### 3.509 $$\int x^2 \text{csch}^3(a+b x) \text{sech}(a+b x) \, dx$$

Optimal. Leaf size=148 $\frac{x \text{PolyLog}\left (2,-e^{2 a+2 b x}\right )}{b^2}-\frac{x \text{PolyLog}\left (2,e^{2 a+2 b x}\right )}{b^2}-\frac{\text{PolyLog}\left (3,-e^{2 a+2 b x}\right )}{2 b^3}+\frac{\text{PolyLog}\left (3,e^{2 a+2 b x}\right )}{2 b^3}-\frac{x \coth (a+b x)}{b^2}+\frac{\log (\sinh (a+b x))}{b^3}+\frac{2 x^2 \tanh ^{-1}\left (e^{2 a+2 b x}\right )}{b}-\frac{x^2 \coth ^2(a+b x)}{2 b}+\frac{x^2}{2 b}$

[Out]

x^2/(2*b) + (2*x^2*ArcTanh[E^(2*a + 2*b*x)])/b - (x*Coth[a + b*x])/b^2 - (x^2*Coth[a + b*x]^2)/(2*b) + Log[Sin
h[a + b*x]]/b^3 + (x*PolyLog[2, -E^(2*a + 2*b*x)])/b^2 - (x*PolyLog[2, E^(2*a + 2*b*x)])/b^2 - PolyLog[3, -E^(
2*a + 2*b*x)]/(2*b^3) + PolyLog[3, E^(2*a + 2*b*x)]/(2*b^3)

________________________________________________________________________________________

Rubi [A]  time = 0.231857, antiderivative size = 148, normalized size of antiderivative = 1., number of steps used = 15, number of rules used = 12, integrand size = 18, $$\frac{\text{number of rules}}{\text{integrand size}}$$ = 0.667, Rules used = {2620, 14, 5462, 3720, 3475, 30, 2551, 12, 4182, 2531, 2282, 6589} $\frac{x \text{PolyLog}\left (2,-e^{2 a+2 b x}\right )}{b^2}-\frac{x \text{PolyLog}\left (2,e^{2 a+2 b x}\right )}{b^2}-\frac{\text{PolyLog}\left (3,-e^{2 a+2 b x}\right )}{2 b^3}+\frac{\text{PolyLog}\left (3,e^{2 a+2 b x}\right )}{2 b^3}-\frac{x \coth (a+b x)}{b^2}+\frac{\log (\sinh (a+b x))}{b^3}+\frac{2 x^2 \tanh ^{-1}\left (e^{2 a+2 b x}\right )}{b}-\frac{x^2 \coth ^2(a+b x)}{2 b}+\frac{x^2}{2 b}$

Antiderivative was successfully veriﬁed.

[In]

Int[x^2*Csch[a + b*x]^3*Sech[a + b*x],x]

[Out]

x^2/(2*b) + (2*x^2*ArcTanh[E^(2*a + 2*b*x)])/b - (x*Coth[a + b*x])/b^2 - (x^2*Coth[a + b*x]^2)/(2*b) + Log[Sin
h[a + b*x]]/b^3 + (x*PolyLog[2, -E^(2*a + 2*b*x)])/b^2 - (x*PolyLog[2, E^(2*a + 2*b*x)])/b^2 - PolyLog[3, -E^(
2*a + 2*b*x)]/(2*b^3) + PolyLog[3, E^(2*a + 2*b*x)]/(2*b^3)

Rule 2620

Int[csc[(e_.) + (f_.)*(x_)]^(m_.)*sec[(e_.) + (f_.)*(x_)]^(n_.), x_Symbol] :> Dist[1/f, Subst[Int[(1 + x^2)^((
m + n)/2 - 1)/x^m, x], x, Tan[e + f*x]], x] /; FreeQ[{e, f}, x] && IntegersQ[m, n, (m + n)/2]

Rule 14

Int[(u_)*((c_.)*(x_))^(m_.), x_Symbol] :> Int[ExpandIntegrand[(c*x)^m*u, x], x] /; FreeQ[{c, m}, x] && SumQ[u]
&&  !LinearQ[u, x] &&  !MatchQ[u, (a_) + (b_.)*(v_) /; FreeQ[{a, b}, x] && InverseFunctionQ[v]]

Rule 5462

Int[Csch[(a_.) + (b_.)*(x_)]^(n_.)*((c_.) + (d_.)*(x_))^(m_.)*Sech[(a_.) + (b_.)*(x_)]^(p_.), x_Symbol] :> Wit
h[{u = IntHide[Csch[a + b*x]^n*Sech[a + b*x]^p, x]}, Dist[(c + d*x)^m, u, x] - Dist[d*m, Int[(c + d*x)^(m - 1)
*u, x], x]] /; FreeQ[{a, b, c, d}, x] && IntegersQ[n, p] && GtQ[m, 0] && NeQ[n, p]

Rule 3720

Int[((c_.) + (d_.)*(x_))^(m_.)*((b_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[(b*(c + d*x)^m*(b*Tan[e
+ f*x])^(n - 1))/(f*(n - 1)), x] + (-Dist[(b*d*m)/(f*(n - 1)), Int[(c + d*x)^(m - 1)*(b*Tan[e + f*x])^(n - 1)
, x], x] - Dist[b^2, Int[(c + d*x)^m*(b*Tan[e + f*x])^(n - 2), x], x]) /; FreeQ[{b, c, d, e, f}, x] && GtQ[n,
1] && GtQ[m, 0]

Rule 3475

Int[tan[(c_.) + (d_.)*(x_)], x_Symbol] :> -Simp[Log[RemoveContent[Cos[c + d*x], x]]/d, x] /; FreeQ[{c, d}, x]

Rule 30

Int[(x_)^(m_.), x_Symbol] :> Simp[x^(m + 1)/(m + 1), x] /; FreeQ[m, x] && NeQ[m, -1]

Rule 2551

Int[Log[u_]*((a_.) + (b_.)*(x_))^(m_.), x_Symbol] :> Simp[((a + b*x)^(m + 1)*Log[u])/(b*(m + 1)), x] - Dist[1/
(b*(m + 1)), Int[SimplifyIntegrand[((a + b*x)^(m + 1)*D[u, x])/u, x], x], x] /; FreeQ[{a, b, m}, x] && Inverse
FunctionFreeQ[u, x] && NeQ[m, -1]

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 4182

Int[csc[(e_.) + (Complex[0, fz_])*(f_.)*(x_)]*((c_.) + (d_.)*(x_))^(m_.), x_Symbol] :> Simp[(-2*(c + d*x)^m*Ar
cTanh[E^(-(I*e) + f*fz*x)])/(f*fz*I), x] + (-Dist[(d*m)/(f*fz*I), Int[(c + d*x)^(m - 1)*Log[1 - E^(-(I*e) + f*
fz*x)], x], x] + Dist[(d*m)/(f*fz*I), Int[(c + d*x)^(m - 1)*Log[1 + E^(-(I*e) + f*fz*x)], x], x]) /; FreeQ[{c,
d, e, f, fz}, x] && IGtQ[m, 0]

Rule 2531

Int[Log[1 + (e_.)*((F_)^((c_.)*((a_.) + (b_.)*(x_))))^(n_.)]*((f_.) + (g_.)*(x_))^(m_.), x_Symbol] :> -Simp[((
f + g*x)^m*PolyLog[2, -(e*(F^(c*(a + b*x)))^n)])/(b*c*n*Log[F]), x] + Dist[(g*m)/(b*c*n*Log[F]), Int[(f + g*x)
^(m - 1)*PolyLog[2, -(e*(F^(c*(a + b*x)))^n)], x], x] /; FreeQ[{F, a, b, c, e, f, g, n}, x] && GtQ[m, 0]

Rule 2282

Int[u_, x_Symbol] :> With[{v = FunctionOfExponential[u, x]}, Dist[v/D[v, x], Subst[Int[FunctionOfExponentialFu
nction[u, x]/x, x], x, v], x]] /; FunctionOfExponentialQ[u, x] &&  !MatchQ[u, (w_)*((a_.)*(v_)^(n_))^(m_) /; F
reeQ[{a, m, n}, x] && IntegerQ[m*n]] &&  !MatchQ[u, E^((c_.)*((a_.) + (b_.)*x))*(F_)[v_] /; FreeQ[{a, b, c}, x
] && InverseFunctionQ[F[x]]]

Rule 6589

Int[PolyLog[n_, (c_.)*((a_.) + (b_.)*(x_))^(p_.)]/((d_.) + (e_.)*(x_)), x_Symbol] :> Simp[PolyLog[n + 1, c*(a
+ b*x)^p]/(e*p), x] /; FreeQ[{a, b, c, d, e, n, p}, x] && EqQ[b*d, a*e]

Rubi steps

\begin{align*} \int x^2 \text{csch}^3(a+b x) \text{sech}(a+b x) \, dx &=-\frac{x^2 \coth ^2(a+b x)}{2 b}-\frac{x^2 \log (\tanh (a+b x))}{b}-2 \int x \left (-\frac{\coth ^2(a+b x)}{2 b}-\frac{\log (\tanh (a+b x))}{b}\right ) \, dx\\ &=-\frac{x^2 \coth ^2(a+b x)}{2 b}-\frac{x^2 \log (\tanh (a+b x))}{b}-2 \int \left (-\frac{x \coth ^2(a+b x)}{2 b}-\frac{x \log (\tanh (a+b x))}{b}\right ) \, dx\\ &=-\frac{x^2 \coth ^2(a+b x)}{2 b}-\frac{x^2 \log (\tanh (a+b x))}{b}+\frac{\int x \coth ^2(a+b x) \, dx}{b}+\frac{2 \int x \log (\tanh (a+b x)) \, dx}{b}\\ &=-\frac{x \coth (a+b x)}{b^2}-\frac{x^2 \coth ^2(a+b x)}{2 b}+\frac{\int \coth (a+b x) \, dx}{b^2}+\frac{\int x \, dx}{b}-\frac{\int 2 b x^2 \text{csch}(2 a+2 b x) \, dx}{b}\\ &=\frac{x^2}{2 b}-\frac{x \coth (a+b x)}{b^2}-\frac{x^2 \coth ^2(a+b x)}{2 b}+\frac{\log (\sinh (a+b x))}{b^3}-2 \int x^2 \text{csch}(2 a+2 b x) \, dx\\ &=\frac{x^2}{2 b}+\frac{2 x^2 \tanh ^{-1}\left (e^{2 a+2 b x}\right )}{b}-\frac{x \coth (a+b x)}{b^2}-\frac{x^2 \coth ^2(a+b x)}{2 b}+\frac{\log (\sinh (a+b x))}{b^3}+\frac{2 \int x \log \left (1-e^{2 a+2 b x}\right ) \, dx}{b}-\frac{2 \int x \log \left (1+e^{2 a+2 b x}\right ) \, dx}{b}\\ &=\frac{x^2}{2 b}+\frac{2 x^2 \tanh ^{-1}\left (e^{2 a+2 b x}\right )}{b}-\frac{x \coth (a+b x)}{b^2}-\frac{x^2 \coth ^2(a+b x)}{2 b}+\frac{\log (\sinh (a+b x))}{b^3}+\frac{x \text{Li}_2\left (-e^{2 a+2 b x}\right )}{b^2}-\frac{x \text{Li}_2\left (e^{2 a+2 b x}\right )}{b^2}-\frac{\int \text{Li}_2\left (-e^{2 a+2 b x}\right ) \, dx}{b^2}+\frac{\int \text{Li}_2\left (e^{2 a+2 b x}\right ) \, dx}{b^2}\\ &=\frac{x^2}{2 b}+\frac{2 x^2 \tanh ^{-1}\left (e^{2 a+2 b x}\right )}{b}-\frac{x \coth (a+b x)}{b^2}-\frac{x^2 \coth ^2(a+b x)}{2 b}+\frac{\log (\sinh (a+b x))}{b^3}+\frac{x \text{Li}_2\left (-e^{2 a+2 b x}\right )}{b^2}-\frac{x \text{Li}_2\left (e^{2 a+2 b x}\right )}{b^2}-\frac{\operatorname{Subst}\left (\int \frac{\text{Li}_2(-x)}{x} \, dx,x,e^{2 a+2 b x}\right )}{2 b^3}+\frac{\operatorname{Subst}\left (\int \frac{\text{Li}_2(x)}{x} \, dx,x,e^{2 a+2 b x}\right )}{2 b^3}\\ &=\frac{x^2}{2 b}+\frac{2 x^2 \tanh ^{-1}\left (e^{2 a+2 b x}\right )}{b}-\frac{x \coth (a+b x)}{b^2}-\frac{x^2 \coth ^2(a+b x)}{2 b}+\frac{\log (\sinh (a+b x))}{b^3}+\frac{x \text{Li}_2\left (-e^{2 a+2 b x}\right )}{b^2}-\frac{x \text{Li}_2\left (e^{2 a+2 b x}\right )}{b^2}-\frac{\text{Li}_3\left (-e^{2 a+2 b x}\right )}{2 b^3}+\frac{\text{Li}_3\left (e^{2 a+2 b x}\right )}{2 b^3}\\ \end{align*}

Mathematica [B]  time = 4.50804, size = 369, normalized size = 2.49 $\frac{1}{6} \left (-\frac{2 e^{2 a} \left (-6 \left (1-e^{-2 a}\right ) \left (b x \text{PolyLog}\left (2,-e^{-a-b x}\right )+\text{PolyLog}\left (3,-e^{-a-b x}\right )\right )-6 \left (1-e^{-2 a}\right ) \left (b x \text{PolyLog}\left (2,e^{-a-b x}\right )+\text{PolyLog}\left (3,e^{-a-b x}\right )\right )-2 e^{-2 a} b^3 x^3+3 e^{-2 a} \left (e^{2 a}-1\right ) b^2 x^2 \log \left (1-e^{-a-b x}\right )+3 e^{-2 a} \left (e^{2 a}-1\right ) b^2 x^2 \log \left (e^{-a-b x}+1\right )+6 e^{-2 a} b x+3 \left (1-e^{-2 a}\right ) \left (b x-\log \left (1-e^{a+b x}\right )\right )+3 \left (1-e^{-2 a}\right ) \left (b x-\log \left (e^{a+b x}+1\right )\right )\right )}{\left (e^{2 a}-1\right ) b^3}+\frac{-6 b x \text{PolyLog}\left (2,-e^{-2 (a+b x)}\right )-3 \text{PolyLog}\left (3,-e^{-2 (a+b x)}\right )+2 b^2 x^2 \left (\frac{2 b x}{e^{2 a}+1}+3 \log \left (e^{-2 (a+b x)}+1\right )\right )}{b^3}+\frac{6 x \text{csch}(a) \sinh (b x) \text{csch}(a+b x)}{b^2}-\frac{3 x^2 \text{csch}^2(a+b x)}{b}-2 x^3 \text{csch}(a) \text{sech}(a)\right )$

Antiderivative was successfully veriﬁed.

[In]

Integrate[x^2*Csch[a + b*x]^3*Sech[a + b*x],x]

[Out]

((-3*x^2*Csch[a + b*x]^2)/b - (2*E^(2*a)*((6*b*x)/E^(2*a) - (2*b^3*x^3)/E^(2*a) + (3*b^2*(-1 + E^(2*a))*x^2*Lo
g[1 - E^(-a - b*x)])/E^(2*a) + (3*b^2*(-1 + E^(2*a))*x^2*Log[1 + E^(-a - b*x)])/E^(2*a) + 3*(1 - E^(-2*a))*(b*
x - Log[1 - E^(a + b*x)]) + 3*(1 - E^(-2*a))*(b*x - Log[1 + E^(a + b*x)]) - 6*(1 - E^(-2*a))*(b*x*PolyLog[2, -
E^(-a - b*x)] + PolyLog[3, -E^(-a - b*x)]) - 6*(1 - E^(-2*a))*(b*x*PolyLog[2, E^(-a - b*x)] + PolyLog[3, E^(-a
- b*x)])))/(b^3*(-1 + E^(2*a))) + (2*b^2*x^2*((2*b*x)/(1 + E^(2*a)) + 3*Log[1 + E^(-2*(a + b*x))]) - 6*b*x*Po
lyLog[2, -E^(-2*(a + b*x))] - 3*PolyLog[3, -E^(-2*(a + b*x))])/b^3 - 2*x^3*Csch[a]*Sech[a] + (6*x*Csch[a]*Csch
[a + b*x]*Sinh[b*x])/b^2)/6

________________________________________________________________________________________

Maple [A]  time = 0.05, size = 266, normalized size = 1.8 \begin{align*} -2\,{\frac{x \left ( bx{{\rm e}^{2\,bx+2\,a}}+{{\rm e}^{2\,bx+2\,a}}-1 \right ) }{{b}^{2} \left ({{\rm e}^{2\,bx+2\,a}}-1 \right ) ^{2}}}-{\frac{\ln \left ( 1+{{\rm e}^{bx+a}} \right ){x}^{2}}{b}}-2\,{\frac{x{\it polylog} \left ( 2,-{{\rm e}^{bx+a}} \right ) }{{b}^{2}}}+{\frac{{x}^{2}\ln \left ( 1+{{\rm e}^{2\,bx+2\,a}} \right ) }{b}}+{\frac{x{\it polylog} \left ( 2,-{{\rm e}^{2\,bx+2\,a}} \right ) }{{b}^{2}}}-{\frac{\ln \left ( 1-{{\rm e}^{bx+a}} \right ){x}^{2}}{b}}-2\,{\frac{x{\it polylog} \left ( 2,{{\rm e}^{bx+a}} \right ) }{{b}^{2}}}+2\,{\frac{{\it polylog} \left ( 3,-{{\rm e}^{bx+a}} \right ) }{{b}^{3}}}-{\frac{{\it polylog} \left ( 3,-{{\rm e}^{2\,bx+2\,a}} \right ) }{2\,{b}^{3}}}+2\,{\frac{{\it polylog} \left ( 3,{{\rm e}^{bx+a}} \right ) }{{b}^{3}}}-2\,{\frac{\ln \left ({{\rm e}^{bx+a}} \right ) }{{b}^{3}}}+{\frac{\ln \left ( 1+{{\rm e}^{bx+a}} \right ) }{{b}^{3}}}+{\frac{\ln \left ({{\rm e}^{bx+a}}-1 \right ) }{{b}^{3}}}+{\frac{\ln \left ( 1-{{\rm e}^{bx+a}} \right ){a}^{2}}{{b}^{3}}}-{\frac{{a}^{2}\ln \left ({{\rm e}^{bx+a}}-1 \right ) }{{b}^{3}}} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

int(x^2*csch(b*x+a)^3*sech(b*x+a),x)

[Out]

-2*x*(b*x*exp(2*b*x+2*a)+exp(2*b*x+2*a)-1)/b^2/(exp(2*b*x+2*a)-1)^2-1/b*ln(1+exp(b*x+a))*x^2-2*x*polylog(2,-ex
p(b*x+a))/b^2+x^2*ln(1+exp(2*b*x+2*a))/b+x*polylog(2,-exp(2*b*x+2*a))/b^2-1/b*ln(1-exp(b*x+a))*x^2-2*x*polylog
(2,exp(b*x+a))/b^2+2*polylog(3,-exp(b*x+a))/b^3-1/2*polylog(3,-exp(2*b*x+2*a))/b^3+2*polylog(3,exp(b*x+a))/b^3
-2/b^3*ln(exp(b*x+a))+1/b^3*ln(1+exp(b*x+a))+1/b^3*ln(exp(b*x+a)-1)+1/b^3*ln(1-exp(b*x+a))*a^2-1/b^3*a^2*ln(ex
p(b*x+a)-1)

________________________________________________________________________________________

Maxima [A]  time = 1.17773, size = 328, normalized size = 2.22 \begin{align*} -\frac{2 \,{\left ({\left (b x^{2} e^{\left (2 \, a\right )} + x e^{\left (2 \, a\right )}\right )} e^{\left (2 \, b x\right )} - x\right )}}{b^{2} e^{\left (4 \, b x + 4 \, a\right )} - 2 \, b^{2} e^{\left (2 \, b x + 2 \, a\right )} + b^{2}} - \frac{2 \, x}{b^{2}} + \frac{2 \, b^{2} x^{2} \log \left (e^{\left (2 \, b x + 2 \, a\right )} + 1\right ) + 2 \, b x{\rm Li}_2\left (-e^{\left (2 \, b x + 2 \, a\right )}\right ) -{\rm Li}_{3}(-e^{\left (2 \, b x + 2 \, a\right )})}{2 \, b^{3}} - \frac{b^{2} x^{2} \log \left (e^{\left (b x + a\right )} + 1\right ) + 2 \, b x{\rm Li}_2\left (-e^{\left (b x + a\right )}\right ) - 2 \,{\rm Li}_{3}(-e^{\left (b x + a\right )})}{b^{3}} - \frac{b^{2} x^{2} \log \left (-e^{\left (b x + a\right )} + 1\right ) + 2 \, b x{\rm Li}_2\left (e^{\left (b x + a\right )}\right ) - 2 \,{\rm Li}_{3}(e^{\left (b x + a\right )})}{b^{3}} + \frac{\log \left (e^{\left (b x + a\right )} + 1\right )}{b^{3}} + \frac{\log \left (e^{\left (b x + a\right )} - 1\right )}{b^{3}} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2*csch(b*x+a)^3*sech(b*x+a),x, algorithm="maxima")

[Out]

-2*((b*x^2*e^(2*a) + x*e^(2*a))*e^(2*b*x) - x)/(b^2*e^(4*b*x + 4*a) - 2*b^2*e^(2*b*x + 2*a) + b^2) - 2*x/b^2 +
1/2*(2*b^2*x^2*log(e^(2*b*x + 2*a) + 1) + 2*b*x*dilog(-e^(2*b*x + 2*a)) - polylog(3, -e^(2*b*x + 2*a)))/b^3 -
(b^2*x^2*log(e^(b*x + a) + 1) + 2*b*x*dilog(-e^(b*x + a)) - 2*polylog(3, -e^(b*x + a)))/b^3 - (b^2*x^2*log(-e
^(b*x + a) + 1) + 2*b*x*dilog(e^(b*x + a)) - 2*polylog(3, e^(b*x + a)))/b^3 + log(e^(b*x + a) + 1)/b^3 + log(e
^(b*x + a) - 1)/b^3

________________________________________________________________________________________

Fricas [C]  time = 2.62374, size = 6546, normalized size = 44.23 \begin{align*} \text{result too large to display} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2*csch(b*x+a)^3*sech(b*x+a),x, algorithm="fricas")

[Out]

-(2*(b*x + a)*cosh(b*x + a)^4 + 8*(b*x + a)*cosh(b*x + a)*sinh(b*x + a)^3 + 2*(b*x + a)*sinh(b*x + a)^4 + 2*(b
^2*x^2 - b*x - 2*a)*cosh(b*x + a)^2 + 2*(b^2*x^2 + 6*(b*x + a)*cosh(b*x + a)^2 - b*x - 2*a)*sinh(b*x + a)^2 +
2*(b*x*cosh(b*x + a)^4 + 4*b*x*cosh(b*x + a)*sinh(b*x + a)^3 + b*x*sinh(b*x + a)^4 - 2*b*x*cosh(b*x + a)^2 + 2
*(3*b*x*cosh(b*x + a)^2 - b*x)*sinh(b*x + a)^2 + b*x + 4*(b*x*cosh(b*x + a)^3 - b*x*cosh(b*x + a))*sinh(b*x +
a))*dilog(cosh(b*x + a) + sinh(b*x + a)) - 2*(b*x*cosh(b*x + a)^4 + 4*b*x*cosh(b*x + a)*sinh(b*x + a)^3 + b*x*
sinh(b*x + a)^4 - 2*b*x*cosh(b*x + a)^2 + 2*(3*b*x*cosh(b*x + a)^2 - b*x)*sinh(b*x + a)^2 + b*x + 4*(b*x*cosh(
b*x + a)^3 - b*x*cosh(b*x + a))*sinh(b*x + a))*dilog(I*cosh(b*x + a) + I*sinh(b*x + a)) - 2*(b*x*cosh(b*x + a)
^4 + 4*b*x*cosh(b*x + a)*sinh(b*x + a)^3 + b*x*sinh(b*x + a)^4 - 2*b*x*cosh(b*x + a)^2 + 2*(3*b*x*cosh(b*x + a
)^2 - b*x)*sinh(b*x + a)^2 + b*x + 4*(b*x*cosh(b*x + a)^3 - b*x*cosh(b*x + a))*sinh(b*x + a))*dilog(-I*cosh(b*
x + a) - I*sinh(b*x + a)) + 2*(b*x*cosh(b*x + a)^4 + 4*b*x*cosh(b*x + a)*sinh(b*x + a)^3 + b*x*sinh(b*x + a)^4
- 2*b*x*cosh(b*x + a)^2 + 2*(3*b*x*cosh(b*x + a)^2 - b*x)*sinh(b*x + a)^2 + b*x + 4*(b*x*cosh(b*x + a)^3 - b*
x*cosh(b*x + a))*sinh(b*x + a))*dilog(-cosh(b*x + a) - sinh(b*x + a)) + ((b^2*x^2 - 1)*cosh(b*x + a)^4 + 4*(b^
2*x^2 - 1)*cosh(b*x + a)*sinh(b*x + a)^3 + (b^2*x^2 - 1)*sinh(b*x + a)^4 + b^2*x^2 - 2*(b^2*x^2 - 1)*cosh(b*x
+ a)^2 - 2*(b^2*x^2 - 3*(b^2*x^2 - 1)*cosh(b*x + a)^2 - 1)*sinh(b*x + a)^2 + 4*((b^2*x^2 - 1)*cosh(b*x + a)^3
- (b^2*x^2 - 1)*cosh(b*x + a))*sinh(b*x + a) - 1)*log(cosh(b*x + a) + sinh(b*x + a) + 1) - (a^2*cosh(b*x + a)^
4 + 4*a^2*cosh(b*x + a)*sinh(b*x + a)^3 + a^2*sinh(b*x + a)^4 - 2*a^2*cosh(b*x + a)^2 + 2*(3*a^2*cosh(b*x + a)
^2 - a^2)*sinh(b*x + a)^2 + a^2 + 4*(a^2*cosh(b*x + a)^3 - a^2*cosh(b*x + a))*sinh(b*x + a))*log(cosh(b*x + a)
+ sinh(b*x + a) + I) - (a^2*cosh(b*x + a)^4 + 4*a^2*cosh(b*x + a)*sinh(b*x + a)^3 + a^2*sinh(b*x + a)^4 - 2*a
^2*cosh(b*x + a)^2 + 2*(3*a^2*cosh(b*x + a)^2 - a^2)*sinh(b*x + a)^2 + a^2 + 4*(a^2*cosh(b*x + a)^3 - a^2*cosh
(b*x + a))*sinh(b*x + a))*log(cosh(b*x + a) + sinh(b*x + a) - I) + ((a^2 - 1)*cosh(b*x + a)^4 + 4*(a^2 - 1)*co
sh(b*x + a)*sinh(b*x + a)^3 + (a^2 - 1)*sinh(b*x + a)^4 - 2*(a^2 - 1)*cosh(b*x + a)^2 + 2*(3*(a^2 - 1)*cosh(b*
x + a)^2 - a^2 + 1)*sinh(b*x + a)^2 + a^2 + 4*((a^2 - 1)*cosh(b*x + a)^3 - (a^2 - 1)*cosh(b*x + a))*sinh(b*x +
a) - 1)*log(cosh(b*x + a) + sinh(b*x + a) - 1) - ((b^2*x^2 - a^2)*cosh(b*x + a)^4 + 4*(b^2*x^2 - a^2)*cosh(b*
x + a)*sinh(b*x + a)^3 + (b^2*x^2 - a^2)*sinh(b*x + a)^4 + b^2*x^2 - 2*(b^2*x^2 - a^2)*cosh(b*x + a)^2 - 2*(b^
2*x^2 - 3*(b^2*x^2 - a^2)*cosh(b*x + a)^2 - a^2)*sinh(b*x + a)^2 - a^2 + 4*((b^2*x^2 - a^2)*cosh(b*x + a)^3 -
(b^2*x^2 - a^2)*cosh(b*x + a))*sinh(b*x + a))*log(I*cosh(b*x + a) + I*sinh(b*x + a) + 1) - ((b^2*x^2 - a^2)*co
sh(b*x + a)^4 + 4*(b^2*x^2 - a^2)*cosh(b*x + a)*sinh(b*x + a)^3 + (b^2*x^2 - a^2)*sinh(b*x + a)^4 + b^2*x^2 -
2*(b^2*x^2 - a^2)*cosh(b*x + a)^2 - 2*(b^2*x^2 - 3*(b^2*x^2 - a^2)*cosh(b*x + a)^2 - a^2)*sinh(b*x + a)^2 - a^
2 + 4*((b^2*x^2 - a^2)*cosh(b*x + a)^3 - (b^2*x^2 - a^2)*cosh(b*x + a))*sinh(b*x + a))*log(-I*cosh(b*x + a) -
I*sinh(b*x + a) + 1) + ((b^2*x^2 - a^2)*cosh(b*x + a)^4 + 4*(b^2*x^2 - a^2)*cosh(b*x + a)*sinh(b*x + a)^3 + (b
^2*x^2 - a^2)*sinh(b*x + a)^4 + b^2*x^2 - 2*(b^2*x^2 - a^2)*cosh(b*x + a)^2 - 2*(b^2*x^2 - 3*(b^2*x^2 - a^2)*c
osh(b*x + a)^2 - a^2)*sinh(b*x + a)^2 - a^2 + 4*((b^2*x^2 - a^2)*cosh(b*x + a)^3 - (b^2*x^2 - a^2)*cosh(b*x +
a))*sinh(b*x + a))*log(-cosh(b*x + a) - sinh(b*x + a) + 1) - 2*(cosh(b*x + a)^4 + 4*cosh(b*x + a)*sinh(b*x + a
)^3 + sinh(b*x + a)^4 + 2*(3*cosh(b*x + a)^2 - 1)*sinh(b*x + a)^2 - 2*cosh(b*x + a)^2 + 4*(cosh(b*x + a)^3 - c
osh(b*x + a))*sinh(b*x + a) + 1)*polylog(3, cosh(b*x + a) + sinh(b*x + a)) + 2*(cosh(b*x + a)^4 + 4*cosh(b*x +
a)*sinh(b*x + a)^3 + sinh(b*x + a)^4 + 2*(3*cosh(b*x + a)^2 - 1)*sinh(b*x + a)^2 - 2*cosh(b*x + a)^2 + 4*(cos
h(b*x + a)^3 - cosh(b*x + a))*sinh(b*x + a) + 1)*polylog(3, I*cosh(b*x + a) + I*sinh(b*x + a)) + 2*(cosh(b*x +
a)^4 + 4*cosh(b*x + a)*sinh(b*x + a)^3 + sinh(b*x + a)^4 + 2*(3*cosh(b*x + a)^2 - 1)*sinh(b*x + a)^2 - 2*cosh
(b*x + a)^2 + 4*(cosh(b*x + a)^3 - cosh(b*x + a))*sinh(b*x + a) + 1)*polylog(3, -I*cosh(b*x + a) - I*sinh(b*x
+ a)) - 2*(cosh(b*x + a)^4 + 4*cosh(b*x + a)*sinh(b*x + a)^3 + sinh(b*x + a)^4 + 2*(3*cosh(b*x + a)^2 - 1)*sin
h(b*x + a)^2 - 2*cosh(b*x + a)^2 + 4*(cosh(b*x + a)^3 - cosh(b*x + a))*sinh(b*x + a) + 1)*polylog(3, -cosh(b*x
+ a) - sinh(b*x + a)) + 4*(2*(b*x + a)*cosh(b*x + a)^3 + (b^2*x^2 - b*x - 2*a)*cosh(b*x + a))*sinh(b*x + a) +
2*a)/(b^3*cosh(b*x + a)^4 + 4*b^3*cosh(b*x + a)*sinh(b*x + a)^3 + b^3*sinh(b*x + a)^4 - 2*b^3*cosh(b*x + a)^2
+ b^3 + 2*(3*b^3*cosh(b*x + a)^2 - b^3)*sinh(b*x + a)^2 + 4*(b^3*cosh(b*x + a)^3 - b^3*cosh(b*x + a))*sinh(b*
x + a))

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int x^{2} \operatorname{csch}^{3}{\left (a + b x \right )} \operatorname{sech}{\left (a + b x \right )}\, dx \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**2*csch(b*x+a)**3*sech(b*x+a),x)

[Out]

Integral(x**2*csch(a + b*x)**3*sech(a + b*x), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int x^{2} \operatorname{csch}\left (b x + a\right )^{3} \operatorname{sech}\left (b x + a\right )\,{d x} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2*csch(b*x+a)^3*sech(b*x+a),x, algorithm="giac")

[Out]

integrate(x^2*csch(b*x + a)^3*sech(b*x + a), x)