### 3.396 $$\int \frac{\tanh ^3(a+b x)}{x^2} \, dx$$

Optimal. Leaf size=14 $\text{Unintegrable}\left (\frac{\tanh ^3(a+b x)}{x^2},x\right )$

[Out]

Unintegrable[Tanh[a + b*x]^3/x^2, x]

________________________________________________________________________________________

Rubi [A]  time = 0.0284037, antiderivative size = 0, normalized size of antiderivative = 0., number of steps used = 0, number of rules used = 0, integrand size = 0, $$\frac{\text{number of rules}}{\text{integrand size}}$$ = 0., Rules used = {} $\int \frac{\tanh ^3(a+b x)}{x^2} \, dx$

Veriﬁcation is Not applicable to the result.

[In]

Int[Tanh[a + b*x]^3/x^2,x]

[Out]

Defer[Int][Tanh[a + b*x]^3/x^2, x]

Rubi steps

\begin{align*} \int \frac{\tanh ^3(a+b x)}{x^2} \, dx &=\int \frac{\tanh ^3(a+b x)}{x^2} \, dx\\ \end{align*}

Mathematica [A]  time = 7.95668, size = 0, normalized size = 0. $\int \frac{\tanh ^3(a+b x)}{x^2} \, dx$

Veriﬁcation is Not applicable to the result.

[In]

Integrate[Tanh[a + b*x]^3/x^2,x]

[Out]

Integrate[Tanh[a + b*x]^3/x^2, x]

________________________________________________________________________________________

Maple [A]  time = 0.221, size = 0, normalized size = 0. \begin{align*} \int{\frac{ \left ({\rm sech} \left (bx+a\right ) \right ) ^{3} \left ( \sinh \left ( bx+a \right ) \right ) ^{3}}{{x}^{2}}}\, dx \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

int(sech(b*x+a)^3*sinh(b*x+a)^3/x^2,x)

[Out]

int(sech(b*x+a)^3*sinh(b*x+a)^3/x^2,x)

________________________________________________________________________________________

Maxima [A]  time = 0., size = 0, normalized size = 0. \begin{align*} -\frac{b^{2} x^{2} e^{\left (4 \, b x + 4 \, a\right )} + b^{2} x^{2} + 2 \,{\left (b^{2} x^{2} e^{\left (2 \, a\right )} - b x e^{\left (2 \, a\right )} + e^{\left (2 \, a\right )}\right )} e^{\left (2 \, b x\right )} + 2}{b^{2} x^{3} e^{\left (4 \, b x + 4 \, a\right )} + 2 \, b^{2} x^{3} e^{\left (2 \, b x + 2 \, a\right )} + b^{2} x^{3}} - \int \frac{2 \,{\left (b^{2} x^{2} + 3\right )}}{b^{2} x^{4} e^{\left (2 \, b x + 2 \, a\right )} + b^{2} x^{4}}\,{d x} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(sech(b*x+a)^3*sinh(b*x+a)^3/x^2,x, algorithm="maxima")

[Out]

-(b^2*x^2*e^(4*b*x + 4*a) + b^2*x^2 + 2*(b^2*x^2*e^(2*a) - b*x*e^(2*a) + e^(2*a))*e^(2*b*x) + 2)/(b^2*x^3*e^(4
*b*x + 4*a) + 2*b^2*x^3*e^(2*b*x + 2*a) + b^2*x^3) - integrate(2*(b^2*x^2 + 3)/(b^2*x^4*e^(2*b*x + 2*a) + b^2*
x^4), x)

________________________________________________________________________________________

Fricas [A]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{\operatorname{sech}\left (b x + a\right )^{3} \sinh \left (b x + a\right )^{3}}{x^{2}}, x\right ) \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(sech(b*x+a)^3*sinh(b*x+a)^3/x^2,x, algorithm="fricas")

[Out]

integral(sech(b*x + a)^3*sinh(b*x + a)^3/x^2, x)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(sech(b*x+a)**3*sinh(b*x+a)**3/x**2,x)

[Out]

Timed out

________________________________________________________________________________________

Giac [A]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\operatorname{sech}\left (b x + a\right )^{3} \sinh \left (b x + a\right )^{3}}{x^{2}}\,{d x} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(sech(b*x+a)^3*sinh(b*x+a)^3/x^2,x, algorithm="giac")

[Out]

integrate(sech(b*x + a)^3*sinh(b*x + a)^3/x^2, x)