### 3.68 $$\int \sinh (c+d x) (a+b \tanh ^3(c+d x))^3 \, dx$$

Optimal. Leaf size=269 $\frac{9 a^2 b \sinh (c+d x)}{2 d}-\frac{9 a^2 b \tan ^{-1}(\sinh (c+d x))}{2 d}-\frac{3 a^2 b \sinh (c+d x) \tanh ^2(c+d x)}{2 d}+\frac{a^3 \cosh (c+d x)}{d}+\frac{3 a b^2 \cosh (c+d x)}{d}+\frac{3 a b^2 \text{sech}^5(c+d x)}{5 d}-\frac{3 a b^2 \text{sech}^3(c+d x)}{d}+\frac{9 a b^2 \text{sech}(c+d x)}{d}+\frac{315 b^3 \sinh (c+d x)}{128 d}-\frac{315 b^3 \tan ^{-1}(\sinh (c+d x))}{128 d}-\frac{b^3 \sinh (c+d x) \tanh ^8(c+d x)}{8 d}-\frac{3 b^3 \sinh (c+d x) \tanh ^6(c+d x)}{16 d}-\frac{21 b^3 \sinh (c+d x) \tanh ^4(c+d x)}{64 d}-\frac{105 b^3 \sinh (c+d x) \tanh ^2(c+d x)}{128 d}$

[Out]

(-9*a^2*b*ArcTan[Sinh[c + d*x]])/(2*d) - (315*b^3*ArcTan[Sinh[c + d*x]])/(128*d) + (a^3*Cosh[c + d*x])/d + (3*
a*b^2*Cosh[c + d*x])/d + (9*a*b^2*Sech[c + d*x])/d - (3*a*b^2*Sech[c + d*x]^3)/d + (3*a*b^2*Sech[c + d*x]^5)/(
5*d) + (9*a^2*b*Sinh[c + d*x])/(2*d) + (315*b^3*Sinh[c + d*x])/(128*d) - (3*a^2*b*Sinh[c + d*x]*Tanh[c + d*x]^
2)/(2*d) - (105*b^3*Sinh[c + d*x]*Tanh[c + d*x]^2)/(128*d) - (21*b^3*Sinh[c + d*x]*Tanh[c + d*x]^4)/(64*d) - (
3*b^3*Sinh[c + d*x]*Tanh[c + d*x]^6)/(16*d) - (b^3*Sinh[c + d*x]*Tanh[c + d*x]^8)/(8*d)

________________________________________________________________________________________

Rubi [A]  time = 0.24916, antiderivative size = 269, normalized size of antiderivative = 1., number of steps used = 17, number of rules used = 8, integrand size = 21, $$\frac{\text{number of rules}}{\text{integrand size}}$$ = 0.381, Rules used = {3666, 2638, 2592, 288, 321, 203, 2590, 270} $\frac{9 a^2 b \sinh (c+d x)}{2 d}-\frac{9 a^2 b \tan ^{-1}(\sinh (c+d x))}{2 d}-\frac{3 a^2 b \sinh (c+d x) \tanh ^2(c+d x)}{2 d}+\frac{a^3 \cosh (c+d x)}{d}+\frac{3 a b^2 \cosh (c+d x)}{d}+\frac{3 a b^2 \text{sech}^5(c+d x)}{5 d}-\frac{3 a b^2 \text{sech}^3(c+d x)}{d}+\frac{9 a b^2 \text{sech}(c+d x)}{d}+\frac{315 b^3 \sinh (c+d x)}{128 d}-\frac{315 b^3 \tan ^{-1}(\sinh (c+d x))}{128 d}-\frac{b^3 \sinh (c+d x) \tanh ^8(c+d x)}{8 d}-\frac{3 b^3 \sinh (c+d x) \tanh ^6(c+d x)}{16 d}-\frac{21 b^3 \sinh (c+d x) \tanh ^4(c+d x)}{64 d}-\frac{105 b^3 \sinh (c+d x) \tanh ^2(c+d x)}{128 d}$

Antiderivative was successfully veriﬁed.

[In]

Int[Sinh[c + d*x]*(a + b*Tanh[c + d*x]^3)^3,x]

[Out]

(-9*a^2*b*ArcTan[Sinh[c + d*x]])/(2*d) - (315*b^3*ArcTan[Sinh[c + d*x]])/(128*d) + (a^3*Cosh[c + d*x])/d + (3*
a*b^2*Cosh[c + d*x])/d + (9*a*b^2*Sech[c + d*x])/d - (3*a*b^2*Sech[c + d*x]^3)/d + (3*a*b^2*Sech[c + d*x]^5)/(
5*d) + (9*a^2*b*Sinh[c + d*x])/(2*d) + (315*b^3*Sinh[c + d*x])/(128*d) - (3*a^2*b*Sinh[c + d*x]*Tanh[c + d*x]^
2)/(2*d) - (105*b^3*Sinh[c + d*x]*Tanh[c + d*x]^2)/(128*d) - (21*b^3*Sinh[c + d*x]*Tanh[c + d*x]^4)/(64*d) - (
3*b^3*Sinh[c + d*x]*Tanh[c + d*x]^6)/(16*d) - (b^3*Sinh[c + d*x]*Tanh[c + d*x]^8)/(8*d)

Rule 3666

Int[((d_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((a_) + (b_.)*((c_.)*tan[(e_.) + (f_.)*(x_)])^(n_))^(p_.), x_Symbol]
:> Int[ExpandTrig[(d*sin[e + f*x])^m*(a + b*(c*tan[e + f*x])^n)^p, x], x] /; FreeQ[{a, b, c, d, e, f, m, n},
x] && IGtQ[p, 0]

Rule 2638

Int[sin[(c_.) + (d_.)*(x_)], x_Symbol] :> -Simp[Cos[c + d*x]/d, x] /; FreeQ[{c, d}, x]

Rule 2592

Int[((a_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*tan[(e_.) + (f_.)*(x_)]^(n_.), x_Symbol] :> With[{ff = FreeFactors[S
in[e + f*x], x]}, Dist[ff/f, Subst[Int[(ff*x)^(m + n)/(a^2 - ff^2*x^2)^((n + 1)/2), x], x, (a*Sin[e + f*x])/ff
], x]] /; FreeQ[{a, e, f, m}, x] && IntegerQ[(n + 1)/2]

Rule 288

Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(c^(n - 1)*(c*x)^(m - n + 1)*(a + b*x^
n)^(p + 1))/(b*n*(p + 1)), x] - Dist[(c^n*(m - n + 1))/(b*n*(p + 1)), Int[(c*x)^(m - n)*(a + b*x^n)^(p + 1), x
], x] /; FreeQ[{a, b, c}, x] && IGtQ[n, 0] && LtQ[p, -1] && GtQ[m + 1, n] &&  !ILtQ[(m + n*(p + 1) + 1)/n, 0]
&& IntBinomialQ[a, b, c, n, m, p, x]

Rule 321

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(c^(n - 1)*(c*x)^(m - n + 1)*(a + b*x^n
)^(p + 1))/(b*(m + n*p + 1)), x] - Dist[(a*c^n*(m - n + 1))/(b*(m + n*p + 1)), Int[(c*x)^(m - n)*(a + b*x^n)^p
, x], x] /; FreeQ[{a, b, c, p}, x] && IGtQ[n, 0] && GtQ[m, n - 1] && NeQ[m + n*p + 1, 0] && IntBinomialQ[a, b,
c, n, m, p, x]

Rule 203

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTan[(Rt[b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[b, 2]), x] /;
FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rule 2590

Int[sin[(e_.) + (f_.)*(x_)]^(m_.)*tan[(e_.) + (f_.)*(x_)]^(n_.), x_Symbol] :> -Dist[f^(-1), Subst[Int[(1 - x^2
)^((m + n - 1)/2)/x^n, x], x, Cos[e + f*x]], x] /; FreeQ[{e, f}, x] && IntegersQ[m, n, (m + n - 1)/2]

Rule 270

Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.), x_Symbol] :> Int[ExpandIntegrand[(c*x)^m*(a + b*x^n)^p,
x], x] /; FreeQ[{a, b, c, m, n}, x] && IGtQ[p, 0]

Rubi steps

\begin{align*} \int \sinh (c+d x) \left (a+b \tanh ^3(c+d x)\right )^3 \, dx &=-\left (i \int \left (i a^3 \sinh (c+d x)+3 i a^2 b \sinh (c+d x) \tanh ^3(c+d x)+3 i a b^2 \sinh (c+d x) \tanh ^6(c+d x)+i b^3 \sinh (c+d x) \tanh ^9(c+d x)\right ) \, dx\right )\\ &=a^3 \int \sinh (c+d x) \, dx+\left (3 a^2 b\right ) \int \sinh (c+d x) \tanh ^3(c+d x) \, dx+\left (3 a b^2\right ) \int \sinh (c+d x) \tanh ^6(c+d x) \, dx+b^3 \int \sinh (c+d x) \tanh ^9(c+d x) \, dx\\ &=\frac{a^3 \cosh (c+d x)}{d}+\frac{\left (3 a^2 b\right ) \operatorname{Subst}\left (\int \frac{x^4}{\left (1+x^2\right )^2} \, dx,x,\sinh (c+d x)\right )}{d}-\frac{\left (3 a b^2\right ) \operatorname{Subst}\left (\int \frac{\left (1-x^2\right )^3}{x^6} \, dx,x,\cosh (c+d x)\right )}{d}+\frac{b^3 \operatorname{Subst}\left (\int \frac{x^{10}}{\left (1+x^2\right )^5} \, dx,x,\sinh (c+d x)\right )}{d}\\ &=\frac{a^3 \cosh (c+d x)}{d}-\frac{3 a^2 b \sinh (c+d x) \tanh ^2(c+d x)}{2 d}-\frac{b^3 \sinh (c+d x) \tanh ^8(c+d x)}{8 d}+\frac{\left (9 a^2 b\right ) \operatorname{Subst}\left (\int \frac{x^2}{1+x^2} \, dx,x,\sinh (c+d x)\right )}{2 d}-\frac{\left (3 a b^2\right ) \operatorname{Subst}\left (\int \left (-1+\frac{1}{x^6}-\frac{3}{x^4}+\frac{3}{x^2}\right ) \, dx,x,\cosh (c+d x)\right )}{d}+\frac{\left (9 b^3\right ) \operatorname{Subst}\left (\int \frac{x^8}{\left (1+x^2\right )^4} \, dx,x,\sinh (c+d x)\right )}{8 d}\\ &=\frac{a^3 \cosh (c+d x)}{d}+\frac{3 a b^2 \cosh (c+d x)}{d}+\frac{9 a b^2 \text{sech}(c+d x)}{d}-\frac{3 a b^2 \text{sech}^3(c+d x)}{d}+\frac{3 a b^2 \text{sech}^5(c+d x)}{5 d}+\frac{9 a^2 b \sinh (c+d x)}{2 d}-\frac{3 a^2 b \sinh (c+d x) \tanh ^2(c+d x)}{2 d}-\frac{3 b^3 \sinh (c+d x) \tanh ^6(c+d x)}{16 d}-\frac{b^3 \sinh (c+d x) \tanh ^8(c+d x)}{8 d}-\frac{\left (9 a^2 b\right ) \operatorname{Subst}\left (\int \frac{1}{1+x^2} \, dx,x,\sinh (c+d x)\right )}{2 d}+\frac{\left (21 b^3\right ) \operatorname{Subst}\left (\int \frac{x^6}{\left (1+x^2\right )^3} \, dx,x,\sinh (c+d x)\right )}{16 d}\\ &=-\frac{9 a^2 b \tan ^{-1}(\sinh (c+d x))}{2 d}+\frac{a^3 \cosh (c+d x)}{d}+\frac{3 a b^2 \cosh (c+d x)}{d}+\frac{9 a b^2 \text{sech}(c+d x)}{d}-\frac{3 a b^2 \text{sech}^3(c+d x)}{d}+\frac{3 a b^2 \text{sech}^5(c+d x)}{5 d}+\frac{9 a^2 b \sinh (c+d x)}{2 d}-\frac{3 a^2 b \sinh (c+d x) \tanh ^2(c+d x)}{2 d}-\frac{21 b^3 \sinh (c+d x) \tanh ^4(c+d x)}{64 d}-\frac{3 b^3 \sinh (c+d x) \tanh ^6(c+d x)}{16 d}-\frac{b^3 \sinh (c+d x) \tanh ^8(c+d x)}{8 d}+\frac{\left (105 b^3\right ) \operatorname{Subst}\left (\int \frac{x^4}{\left (1+x^2\right )^2} \, dx,x,\sinh (c+d x)\right )}{64 d}\\ &=-\frac{9 a^2 b \tan ^{-1}(\sinh (c+d x))}{2 d}+\frac{a^3 \cosh (c+d x)}{d}+\frac{3 a b^2 \cosh (c+d x)}{d}+\frac{9 a b^2 \text{sech}(c+d x)}{d}-\frac{3 a b^2 \text{sech}^3(c+d x)}{d}+\frac{3 a b^2 \text{sech}^5(c+d x)}{5 d}+\frac{9 a^2 b \sinh (c+d x)}{2 d}-\frac{3 a^2 b \sinh (c+d x) \tanh ^2(c+d x)}{2 d}-\frac{105 b^3 \sinh (c+d x) \tanh ^2(c+d x)}{128 d}-\frac{21 b^3 \sinh (c+d x) \tanh ^4(c+d x)}{64 d}-\frac{3 b^3 \sinh (c+d x) \tanh ^6(c+d x)}{16 d}-\frac{b^3 \sinh (c+d x) \tanh ^8(c+d x)}{8 d}+\frac{\left (315 b^3\right ) \operatorname{Subst}\left (\int \frac{x^2}{1+x^2} \, dx,x,\sinh (c+d x)\right )}{128 d}\\ &=-\frac{9 a^2 b \tan ^{-1}(\sinh (c+d x))}{2 d}+\frac{a^3 \cosh (c+d x)}{d}+\frac{3 a b^2 \cosh (c+d x)}{d}+\frac{9 a b^2 \text{sech}(c+d x)}{d}-\frac{3 a b^2 \text{sech}^3(c+d x)}{d}+\frac{3 a b^2 \text{sech}^5(c+d x)}{5 d}+\frac{9 a^2 b \sinh (c+d x)}{2 d}+\frac{315 b^3 \sinh (c+d x)}{128 d}-\frac{3 a^2 b \sinh (c+d x) \tanh ^2(c+d x)}{2 d}-\frac{105 b^3 \sinh (c+d x) \tanh ^2(c+d x)}{128 d}-\frac{21 b^3 \sinh (c+d x) \tanh ^4(c+d x)}{64 d}-\frac{3 b^3 \sinh (c+d x) \tanh ^6(c+d x)}{16 d}-\frac{b^3 \sinh (c+d x) \tanh ^8(c+d x)}{8 d}-\frac{\left (315 b^3\right ) \operatorname{Subst}\left (\int \frac{1}{1+x^2} \, dx,x,\sinh (c+d x)\right )}{128 d}\\ &=-\frac{9 a^2 b \tan ^{-1}(\sinh (c+d x))}{2 d}-\frac{315 b^3 \tan ^{-1}(\sinh (c+d x))}{128 d}+\frac{a^3 \cosh (c+d x)}{d}+\frac{3 a b^2 \cosh (c+d x)}{d}+\frac{9 a b^2 \text{sech}(c+d x)}{d}-\frac{3 a b^2 \text{sech}^3(c+d x)}{d}+\frac{3 a b^2 \text{sech}^5(c+d x)}{5 d}+\frac{9 a^2 b \sinh (c+d x)}{2 d}+\frac{315 b^3 \sinh (c+d x)}{128 d}-\frac{3 a^2 b \sinh (c+d x) \tanh ^2(c+d x)}{2 d}-\frac{105 b^3 \sinh (c+d x) \tanh ^2(c+d x)}{128 d}-\frac{21 b^3 \sinh (c+d x) \tanh ^4(c+d x)}{64 d}-\frac{3 b^3 \sinh (c+d x) \tanh ^6(c+d x)}{16 d}-\frac{b^3 \sinh (c+d x) \tanh ^8(c+d x)}{8 d}\\ \end{align*}

Mathematica [A]  time = 6.28942, size = 233, normalized size = 0.87 $\frac{b \left (3 a^2+b^2\right ) \sinh (c+d x)}{d}+\frac{a \left (a^2+3 b^2\right ) \cosh (c+d x)}{d}-\frac{9 b \left (64 a^2+35 b^2\right ) \tan ^{-1}\left (\tanh \left (\frac{1}{2} (c+d x)\right )\right )}{64 d}+\frac{\text{sech}^2(c+d x) \left (192 a^2 b \sinh (c+d x)+325 b^3 \sinh (c+d x)\right )}{128 d}+\frac{3 a b^2 \text{sech}^5(c+d x)}{5 d}-\frac{3 a b^2 \text{sech}^3(c+d x)}{d}+\frac{9 a b^2 \text{sech}(c+d x)}{d}-\frac{b^3 \tanh (c+d x) \text{sech}^7(c+d x)}{8 d}+\frac{11 b^3 \tanh (c+d x) \text{sech}^5(c+d x)}{16 d}-\frac{105 b^3 \tanh (c+d x) \text{sech}^3(c+d x)}{64 d}$

Antiderivative was successfully veriﬁed.

[In]

Integrate[Sinh[c + d*x]*(a + b*Tanh[c + d*x]^3)^3,x]

[Out]

(-9*b*(64*a^2 + 35*b^2)*ArcTan[Tanh[(c + d*x)/2]])/(64*d) + (a*(a^2 + 3*b^2)*Cosh[c + d*x])/d + (9*a*b^2*Sech[
c + d*x])/d - (3*a*b^2*Sech[c + d*x]^3)/d + (3*a*b^2*Sech[c + d*x]^5)/(5*d) + (b*(3*a^2 + b^2)*Sinh[c + d*x])/
d + (Sech[c + d*x]^2*(192*a^2*b*Sinh[c + d*x] + 325*b^3*Sinh[c + d*x]))/(128*d) - (105*b^3*Sech[c + d*x]^3*Tan
h[c + d*x])/(64*d) + (11*b^3*Sech[c + d*x]^5*Tanh[c + d*x])/(16*d) - (b^3*Sech[c + d*x]^7*Tanh[c + d*x])/(8*d)

________________________________________________________________________________________

Maple [A]  time = 0.067, size = 458, normalized size = 1.7 \begin{align*} \text{result too large to display} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

int(sinh(d*x+c)*(a+b*tanh(d*x+c)^3)^3,x)

[Out]

a^3*cosh(d*x+c)/d+3/d*a^2*b*sinh(d*x+c)^3/cosh(d*x+c)^2+9/d*a^2*b*sinh(d*x+c)/cosh(d*x+c)^2-9/2*a^2*b*sech(d*x
+c)*tanh(d*x+c)/d-9/d*a^2*b*arctan(exp(d*x+c))+3/d*a*b^2*sinh(d*x+c)^6/cosh(d*x+c)^5+18/d*a*b^2*sinh(d*x+c)^4/
cosh(d*x+c)^5+72/5/d*a*b^2*sinh(d*x+c)^2/cosh(d*x+c)^5-48/5/d*a*b^2*sinh(d*x+c)^2/cosh(d*x+c)^3-48/5/d*a*b^2*s
inh(d*x+c)^2/cosh(d*x+c)+48/5*a*b^2*cosh(d*x+c)/d+1/d*b^3*sinh(d*x+c)^9/cosh(d*x+c)^8+9/d*b^3*sinh(d*x+c)^7/co
sh(d*x+c)^8+21/d*b^3*sinh(d*x+c)^5/cosh(d*x+c)^8+21/d*b^3*sinh(d*x+c)^3/cosh(d*x+c)^8+9/d*b^3*sinh(d*x+c)/cosh
(d*x+c)^8-9/8/d*b^3*tanh(d*x+c)*sech(d*x+c)^7-21/16/d*b^3*tanh(d*x+c)*sech(d*x+c)^5-105/64*b^3*sech(d*x+c)^3*t
anh(d*x+c)/d-315/128*b^3*sech(d*x+c)*tanh(d*x+c)/d-315/64/d*b^3*arctan(exp(d*x+c))

________________________________________________________________________________________

Maxima [A]  time = 1.74748, size = 653, normalized size = 2.43 \begin{align*} \frac{1}{64} \, b^{3}{\left (\frac{315 \, \arctan \left (e^{\left (-d x - c\right )}\right )}{d} - \frac{32 \, e^{\left (-d x - c\right )}}{d} + \frac{581 \, e^{\left (-2 \, d x - 2 \, c\right )} + 1681 \, e^{\left (-4 \, d x - 4 \, c\right )} + 3605 \, e^{\left (-6 \, d x - 6 \, c\right )} + 2569 \, e^{\left (-8 \, d x - 8 \, c\right )} + 1463 \, e^{\left (-10 \, d x - 10 \, c\right )} - 917 \, e^{\left (-12 \, d x - 12 \, c\right )} - 529 \, e^{\left (-14 \, d x - 14 \, c\right )} - 293 \, e^{\left (-16 \, d x - 16 \, c\right )} + 32}{d{\left (e^{\left (-d x - c\right )} + 8 \, e^{\left (-3 \, d x - 3 \, c\right )} + 28 \, e^{\left (-5 \, d x - 5 \, c\right )} + 56 \, e^{\left (-7 \, d x - 7 \, c\right )} + 70 \, e^{\left (-9 \, d x - 9 \, c\right )} + 56 \, e^{\left (-11 \, d x - 11 \, c\right )} + 28 \, e^{\left (-13 \, d x - 13 \, c\right )} + 8 \, e^{\left (-15 \, d x - 15 \, c\right )} + e^{\left (-17 \, d x - 17 \, c\right )}\right )}}\right )} + \frac{3}{2} \, a^{2} b{\left (\frac{6 \, \arctan \left (e^{\left (-d x - c\right )}\right )}{d} - \frac{e^{\left (-d x - c\right )}}{d} + \frac{4 \, e^{\left (-2 \, d x - 2 \, c\right )} - e^{\left (-4 \, d x - 4 \, c\right )} + 1}{d{\left (e^{\left (-d x - c\right )} + 2 \, e^{\left (-3 \, d x - 3 \, c\right )} + e^{\left (-5 \, d x - 5 \, c\right )}\right )}}\right )} + \frac{3}{10} \, a b^{2}{\left (\frac{5 \, e^{\left (-d x - c\right )}}{d} + \frac{85 \, e^{\left (-2 \, d x - 2 \, c\right )} + 210 \, e^{\left (-4 \, d x - 4 \, c\right )} + 314 \, e^{\left (-6 \, d x - 6 \, c\right )} + 185 \, e^{\left (-8 \, d x - 8 \, c\right )} + 65 \, e^{\left (-10 \, d x - 10 \, c\right )} + 5}{d{\left (e^{\left (-d x - c\right )} + 5 \, e^{\left (-3 \, d x - 3 \, c\right )} + 10 \, e^{\left (-5 \, d x - 5 \, c\right )} + 10 \, e^{\left (-7 \, d x - 7 \, c\right )} + 5 \, e^{\left (-9 \, d x - 9 \, c\right )} + e^{\left (-11 \, d x - 11 \, c\right )}\right )}}\right )} + \frac{a^{3} \cosh \left (d x + c\right )}{d} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(sinh(d*x+c)*(a+b*tanh(d*x+c)^3)^3,x, algorithm="maxima")

[Out]

1/64*b^3*(315*arctan(e^(-d*x - c))/d - 32*e^(-d*x - c)/d + (581*e^(-2*d*x - 2*c) + 1681*e^(-4*d*x - 4*c) + 360
5*e^(-6*d*x - 6*c) + 2569*e^(-8*d*x - 8*c) + 1463*e^(-10*d*x - 10*c) - 917*e^(-12*d*x - 12*c) - 529*e^(-14*d*x
- 14*c) - 293*e^(-16*d*x - 16*c) + 32)/(d*(e^(-d*x - c) + 8*e^(-3*d*x - 3*c) + 28*e^(-5*d*x - 5*c) + 56*e^(-7
*d*x - 7*c) + 70*e^(-9*d*x - 9*c) + 56*e^(-11*d*x - 11*c) + 28*e^(-13*d*x - 13*c) + 8*e^(-15*d*x - 15*c) + e^(
-17*d*x - 17*c)))) + 3/2*a^2*b*(6*arctan(e^(-d*x - c))/d - e^(-d*x - c)/d + (4*e^(-2*d*x - 2*c) - e^(-4*d*x -
4*c) + 1)/(d*(e^(-d*x - c) + 2*e^(-3*d*x - 3*c) + e^(-5*d*x - 5*c)))) + 3/10*a*b^2*(5*e^(-d*x - c)/d + (85*e^(
-2*d*x - 2*c) + 210*e^(-4*d*x - 4*c) + 314*e^(-6*d*x - 6*c) + 185*e^(-8*d*x - 8*c) + 65*e^(-10*d*x - 10*c) + 5
)/(d*(e^(-d*x - c) + 5*e^(-3*d*x - 3*c) + 10*e^(-5*d*x - 5*c) + 10*e^(-7*d*x - 7*c) + 5*e^(-9*d*x - 9*c) + e^(
-11*d*x - 11*c)))) + a^3*cosh(d*x + c)/d

________________________________________________________________________________________

Fricas [B]  time = 3.98452, size = 17484, normalized size = 65. \begin{align*} \text{result too large to display} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(sinh(d*x+c)*(a+b*tanh(d*x+c)^3)^3,x, algorithm="fricas")

[Out]

1/320*(160*(a^3 + 3*a^2*b + 3*a*b^2 + b^3)*cosh(d*x + c)^18 + 2880*(a^3 + 3*a^2*b + 3*a*b^2 + b^3)*cosh(d*x +
c)*sinh(d*x + c)^17 + 160*(a^3 + 3*a^2*b + 3*a*b^2 + b^3)*sinh(d*x + c)^18 + 45*(32*a^3 + 96*a^2*b + 224*a*b^2
+ 61*b^3)*cosh(d*x + c)^16 + 45*(32*a^3 + 96*a^2*b + 224*a*b^2 + 61*b^3 + 544*(a^3 + 3*a^2*b + 3*a*b^2 + b^3)
*cosh(d*x + c)^2)*sinh(d*x + c)^16 + 240*(544*(a^3 + 3*a^2*b + 3*a*b^2 + b^3)*cosh(d*x + c)^3 + 3*(32*a^3 + 96
*a^2*b + 224*a*b^2 + 61*b^3)*cosh(d*x + c))*sinh(d*x + c)^15 + 15*(384*a^3 + 960*a^2*b + 3328*a*b^2 + 475*b^3)
*cosh(d*x + c)^14 + 15*(32640*(a^3 + 3*a^2*b + 3*a*b^2 + b^3)*cosh(d*x + c)^4 + 384*a^3 + 960*a^2*b + 3328*a*b
^2 + 475*b^3 + 360*(32*a^3 + 96*a^2*b + 224*a*b^2 + 61*b^3)*cosh(d*x + c)^2)*sinh(d*x + c)^14 + 210*(6528*(a^3
+ 3*a^2*b + 3*a*b^2 + b^3)*cosh(d*x + c)^5 + 120*(32*a^3 + 96*a^2*b + 224*a*b^2 + 61*b^3)*cosh(d*x + c)^3 + (
384*a^3 + 960*a^2*b + 3328*a*b^2 + 475*b^3)*cosh(d*x + c))*sinh(d*x + c)^13 + 3*(4480*a^3 + 7360*a^2*b + 43008
*a*b^2 + 4515*b^3)*cosh(d*x + c)^12 + 3*(990080*(a^3 + 3*a^2*b + 3*a*b^2 + b^3)*cosh(d*x + c)^6 + 27300*(32*a^
3 + 96*a^2*b + 224*a*b^2 + 61*b^3)*cosh(d*x + c)^4 + 4480*a^3 + 7360*a^2*b + 43008*a*b^2 + 4515*b^3 + 455*(384
*a^3 + 960*a^2*b + 3328*a*b^2 + 475*b^3)*cosh(d*x + c)^2)*sinh(d*x + c)^12 + 12*(424320*(a^3 + 3*a^2*b + 3*a*b
^2 + b^3)*cosh(d*x + c)^7 + 16380*(32*a^3 + 96*a^2*b + 224*a*b^2 + 61*b^3)*cosh(d*x + c)^5 + 455*(384*a^3 + 96
0*a^2*b + 3328*a*b^2 + 475*b^3)*cosh(d*x + c)^3 + 3*(4480*a^3 + 7360*a^2*b + 43008*a*b^2 + 4515*b^3)*cosh(d*x
+ c))*sinh(d*x + c)^11 + 3*(6720*a^3 + 3840*a^2*b + 67904*a*b^2 + 1295*b^3)*cosh(d*x + c)^10 + 3*(2333760*(a^3
+ 3*a^2*b + 3*a*b^2 + b^3)*cosh(d*x + c)^8 + 120120*(32*a^3 + 96*a^2*b + 224*a*b^2 + 61*b^3)*cosh(d*x + c)^6
+ 5005*(384*a^3 + 960*a^2*b + 3328*a*b^2 + 475*b^3)*cosh(d*x + c)^4 + 6720*a^3 + 3840*a^2*b + 67904*a*b^2 + 12
95*b^3 + 66*(4480*a^3 + 7360*a^2*b + 43008*a*b^2 + 4515*b^3)*cosh(d*x + c)^2)*sinh(d*x + c)^10 + 10*(777920*(a
^3 + 3*a^2*b + 3*a*b^2 + b^3)*cosh(d*x + c)^9 + 51480*(32*a^3 + 96*a^2*b + 224*a*b^2 + 61*b^3)*cosh(d*x + c)^7
+ 3003*(384*a^3 + 960*a^2*b + 3328*a*b^2 + 475*b^3)*cosh(d*x + c)^5 + 66*(4480*a^3 + 7360*a^2*b + 43008*a*b^2
+ 4515*b^3)*cosh(d*x + c)^3 + 3*(6720*a^3 + 3840*a^2*b + 67904*a*b^2 + 1295*b^3)*cosh(d*x + c))*sinh(d*x + c)
^9 + 3*(6720*a^3 - 3840*a^2*b + 67904*a*b^2 - 1295*b^3)*cosh(d*x + c)^8 + 3*(2333760*(a^3 + 3*a^2*b + 3*a*b^2
+ b^3)*cosh(d*x + c)^10 + 193050*(32*a^3 + 96*a^2*b + 224*a*b^2 + 61*b^3)*cosh(d*x + c)^8 + 15015*(384*a^3 + 9
60*a^2*b + 3328*a*b^2 + 475*b^3)*cosh(d*x + c)^6 + 495*(4480*a^3 + 7360*a^2*b + 43008*a*b^2 + 4515*b^3)*cosh(d
*x + c)^4 + 6720*a^3 - 3840*a^2*b + 67904*a*b^2 - 1295*b^3 + 45*(6720*a^3 + 3840*a^2*b + 67904*a*b^2 + 1295*b^
3)*cosh(d*x + c)^2)*sinh(d*x + c)^8 + 24*(212160*(a^3 + 3*a^2*b + 3*a*b^2 + b^3)*cosh(d*x + c)^11 + 21450*(32*
a^3 + 96*a^2*b + 224*a*b^2 + 61*b^3)*cosh(d*x + c)^9 + 2145*(384*a^3 + 960*a^2*b + 3328*a*b^2 + 475*b^3)*cosh(
d*x + c)^7 + 99*(4480*a^3 + 7360*a^2*b + 43008*a*b^2 + 4515*b^3)*cosh(d*x + c)^5 + 15*(6720*a^3 + 3840*a^2*b +
67904*a*b^2 + 1295*b^3)*cosh(d*x + c)^3 + (6720*a^3 - 3840*a^2*b + 67904*a*b^2 - 1295*b^3)*cosh(d*x + c))*sin
h(d*x + c)^7 + 3*(4480*a^3 - 7360*a^2*b + 43008*a*b^2 - 4515*b^3)*cosh(d*x + c)^6 + 3*(990080*(a^3 + 3*a^2*b +
3*a*b^2 + b^3)*cosh(d*x + c)^12 + 120120*(32*a^3 + 96*a^2*b + 224*a*b^2 + 61*b^3)*cosh(d*x + c)^10 + 15015*(3
84*a^3 + 960*a^2*b + 3328*a*b^2 + 475*b^3)*cosh(d*x + c)^8 + 924*(4480*a^3 + 7360*a^2*b + 43008*a*b^2 + 4515*b
^3)*cosh(d*x + c)^6 + 210*(6720*a^3 + 3840*a^2*b + 67904*a*b^2 + 1295*b^3)*cosh(d*x + c)^4 + 4480*a^3 - 7360*a
^2*b + 43008*a*b^2 - 4515*b^3 + 28*(6720*a^3 - 3840*a^2*b + 67904*a*b^2 - 1295*b^3)*cosh(d*x + c)^2)*sinh(d*x
+ c)^6 + 6*(228480*(a^3 + 3*a^2*b + 3*a*b^2 + b^3)*cosh(d*x + c)^13 + 32760*(32*a^3 + 96*a^2*b + 224*a*b^2 + 6
1*b^3)*cosh(d*x + c)^11 + 5005*(384*a^3 + 960*a^2*b + 3328*a*b^2 + 475*b^3)*cosh(d*x + c)^9 + 396*(4480*a^3 +
7360*a^2*b + 43008*a*b^2 + 4515*b^3)*cosh(d*x + c)^7 + 126*(6720*a^3 + 3840*a^2*b + 67904*a*b^2 + 1295*b^3)*co
sh(d*x + c)^5 + 28*(6720*a^3 - 3840*a^2*b + 67904*a*b^2 - 1295*b^3)*cosh(d*x + c)^3 + 3*(4480*a^3 - 7360*a^2*b
+ 43008*a*b^2 - 4515*b^3)*cosh(d*x + c))*sinh(d*x + c)^5 + 15*(384*a^3 - 960*a^2*b + 3328*a*b^2 - 475*b^3)*co
sh(d*x + c)^4 + 15*(32640*(a^3 + 3*a^2*b + 3*a*b^2 + b^3)*cosh(d*x + c)^14 + 5460*(32*a^3 + 96*a^2*b + 224*a*b
^2 + 61*b^3)*cosh(d*x + c)^12 + 1001*(384*a^3 + 960*a^2*b + 3328*a*b^2 + 475*b^3)*cosh(d*x + c)^10 + 99*(4480*
a^3 + 7360*a^2*b + 43008*a*b^2 + 4515*b^3)*cosh(d*x + c)^8 + 42*(6720*a^3 + 3840*a^2*b + 67904*a*b^2 + 1295*b^
3)*cosh(d*x + c)^6 + 14*(6720*a^3 - 3840*a^2*b + 67904*a*b^2 - 1295*b^3)*cosh(d*x + c)^4 + 384*a^3 - 960*a^2*b
+ 3328*a*b^2 - 475*b^3 + 3*(4480*a^3 - 7360*a^2*b + 43008*a*b^2 - 4515*b^3)*cosh(d*x + c)^2)*sinh(d*x + c)^4
+ 12*(10880*(a^3 + 3*a^2*b + 3*a*b^2 + b^3)*cosh(d*x + c)^15 + 2100*(32*a^3 + 96*a^2*b + 224*a*b^2 + 61*b^3)*c
osh(d*x + c)^13 + 455*(384*a^3 + 960*a^2*b + 3328*a*b^2 + 475*b^3)*cosh(d*x + c)^11 + 55*(4480*a^3 + 7360*a^2*
b + 43008*a*b^2 + 4515*b^3)*cosh(d*x + c)^9 + 30*(6720*a^3 + 3840*a^2*b + 67904*a*b^2 + 1295*b^3)*cosh(d*x + c
)^7 + 14*(6720*a^3 - 3840*a^2*b + 67904*a*b^2 - 1295*b^3)*cosh(d*x + c)^5 + 5*(4480*a^3 - 7360*a^2*b + 43008*a
*b^2 - 4515*b^3)*cosh(d*x + c)^3 + 5*(384*a^3 - 960*a^2*b + 3328*a*b^2 - 475*b^3)*cosh(d*x + c))*sinh(d*x + c)
^3 + 160*a^3 - 480*a^2*b + 480*a*b^2 - 160*b^3 + 45*(32*a^3 - 96*a^2*b + 224*a*b^2 - 61*b^3)*cosh(d*x + c)^2 +
3*(8160*(a^3 + 3*a^2*b + 3*a*b^2 + b^3)*cosh(d*x + c)^16 + 1800*(32*a^3 + 96*a^2*b + 224*a*b^2 + 61*b^3)*cosh
(d*x + c)^14 + 455*(384*a^3 + 960*a^2*b + 3328*a*b^2 + 475*b^3)*cosh(d*x + c)^12 + 66*(4480*a^3 + 7360*a^2*b +
43008*a*b^2 + 4515*b^3)*cosh(d*x + c)^10 + 45*(6720*a^3 + 3840*a^2*b + 67904*a*b^2 + 1295*b^3)*cosh(d*x + c)^
8 + 28*(6720*a^3 - 3840*a^2*b + 67904*a*b^2 - 1295*b^3)*cosh(d*x + c)^6 + 15*(4480*a^3 - 7360*a^2*b + 43008*a*
b^2 - 4515*b^3)*cosh(d*x + c)^4 + 480*a^3 - 1440*a^2*b + 3360*a*b^2 - 915*b^3 + 30*(384*a^3 - 960*a^2*b + 3328
*a*b^2 - 475*b^3)*cosh(d*x + c)^2)*sinh(d*x + c)^2 - 45*((64*a^2*b + 35*b^3)*cosh(d*x + c)^17 + 17*(64*a^2*b +
35*b^3)*cosh(d*x + c)*sinh(d*x + c)^16 + (64*a^2*b + 35*b^3)*sinh(d*x + c)^17 + 8*(64*a^2*b + 35*b^3)*cosh(d*
x + c)^15 + 8*(64*a^2*b + 35*b^3 + 17*(64*a^2*b + 35*b^3)*cosh(d*x + c)^2)*sinh(d*x + c)^15 + 40*(17*(64*a^2*b
+ 35*b^3)*cosh(d*x + c)^3 + 3*(64*a^2*b + 35*b^3)*cosh(d*x + c))*sinh(d*x + c)^14 + 28*(64*a^2*b + 35*b^3)*co
sh(d*x + c)^13 + 28*(85*(64*a^2*b + 35*b^3)*cosh(d*x + c)^4 + 64*a^2*b + 35*b^3 + 30*(64*a^2*b + 35*b^3)*cosh(
d*x + c)^2)*sinh(d*x + c)^13 + 364*(17*(64*a^2*b + 35*b^3)*cosh(d*x + c)^5 + 10*(64*a^2*b + 35*b^3)*cosh(d*x +
c)^3 + (64*a^2*b + 35*b^3)*cosh(d*x + c))*sinh(d*x + c)^12 + 56*(64*a^2*b + 35*b^3)*cosh(d*x + c)^11 + 56*(22
1*(64*a^2*b + 35*b^3)*cosh(d*x + c)^6 + 195*(64*a^2*b + 35*b^3)*cosh(d*x + c)^4 + 64*a^2*b + 35*b^3 + 39*(64*a
^2*b + 35*b^3)*cosh(d*x + c)^2)*sinh(d*x + c)^11 + 88*(221*(64*a^2*b + 35*b^3)*cosh(d*x + c)^7 + 273*(64*a^2*b
+ 35*b^3)*cosh(d*x + c)^5 + 91*(64*a^2*b + 35*b^3)*cosh(d*x + c)^3 + 7*(64*a^2*b + 35*b^3)*cosh(d*x + c))*sin
h(d*x + c)^10 + 70*(64*a^2*b + 35*b^3)*cosh(d*x + c)^9 + 10*(2431*(64*a^2*b + 35*b^3)*cosh(d*x + c)^8 + 4004*(
64*a^2*b + 35*b^3)*cosh(d*x + c)^6 + 2002*(64*a^2*b + 35*b^3)*cosh(d*x + c)^4 + 448*a^2*b + 245*b^3 + 308*(64*
a^2*b + 35*b^3)*cosh(d*x + c)^2)*sinh(d*x + c)^9 + 2*(12155*(64*a^2*b + 35*b^3)*cosh(d*x + c)^9 + 25740*(64*a^
2*b + 35*b^3)*cosh(d*x + c)^7 + 18018*(64*a^2*b + 35*b^3)*cosh(d*x + c)^5 + 4620*(64*a^2*b + 35*b^3)*cosh(d*x
+ c)^3 + 315*(64*a^2*b + 35*b^3)*cosh(d*x + c))*sinh(d*x + c)^8 + 56*(64*a^2*b + 35*b^3)*cosh(d*x + c)^7 + 8*(
2431*(64*a^2*b + 35*b^3)*cosh(d*x + c)^10 + 6435*(64*a^2*b + 35*b^3)*cosh(d*x + c)^8 + 6006*(64*a^2*b + 35*b^3
)*cosh(d*x + c)^6 + 2310*(64*a^2*b + 35*b^3)*cosh(d*x + c)^4 + 448*a^2*b + 245*b^3 + 315*(64*a^2*b + 35*b^3)*c
osh(d*x + c)^2)*sinh(d*x + c)^7 + 56*(221*(64*a^2*b + 35*b^3)*cosh(d*x + c)^11 + 715*(64*a^2*b + 35*b^3)*cosh(
d*x + c)^9 + 858*(64*a^2*b + 35*b^3)*cosh(d*x + c)^7 + 462*(64*a^2*b + 35*b^3)*cosh(d*x + c)^5 + 105*(64*a^2*b
+ 35*b^3)*cosh(d*x + c)^3 + 7*(64*a^2*b + 35*b^3)*cosh(d*x + c))*sinh(d*x + c)^6 + 28*(64*a^2*b + 35*b^3)*cos
h(d*x + c)^5 + 28*(221*(64*a^2*b + 35*b^3)*cosh(d*x + c)^12 + 858*(64*a^2*b + 35*b^3)*cosh(d*x + c)^10 + 1287*
(64*a^2*b + 35*b^3)*cosh(d*x + c)^8 + 924*(64*a^2*b + 35*b^3)*cosh(d*x + c)^6 + 315*(64*a^2*b + 35*b^3)*cosh(d
*x + c)^4 + 64*a^2*b + 35*b^3 + 42*(64*a^2*b + 35*b^3)*cosh(d*x + c)^2)*sinh(d*x + c)^5 + 140*(17*(64*a^2*b +
35*b^3)*cosh(d*x + c)^13 + 78*(64*a^2*b + 35*b^3)*cosh(d*x + c)^11 + 143*(64*a^2*b + 35*b^3)*cosh(d*x + c)^9 +
132*(64*a^2*b + 35*b^3)*cosh(d*x + c)^7 + 63*(64*a^2*b + 35*b^3)*cosh(d*x + c)^5 + 14*(64*a^2*b + 35*b^3)*cos
h(d*x + c)^3 + (64*a^2*b + 35*b^3)*cosh(d*x + c))*sinh(d*x + c)^4 + 8*(64*a^2*b + 35*b^3)*cosh(d*x + c)^3 + 8*
(85*(64*a^2*b + 35*b^3)*cosh(d*x + c)^14 + 455*(64*a^2*b + 35*b^3)*cosh(d*x + c)^12 + 1001*(64*a^2*b + 35*b^3)
*cosh(d*x + c)^10 + 1155*(64*a^2*b + 35*b^3)*cosh(d*x + c)^8 + 735*(64*a^2*b + 35*b^3)*cosh(d*x + c)^6 + 245*(
64*a^2*b + 35*b^3)*cosh(d*x + c)^4 + 64*a^2*b + 35*b^3 + 35*(64*a^2*b + 35*b^3)*cosh(d*x + c)^2)*sinh(d*x + c)
^3 + 8*(17*(64*a^2*b + 35*b^3)*cosh(d*x + c)^15 + 105*(64*a^2*b + 35*b^3)*cosh(d*x + c)^13 + 273*(64*a^2*b + 3
5*b^3)*cosh(d*x + c)^11 + 385*(64*a^2*b + 35*b^3)*cosh(d*x + c)^9 + 315*(64*a^2*b + 35*b^3)*cosh(d*x + c)^7 +
147*(64*a^2*b + 35*b^3)*cosh(d*x + c)^5 + 35*(64*a^2*b + 35*b^3)*cosh(d*x + c)^3 + 3*(64*a^2*b + 35*b^3)*cosh(
d*x + c))*sinh(d*x + c)^2 + (64*a^2*b + 35*b^3)*cosh(d*x + c) + (17*(64*a^2*b + 35*b^3)*cosh(d*x + c)^16 + 120
*(64*a^2*b + 35*b^3)*cosh(d*x + c)^14 + 364*(64*a^2*b + 35*b^3)*cosh(d*x + c)^12 + 616*(64*a^2*b + 35*b^3)*cos
h(d*x + c)^10 + 630*(64*a^2*b + 35*b^3)*cosh(d*x + c)^8 + 392*(64*a^2*b + 35*b^3)*cosh(d*x + c)^6 + 140*(64*a^
2*b + 35*b^3)*cosh(d*x + c)^4 + 64*a^2*b + 35*b^3 + 24*(64*a^2*b + 35*b^3)*cosh(d*x + c)^2)*sinh(d*x + c))*arc
tan(cosh(d*x + c) + sinh(d*x + c)) + 6*(480*(a^3 + 3*a^2*b + 3*a*b^2 + b^3)*cosh(d*x + c)^17 + 120*(32*a^3 + 9
6*a^2*b + 224*a*b^2 + 61*b^3)*cosh(d*x + c)^15 + 35*(384*a^3 + 960*a^2*b + 3328*a*b^2 + 475*b^3)*cosh(d*x + c)
^13 + 6*(4480*a^3 + 7360*a^2*b + 43008*a*b^2 + 4515*b^3)*cosh(d*x + c)^11 + 5*(6720*a^3 + 3840*a^2*b + 67904*a
*b^2 + 1295*b^3)*cosh(d*x + c)^9 + 4*(6720*a^3 - 3840*a^2*b + 67904*a*b^2 - 1295*b^3)*cosh(d*x + c)^7 + 3*(448
0*a^3 - 7360*a^2*b + 43008*a*b^2 - 4515*b^3)*cosh(d*x + c)^5 + 10*(384*a^3 - 960*a^2*b + 3328*a*b^2 - 475*b^3)
*cosh(d*x + c)^3 + 15*(32*a^3 - 96*a^2*b + 224*a*b^2 - 61*b^3)*cosh(d*x + c))*sinh(d*x + c))/(d*cosh(d*x + c)^
17 + 17*d*cosh(d*x + c)*sinh(d*x + c)^16 + d*sinh(d*x + c)^17 + 8*d*cosh(d*x + c)^15 + 8*(17*d*cosh(d*x + c)^2
+ d)*sinh(d*x + c)^15 + 40*(17*d*cosh(d*x + c)^3 + 3*d*cosh(d*x + c))*sinh(d*x + c)^14 + 28*d*cosh(d*x + c)^1
3 + 28*(85*d*cosh(d*x + c)^4 + 30*d*cosh(d*x + c)^2 + d)*sinh(d*x + c)^13 + 364*(17*d*cosh(d*x + c)^5 + 10*d*c
osh(d*x + c)^3 + d*cosh(d*x + c))*sinh(d*x + c)^12 + 56*d*cosh(d*x + c)^11 + 56*(221*d*cosh(d*x + c)^6 + 195*d
*cosh(d*x + c)^4 + 39*d*cosh(d*x + c)^2 + d)*sinh(d*x + c)^11 + 88*(221*d*cosh(d*x + c)^7 + 273*d*cosh(d*x + c
)^5 + 91*d*cosh(d*x + c)^3 + 7*d*cosh(d*x + c))*sinh(d*x + c)^10 + 70*d*cosh(d*x + c)^9 + 10*(2431*d*cosh(d*x
+ c)^8 + 4004*d*cosh(d*x + c)^6 + 2002*d*cosh(d*x + c)^4 + 308*d*cosh(d*x + c)^2 + 7*d)*sinh(d*x + c)^9 + 2*(1
2155*d*cosh(d*x + c)^9 + 25740*d*cosh(d*x + c)^7 + 18018*d*cosh(d*x + c)^5 + 4620*d*cosh(d*x + c)^3 + 315*d*co
sh(d*x + c))*sinh(d*x + c)^8 + 56*d*cosh(d*x + c)^7 + 8*(2431*d*cosh(d*x + c)^10 + 6435*d*cosh(d*x + c)^8 + 60
06*d*cosh(d*x + c)^6 + 2310*d*cosh(d*x + c)^4 + 315*d*cosh(d*x + c)^2 + 7*d)*sinh(d*x + c)^7 + 56*(221*d*cosh(
d*x + c)^11 + 715*d*cosh(d*x + c)^9 + 858*d*cosh(d*x + c)^7 + 462*d*cosh(d*x + c)^5 + 105*d*cosh(d*x + c)^3 +
7*d*cosh(d*x + c))*sinh(d*x + c)^6 + 28*d*cosh(d*x + c)^5 + 28*(221*d*cosh(d*x + c)^12 + 858*d*cosh(d*x + c)^1
0 + 1287*d*cosh(d*x + c)^8 + 924*d*cosh(d*x + c)^6 + 315*d*cosh(d*x + c)^4 + 42*d*cosh(d*x + c)^2 + d)*sinh(d*
x + c)^5 + 140*(17*d*cosh(d*x + c)^13 + 78*d*cosh(d*x + c)^11 + 143*d*cosh(d*x + c)^9 + 132*d*cosh(d*x + c)^7
+ 63*d*cosh(d*x + c)^5 + 14*d*cosh(d*x + c)^3 + d*cosh(d*x + c))*sinh(d*x + c)^4 + 8*d*cosh(d*x + c)^3 + 8*(85
*d*cosh(d*x + c)^14 + 455*d*cosh(d*x + c)^12 + 1001*d*cosh(d*x + c)^10 + 1155*d*cosh(d*x + c)^8 + 735*d*cosh(d
*x + c)^6 + 245*d*cosh(d*x + c)^4 + 35*d*cosh(d*x + c)^2 + d)*sinh(d*x + c)^3 + 8*(17*d*cosh(d*x + c)^15 + 105
*d*cosh(d*x + c)^13 + 273*d*cosh(d*x + c)^11 + 385*d*cosh(d*x + c)^9 + 315*d*cosh(d*x + c)^7 + 147*d*cosh(d*x
+ c)^5 + 35*d*cosh(d*x + c)^3 + 3*d*cosh(d*x + c))*sinh(d*x + c)^2 + d*cosh(d*x + c) + (17*d*cosh(d*x + c)^16
+ 120*d*cosh(d*x + c)^14 + 364*d*cosh(d*x + c)^12 + 616*d*cosh(d*x + c)^10 + 630*d*cosh(d*x + c)^8 + 392*d*cos
h(d*x + c)^6 + 140*d*cosh(d*x + c)^4 + 24*d*cosh(d*x + c)^2 + d)*sinh(d*x + c))

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(sinh(d*x+c)*(a+b*tanh(d*x+c)**3)**3,x)

[Out]

Timed out

________________________________________________________________________________________

Giac [A]  time = 2.63282, size = 655, normalized size = 2.43 \begin{align*} -\frac{45 \,{\left (64 \, a^{2} b e^{c} + 35 \, b^{3} e^{c}\right )} \arctan \left (e^{\left (d x + c\right )}\right ) e^{\left (-c\right )} - 160 \,{\left (a^{3} - 3 \, a^{2} b + 3 \, a b^{2} - b^{3}\right )} e^{\left (-d x - c\right )} - 160 \,{\left (a^{3} e^{\left (d x + 20 \, c\right )} + 3 \, a^{2} b e^{\left (d x + 20 \, c\right )} + 3 \, a b^{2} e^{\left (d x + 20 \, c\right )} + b^{3} e^{\left (d x + 20 \, c\right )}\right )} e^{\left (-19 \, c\right )} - \frac{960 \, a^{2} b e^{\left (15 \, d x + 15 \, c\right )} + 5760 \, a b^{2} e^{\left (15 \, d x + 15 \, c\right )} + 1625 \, b^{3} e^{\left (15 \, d x + 15 \, c\right )} + 4800 \, a^{2} b e^{\left (13 \, d x + 13 \, c\right )} + 32640 \, a b^{2} e^{\left (13 \, d x + 13 \, c\right )} + 3925 \, b^{3} e^{\left (13 \, d x + 13 \, c\right )} + 8640 \, a^{2} b e^{\left (11 \, d x + 11 \, c\right )} + 88704 \, a b^{2} e^{\left (11 \, d x + 11 \, c\right )} + 9065 \, b^{3} e^{\left (11 \, d x + 11 \, c\right )} + 4800 \, a^{2} b e^{\left (9 \, d x + 9 \, c\right )} + 143232 \, a b^{2} e^{\left (9 \, d x + 9 \, c\right )} + 1645 \, b^{3} e^{\left (9 \, d x + 9 \, c\right )} - 4800 \, a^{2} b e^{\left (7 \, d x + 7 \, c\right )} + 143232 \, a b^{2} e^{\left (7 \, d x + 7 \, c\right )} - 1645 \, b^{3} e^{\left (7 \, d x + 7 \, c\right )} - 8640 \, a^{2} b e^{\left (5 \, d x + 5 \, c\right )} + 88704 \, a b^{2} e^{\left (5 \, d x + 5 \, c\right )} - 9065 \, b^{3} e^{\left (5 \, d x + 5 \, c\right )} - 4800 \, a^{2} b e^{\left (3 \, d x + 3 \, c\right )} + 32640 \, a b^{2} e^{\left (3 \, d x + 3 \, c\right )} - 3925 \, b^{3} e^{\left (3 \, d x + 3 \, c\right )} - 960 \, a^{2} b e^{\left (d x + c\right )} + 5760 \, a b^{2} e^{\left (d x + c\right )} - 1625 \, b^{3} e^{\left (d x + c\right )}}{{\left (e^{\left (2 \, d x + 2 \, c\right )} + 1\right )}^{8}}}{320 \, d} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(sinh(d*x+c)*(a+b*tanh(d*x+c)^3)^3,x, algorithm="giac")

[Out]

-1/320*(45*(64*a^2*b*e^c + 35*b^3*e^c)*arctan(e^(d*x + c))*e^(-c) - 160*(a^3 - 3*a^2*b + 3*a*b^2 - b^3)*e^(-d*
x - c) - 160*(a^3*e^(d*x + 20*c) + 3*a^2*b*e^(d*x + 20*c) + 3*a*b^2*e^(d*x + 20*c) + b^3*e^(d*x + 20*c))*e^(-1
9*c) - (960*a^2*b*e^(15*d*x + 15*c) + 5760*a*b^2*e^(15*d*x + 15*c) + 1625*b^3*e^(15*d*x + 15*c) + 4800*a^2*b*e
^(13*d*x + 13*c) + 32640*a*b^2*e^(13*d*x + 13*c) + 3925*b^3*e^(13*d*x + 13*c) + 8640*a^2*b*e^(11*d*x + 11*c) +
88704*a*b^2*e^(11*d*x + 11*c) + 9065*b^3*e^(11*d*x + 11*c) + 4800*a^2*b*e^(9*d*x + 9*c) + 143232*a*b^2*e^(9*d
*x + 9*c) + 1645*b^3*e^(9*d*x + 9*c) - 4800*a^2*b*e^(7*d*x + 7*c) + 143232*a*b^2*e^(7*d*x + 7*c) - 1645*b^3*e^
(7*d*x + 7*c) - 8640*a^2*b*e^(5*d*x + 5*c) + 88704*a*b^2*e^(5*d*x + 5*c) - 9065*b^3*e^(5*d*x + 5*c) - 4800*a^2
*b*e^(3*d*x + 3*c) + 32640*a*b^2*e^(3*d*x + 3*c) - 3925*b^3*e^(3*d*x + 3*c) - 960*a^2*b*e^(d*x + c) + 5760*a*b
^2*e^(d*x + c) - 1625*b^3*e^(d*x + c))/(e^(2*d*x + 2*c) + 1)^8)/d