### 3.62 $$\int \text{csch}^2(c+d x) (a+b \tanh ^3(c+d x))^2 \, dx$$

Optimal. Leaf size=47 $-\frac{a^2 \coth (c+d x)}{d}+\frac{a b \tanh ^2(c+d x)}{d}+\frac{b^2 \tanh ^5(c+d x)}{5 d}$

[Out]

-((a^2*Coth[c + d*x])/d) + (a*b*Tanh[c + d*x]^2)/d + (b^2*Tanh[c + d*x]^5)/(5*d)

________________________________________________________________________________________

Rubi [A]  time = 0.0581107, antiderivative size = 47, normalized size of antiderivative = 1., number of steps used = 3, number of rules used = 2, integrand size = 23, $$\frac{\text{number of rules}}{\text{integrand size}}$$ = 0.087, Rules used = {3663, 270} $-\frac{a^2 \coth (c+d x)}{d}+\frac{a b \tanh ^2(c+d x)}{d}+\frac{b^2 \tanh ^5(c+d x)}{5 d}$

Antiderivative was successfully veriﬁed.

[In]

Int[Csch[c + d*x]^2*(a + b*Tanh[c + d*x]^3)^2,x]

[Out]

-((a^2*Coth[c + d*x])/d) + (a*b*Tanh[c + d*x]^2)/d + (b^2*Tanh[c + d*x]^5)/(5*d)

Rule 3663

Int[sin[(e_.) + (f_.)*(x_)]^(m_)*((a_) + (b_.)*((c_.)*tan[(e_.) + (f_.)*(x_)])^(n_))^(p_.), x_Symbol] :> With[
{ff = FreeFactors[Tan[e + f*x], x]}, Dist[(c*ff^(m + 1))/f, Subst[Int[(x^m*(a + b*(ff*x)^n)^p)/(c^2 + ff^2*x^2
)^(m/2 + 1), x], x, (c*Tan[e + f*x])/ff], x]] /; FreeQ[{a, b, c, e, f, n, p}, x] && IntegerQ[m/2]

Rule 270

Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.), x_Symbol] :> Int[ExpandIntegrand[(c*x)^m*(a + b*x^n)^p,
x], x] /; FreeQ[{a, b, c, m, n}, x] && IGtQ[p, 0]

Rubi steps

\begin{align*} \int \text{csch}^2(c+d x) \left (a+b \tanh ^3(c+d x)\right )^2 \, dx &=\frac{\operatorname{Subst}\left (\int \frac{\left (a+b x^3\right )^2}{x^2} \, dx,x,\tanh (c+d x)\right )}{d}\\ &=\frac{\operatorname{Subst}\left (\int \left (\frac{a^2}{x^2}+2 a b x+b^2 x^4\right ) \, dx,x,\tanh (c+d x)\right )}{d}\\ &=-\frac{a^2 \coth (c+d x)}{d}+\frac{a b \tanh ^2(c+d x)}{d}+\frac{b^2 \tanh ^5(c+d x)}{5 d}\\ \end{align*}

Mathematica [A]  time = 0.220764, size = 94, normalized size = 2. $-\frac{a^2 \coth (c+d x)}{d}-\frac{a b \text{sech}^2(c+d x)}{d}+\frac{b^2 \tanh (c+d x)}{5 d}+\frac{b^2 \tanh (c+d x) \text{sech}^4(c+d x)}{5 d}-\frac{2 b^2 \tanh (c+d x) \text{sech}^2(c+d x)}{5 d}$

Antiderivative was successfully veriﬁed.

[In]

Integrate[Csch[c + d*x]^2*(a + b*Tanh[c + d*x]^3)^2,x]

[Out]

-((a^2*Coth[c + d*x])/d) - (a*b*Sech[c + d*x]^2)/d + (b^2*Tanh[c + d*x])/(5*d) - (2*b^2*Sech[c + d*x]^2*Tanh[c
+ d*x])/(5*d) + (b^2*Sech[c + d*x]^4*Tanh[c + d*x])/(5*d)

________________________________________________________________________________________

Maple [B]  time = 0.067, size = 105, normalized size = 2.2 \begin{align*}{\frac{1}{d} \left ( -{a}^{2}{\rm coth} \left (dx+c\right )+{\frac{ab \left ( \sinh \left ( dx+c \right ) \right ) ^{2}}{ \left ( \cosh \left ( dx+c \right ) \right ) ^{2}}}+{b}^{2} \left ( -{\frac{ \left ( \sinh \left ( dx+c \right ) \right ) ^{3}}{2\, \left ( \cosh \left ( dx+c \right ) \right ) ^{5}}}-{\frac{3\,\sinh \left ( dx+c \right ) }{8\, \left ( \cosh \left ( dx+c \right ) \right ) ^{5}}}+{\frac{3\,\tanh \left ( dx+c \right ) }{8} \left ({\frac{8}{15}}+{\frac{ \left ({\rm sech} \left (dx+c\right ) \right ) ^{4}}{5}}+{\frac{4\, \left ({\rm sech} \left (dx+c\right ) \right ) ^{2}}{15}} \right ) } \right ) \right ) } \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

int(csch(d*x+c)^2*(a+b*tanh(d*x+c)^3)^2,x)

[Out]

1/d*(-a^2*coth(d*x+c)+a*b*sinh(d*x+c)^2/cosh(d*x+c)^2+b^2*(-1/2*sinh(d*x+c)^3/cosh(d*x+c)^5-3/8*sinh(d*x+c)/co
sh(d*x+c)^5+3/8*(8/15+1/5*sech(d*x+c)^4+4/15*sech(d*x+c)^2)*tanh(d*x+c)))

________________________________________________________________________________________

Maxima [B]  time = 1.05468, size = 346, normalized size = 7.36 \begin{align*} \frac{2}{5} \, b^{2}{\left (\frac{10 \, e^{\left (-4 \, d x - 4 \, c\right )}}{d{\left (5 \, e^{\left (-2 \, d x - 2 \, c\right )} + 10 \, e^{\left (-4 \, d x - 4 \, c\right )} + 10 \, e^{\left (-6 \, d x - 6 \, c\right )} + 5 \, e^{\left (-8 \, d x - 8 \, c\right )} + e^{\left (-10 \, d x - 10 \, c\right )} + 1\right )}} + \frac{5 \, e^{\left (-8 \, d x - 8 \, c\right )}}{d{\left (5 \, e^{\left (-2 \, d x - 2 \, c\right )} + 10 \, e^{\left (-4 \, d x - 4 \, c\right )} + 10 \, e^{\left (-6 \, d x - 6 \, c\right )} + 5 \, e^{\left (-8 \, d x - 8 \, c\right )} + e^{\left (-10 \, d x - 10 \, c\right )} + 1\right )}} + \frac{1}{d{\left (5 \, e^{\left (-2 \, d x - 2 \, c\right )} + 10 \, e^{\left (-4 \, d x - 4 \, c\right )} + 10 \, e^{\left (-6 \, d x - 6 \, c\right )} + 5 \, e^{\left (-8 \, d x - 8 \, c\right )} + e^{\left (-10 \, d x - 10 \, c\right )} + 1\right )}}\right )} + \frac{2 \, a^{2}}{d{\left (e^{\left (-2 \, d x - 2 \, c\right )} - 1\right )}} - \frac{4 \, a b}{d{\left (e^{\left (d x + c\right )} + e^{\left (-d x - c\right )}\right )}^{2}} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(csch(d*x+c)^2*(a+b*tanh(d*x+c)^3)^2,x, algorithm="maxima")

[Out]

2/5*b^2*(10*e^(-4*d*x - 4*c)/(d*(5*e^(-2*d*x - 2*c) + 10*e^(-4*d*x - 4*c) + 10*e^(-6*d*x - 6*c) + 5*e^(-8*d*x
- 8*c) + e^(-10*d*x - 10*c) + 1)) + 5*e^(-8*d*x - 8*c)/(d*(5*e^(-2*d*x - 2*c) + 10*e^(-4*d*x - 4*c) + 10*e^(-6
*d*x - 6*c) + 5*e^(-8*d*x - 8*c) + e^(-10*d*x - 10*c) + 1)) + 1/(d*(5*e^(-2*d*x - 2*c) + 10*e^(-4*d*x - 4*c) +
10*e^(-6*d*x - 6*c) + 5*e^(-8*d*x - 8*c) + e^(-10*d*x - 10*c) + 1))) + 2*a^2/(d*(e^(-2*d*x - 2*c) - 1)) - 4*a
*b/(d*(e^(d*x + c) + e^(-d*x - c))^2)

________________________________________________________________________________________

Fricas [B]  time = 2.17751, size = 1334, normalized size = 28.38 \begin{align*} -\frac{4 \,{\left ({\left (5 \, a^{2} + 5 \, a b + 2 \, b^{2}\right )} \cosh \left (d x + c\right )^{5} + 5 \,{\left (5 \, a^{2} + 5 \, a b + 2 \, b^{2}\right )} \cosh \left (d x + c\right ) \sinh \left (d x + c\right )^{4} +{\left (5 \, a b + 3 \, b^{2}\right )} \sinh \left (d x + c\right )^{5} +{\left (25 \, a^{2} + 5 \, a b - 2 \, b^{2}\right )} \cosh \left (d x + c\right )^{3} +{\left (10 \,{\left (5 \, a b + 3 \, b^{2}\right )} \cosh \left (d x + c\right )^{2} + 15 \, a b - 3 \, b^{2}\right )} \sinh \left (d x + c\right )^{3} +{\left (10 \,{\left (5 \, a^{2} + 5 \, a b + 2 \, b^{2}\right )} \cosh \left (d x + c\right )^{3} + 3 \,{\left (25 \, a^{2} + 5 \, a b - 2 \, b^{2}\right )} \cosh \left (d x + c\right )\right )} \sinh \left (d x + c\right )^{2} + 10 \,{\left (5 \, a^{2} - a b\right )} \cosh \left (d x + c\right ) +{\left (5 \,{\left (5 \, a b + 3 \, b^{2}\right )} \cosh \left (d x + c\right )^{4} + 9 \,{\left (5 \, a b - b^{2}\right )} \cosh \left (d x + c\right )^{2} + 10 \, a b + 10 \, b^{2}\right )} \sinh \left (d x + c\right )\right )}}{5 \,{\left (d \cosh \left (d x + c\right )^{7} + 7 \, d \cosh \left (d x + c\right ) \sinh \left (d x + c\right )^{6} + d \sinh \left (d x + c\right )^{7} + 3 \, d \cosh \left (d x + c\right )^{5} +{\left (21 \, d \cosh \left (d x + c\right )^{2} + 5 \, d\right )} \sinh \left (d x + c\right )^{5} + 5 \,{\left (7 \, d \cosh \left (d x + c\right )^{3} + 3 \, d \cosh \left (d x + c\right )\right )} \sinh \left (d x + c\right )^{4} + d \cosh \left (d x + c\right )^{3} +{\left (35 \, d \cosh \left (d x + c\right )^{4} + 50 \, d \cosh \left (d x + c\right )^{2} + 9 \, d\right )} \sinh \left (d x + c\right )^{3} + 3 \,{\left (7 \, d \cosh \left (d x + c\right )^{5} + 10 \, d \cosh \left (d x + c\right )^{3} + d \cosh \left (d x + c\right )\right )} \sinh \left (d x + c\right )^{2} - 5 \, d \cosh \left (d x + c\right ) +{\left (7 \, d \cosh \left (d x + c\right )^{6} + 25 \, d \cosh \left (d x + c\right )^{4} + 27 \, d \cosh \left (d x + c\right )^{2} + 5 \, d\right )} \sinh \left (d x + c\right )\right )}} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(csch(d*x+c)^2*(a+b*tanh(d*x+c)^3)^2,x, algorithm="fricas")

[Out]

-4/5*((5*a^2 + 5*a*b + 2*b^2)*cosh(d*x + c)^5 + 5*(5*a^2 + 5*a*b + 2*b^2)*cosh(d*x + c)*sinh(d*x + c)^4 + (5*a
*b + 3*b^2)*sinh(d*x + c)^5 + (25*a^2 + 5*a*b - 2*b^2)*cosh(d*x + c)^3 + (10*(5*a*b + 3*b^2)*cosh(d*x + c)^2 +
15*a*b - 3*b^2)*sinh(d*x + c)^3 + (10*(5*a^2 + 5*a*b + 2*b^2)*cosh(d*x + c)^3 + 3*(25*a^2 + 5*a*b - 2*b^2)*co
sh(d*x + c))*sinh(d*x + c)^2 + 10*(5*a^2 - a*b)*cosh(d*x + c) + (5*(5*a*b + 3*b^2)*cosh(d*x + c)^4 + 9*(5*a*b
- b^2)*cosh(d*x + c)^2 + 10*a*b + 10*b^2)*sinh(d*x + c))/(d*cosh(d*x + c)^7 + 7*d*cosh(d*x + c)*sinh(d*x + c)^
6 + d*sinh(d*x + c)^7 + 3*d*cosh(d*x + c)^5 + (21*d*cosh(d*x + c)^2 + 5*d)*sinh(d*x + c)^5 + 5*(7*d*cosh(d*x +
c)^3 + 3*d*cosh(d*x + c))*sinh(d*x + c)^4 + d*cosh(d*x + c)^3 + (35*d*cosh(d*x + c)^4 + 50*d*cosh(d*x + c)^2
+ 9*d)*sinh(d*x + c)^3 + 3*(7*d*cosh(d*x + c)^5 + 10*d*cosh(d*x + c)^3 + d*cosh(d*x + c))*sinh(d*x + c)^2 - 5*
d*cosh(d*x + c) + (7*d*cosh(d*x + c)^6 + 25*d*cosh(d*x + c)^4 + 27*d*cosh(d*x + c)^2 + 5*d)*sinh(d*x + c))

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \left (a + b \tanh ^{3}{\left (c + d x \right )}\right )^{2} \operatorname{csch}^{2}{\left (c + d x \right )}\, dx \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(csch(d*x+c)**2*(a+b*tanh(d*x+c)**3)**2,x)

[Out]

Integral((a + b*tanh(c + d*x)**3)**2*csch(c + d*x)**2, x)

________________________________________________________________________________________

Giac [B]  time = 1.61257, size = 165, normalized size = 3.51 \begin{align*} -\frac{2 \,{\left (\frac{5 \, a^{2}}{e^{\left (2 \, d x + 2 \, c\right )} - 1} + \frac{10 \, a b e^{\left (8 \, d x + 8 \, c\right )} + 5 \, b^{2} e^{\left (8 \, d x + 8 \, c\right )} + 30 \, a b e^{\left (6 \, d x + 6 \, c\right )} + 30 \, a b e^{\left (4 \, d x + 4 \, c\right )} + 10 \, b^{2} e^{\left (4 \, d x + 4 \, c\right )} + 10 \, a b e^{\left (2 \, d x + 2 \, c\right )} + b^{2}}{{\left (e^{\left (2 \, d x + 2 \, c\right )} + 1\right )}^{5}}\right )}}{5 \, d} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(csch(d*x+c)^2*(a+b*tanh(d*x+c)^3)^2,x, algorithm="giac")

[Out]

-2/5*(5*a^2/(e^(2*d*x + 2*c) - 1) + (10*a*b*e^(8*d*x + 8*c) + 5*b^2*e^(8*d*x + 8*c) + 30*a*b*e^(6*d*x + 6*c) +
30*a*b*e^(4*d*x + 4*c) + 10*b^2*e^(4*d*x + 4*c) + 10*a*b*e^(2*d*x + 2*c) + b^2)/(e^(2*d*x + 2*c) + 1)^5)/d