3.271 \(\int x \cosh ^3(a+b x) \sinh (a+b x) \, dx\)

Optimal. Leaf size=65 \[ -\frac{\sinh (a+b x) \cosh ^3(a+b x)}{16 b^2}-\frac{3 \sinh (a+b x) \cosh (a+b x)}{32 b^2}+\frac{x \cosh ^4(a+b x)}{4 b}-\frac{3 x}{32 b} \]

[Out]

(-3*x)/(32*b) + (x*Cosh[a + b*x]^4)/(4*b) - (3*Cosh[a + b*x]*Sinh[a + b*x])/(32*b^2) - (Cosh[a + b*x]^3*Sinh[a
 + b*x])/(16*b^2)

________________________________________________________________________________________

Rubi [A]  time = 0.042589, antiderivative size = 65, normalized size of antiderivative = 1., number of steps used = 4, number of rules used = 3, integrand size = 16, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.188, Rules used = {5373, 2635, 8} \[ -\frac{\sinh (a+b x) \cosh ^3(a+b x)}{16 b^2}-\frac{3 \sinh (a+b x) \cosh (a+b x)}{32 b^2}+\frac{x \cosh ^4(a+b x)}{4 b}-\frac{3 x}{32 b} \]

Antiderivative was successfully verified.

[In]

Int[x*Cosh[a + b*x]^3*Sinh[a + b*x],x]

[Out]

(-3*x)/(32*b) + (x*Cosh[a + b*x]^4)/(4*b) - (3*Cosh[a + b*x]*Sinh[a + b*x])/(32*b^2) - (Cosh[a + b*x]^3*Sinh[a
 + b*x])/(16*b^2)

Rule 5373

Int[Cosh[(a_.) + (b_.)*(x_)^(n_.)]^(p_.)*(x_)^(m_.)*Sinh[(a_.) + (b_.)*(x_)^(n_.)], x_Symbol] :> Simp[(x^(m -
n + 1)*Cosh[a + b*x^n]^(p + 1))/(b*n*(p + 1)), x] - Dist[(m - n + 1)/(b*n*(p + 1)), Int[x^(m - n)*Cosh[a + b*x
^n]^(p + 1), x], x] /; FreeQ[{a, b, p}, x] && LtQ[0, n, m + 1] && NeQ[p, -1]

Rule 2635

Int[((b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> -Simp[(b*Cos[c + d*x]*(b*Sin[c + d*x])^(n - 1))/(d*n),
x] + Dist[(b^2*(n - 1))/n, Int[(b*Sin[c + d*x])^(n - 2), x], x] /; FreeQ[{b, c, d}, x] && GtQ[n, 1] && Integer
Q[2*n]

Rule 8

Int[a_, x_Symbol] :> Simp[a*x, x] /; FreeQ[a, x]

Rubi steps

\begin{align*} \int x \cosh ^3(a+b x) \sinh (a+b x) \, dx &=\frac{x \cosh ^4(a+b x)}{4 b}-\frac{\int \cosh ^4(a+b x) \, dx}{4 b}\\ &=\frac{x \cosh ^4(a+b x)}{4 b}-\frac{\cosh ^3(a+b x) \sinh (a+b x)}{16 b^2}-\frac{3 \int \cosh ^2(a+b x) \, dx}{16 b}\\ &=\frac{x \cosh ^4(a+b x)}{4 b}-\frac{3 \cosh (a+b x) \sinh (a+b x)}{32 b^2}-\frac{\cosh ^3(a+b x) \sinh (a+b x)}{16 b^2}-\frac{3 \int 1 \, dx}{32 b}\\ &=-\frac{3 x}{32 b}+\frac{x \cosh ^4(a+b x)}{4 b}-\frac{3 \cosh (a+b x) \sinh (a+b x)}{32 b^2}-\frac{\cosh ^3(a+b x) \sinh (a+b x)}{16 b^2}\\ \end{align*}

Mathematica [A]  time = 0.154184, size = 50, normalized size = 0.77 \[ -\frac{8 \sinh (2 (a+b x))+\sinh (4 (a+b x))-16 b x \cosh (2 (a+b x))-4 b x \cosh (4 (a+b x))}{128 b^2} \]

Antiderivative was successfully verified.

[In]

Integrate[x*Cosh[a + b*x]^3*Sinh[a + b*x],x]

[Out]

-(-16*b*x*Cosh[2*(a + b*x)] - 4*b*x*Cosh[4*(a + b*x)] + 8*Sinh[2*(a + b*x)] + Sinh[4*(a + b*x)])/(128*b^2)

________________________________________________________________________________________

Maple [A]  time = 0.007, size = 113, normalized size = 1.7 \begin{align*}{\frac{1}{{b}^{2}} \left ({\frac{ \left ( bx+a \right ) \left ( \sinh \left ( bx+a \right ) \right ) ^{2} \left ( \cosh \left ( bx+a \right ) \right ) ^{2}}{4}}+{\frac{ \left ( bx+a \right ) \left ( \cosh \left ( bx+a \right ) \right ) ^{2}}{4}}-{\frac{ \left ( \cosh \left ( bx+a \right ) \right ) ^{3}\sinh \left ( bx+a \right ) }{16}}-{\frac{3\,\cosh \left ( bx+a \right ) \sinh \left ( bx+a \right ) }{32}}-{\frac{3\,bx}{32}}-{\frac{3\,a}{32}}-a \left ({\frac{ \left ( \cosh \left ( bx+a \right ) \right ) ^{2} \left ( \sinh \left ( bx+a \right ) \right ) ^{2}}{4}}+{\frac{ \left ( \cosh \left ( bx+a \right ) \right ) ^{2}}{4}} \right ) \right ) } \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x*cosh(b*x+a)^3*sinh(b*x+a),x)

[Out]

1/b^2*(1/4*(b*x+a)*sinh(b*x+a)^2*cosh(b*x+a)^2+1/4*(b*x+a)*cosh(b*x+a)^2-1/16*cosh(b*x+a)^3*sinh(b*x+a)-3/32*c
osh(b*x+a)*sinh(b*x+a)-3/32*b*x-3/32*a-a*(1/4*cosh(b*x+a)^2*sinh(b*x+a)^2+1/4*cosh(b*x+a)^2))

________________________________________________________________________________________

Maxima [A]  time = 1.1851, size = 123, normalized size = 1.89 \begin{align*} \frac{{\left (4 \, b x e^{\left (4 \, a\right )} - e^{\left (4 \, a\right )}\right )} e^{\left (4 \, b x\right )}}{256 \, b^{2}} + \frac{{\left (2 \, b x e^{\left (2 \, a\right )} - e^{\left (2 \, a\right )}\right )} e^{\left (2 \, b x\right )}}{32 \, b^{2}} + \frac{{\left (2 \, b x + 1\right )} e^{\left (-2 \, b x - 2 \, a\right )}}{32 \, b^{2}} + \frac{{\left (4 \, b x + 1\right )} e^{\left (-4 \, b x - 4 \, a\right )}}{256 \, b^{2}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*cosh(b*x+a)^3*sinh(b*x+a),x, algorithm="maxima")

[Out]

1/256*(4*b*x*e^(4*a) - e^(4*a))*e^(4*b*x)/b^2 + 1/32*(2*b*x*e^(2*a) - e^(2*a))*e^(2*b*x)/b^2 + 1/32*(2*b*x + 1
)*e^(-2*b*x - 2*a)/b^2 + 1/256*(4*b*x + 1)*e^(-4*b*x - 4*a)/b^2

________________________________________________________________________________________

Fricas [A]  time = 1.80991, size = 289, normalized size = 4.45 \begin{align*} \frac{b x \cosh \left (b x + a\right )^{4} + b x \sinh \left (b x + a\right )^{4} + 4 \, b x \cosh \left (b x + a\right )^{2} - \cosh \left (b x + a\right ) \sinh \left (b x + a\right )^{3} + 2 \,{\left (3 \, b x \cosh \left (b x + a\right )^{2} + 2 \, b x\right )} \sinh \left (b x + a\right )^{2} -{\left (\cosh \left (b x + a\right )^{3} + 4 \, \cosh \left (b x + a\right )\right )} \sinh \left (b x + a\right )}{32 \, b^{2}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*cosh(b*x+a)^3*sinh(b*x+a),x, algorithm="fricas")

[Out]

1/32*(b*x*cosh(b*x + a)^4 + b*x*sinh(b*x + a)^4 + 4*b*x*cosh(b*x + a)^2 - cosh(b*x + a)*sinh(b*x + a)^3 + 2*(3
*b*x*cosh(b*x + a)^2 + 2*b*x)*sinh(b*x + a)^2 - (cosh(b*x + a)^3 + 4*cosh(b*x + a))*sinh(b*x + a))/b^2

________________________________________________________________________________________

Sympy [A]  time = 2.23581, size = 110, normalized size = 1.69 \begin{align*} \begin{cases} - \frac{3 x \sinh ^{4}{\left (a + b x \right )}}{32 b} + \frac{3 x \sinh ^{2}{\left (a + b x \right )} \cosh ^{2}{\left (a + b x \right )}}{16 b} + \frac{5 x \cosh ^{4}{\left (a + b x \right )}}{32 b} + \frac{3 \sinh ^{3}{\left (a + b x \right )} \cosh{\left (a + b x \right )}}{32 b^{2}} - \frac{5 \sinh{\left (a + b x \right )} \cosh ^{3}{\left (a + b x \right )}}{32 b^{2}} & \text{for}\: b \neq 0 \\\frac{x^{2} \sinh{\left (a \right )} \cosh ^{3}{\left (a \right )}}{2} & \text{otherwise} \end{cases} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*cosh(b*x+a)**3*sinh(b*x+a),x)

[Out]

Piecewise((-3*x*sinh(a + b*x)**4/(32*b) + 3*x*sinh(a + b*x)**2*cosh(a + b*x)**2/(16*b) + 5*x*cosh(a + b*x)**4/
(32*b) + 3*sinh(a + b*x)**3*cosh(a + b*x)/(32*b**2) - 5*sinh(a + b*x)*cosh(a + b*x)**3/(32*b**2), Ne(b, 0)), (
x**2*sinh(a)*cosh(a)**3/2, True))

________________________________________________________________________________________

Giac [A]  time = 1.15961, size = 109, normalized size = 1.68 \begin{align*} \frac{{\left (4 \, b x - 1\right )} e^{\left (4 \, b x + 4 \, a\right )}}{256 \, b^{2}} + \frac{{\left (2 \, b x - 1\right )} e^{\left (2 \, b x + 2 \, a\right )}}{32 \, b^{2}} + \frac{{\left (2 \, b x + 1\right )} e^{\left (-2 \, b x - 2 \, a\right )}}{32 \, b^{2}} + \frac{{\left (4 \, b x + 1\right )} e^{\left (-4 \, b x - 4 \, a\right )}}{256 \, b^{2}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*cosh(b*x+a)^3*sinh(b*x+a),x, algorithm="giac")

[Out]

1/256*(4*b*x - 1)*e^(4*b*x + 4*a)/b^2 + 1/32*(2*b*x - 1)*e^(2*b*x + 2*a)/b^2 + 1/32*(2*b*x + 1)*e^(-2*b*x - 2*
a)/b^2 + 1/256*(4*b*x + 1)*e^(-4*b*x - 4*a)/b^2