh(b*x + a), x)

________________________________________________________________________________________

Fricas [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: UnboundLocalError} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*cosh(b*x+a)^(5/2)*sinh(b*x+a),x, algorithm="fricas")

[Out]

Exception raised: UnboundLocalError

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*cosh(b*x+a)**(5/2)*sinh(b*x+a),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int x \cosh \left (b x + a\right )^{\frac{5}{2}} \sinh \left (b x + a\right )\,{d x} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*cosh(b*x+a)^(5/2)*sinh(b*x+a),x, algorithm="giac")

[Out]

integrate(x*cosh(b*x + a)^(5/2)*sinh(b*x + a), x)