### 3.6 $$\int \text{csch}^2(c+d x) (a+b \tanh ^2(c+d x)) \, dx$$

Optimal. Leaf size=24 $\frac{b \tanh (c+d x)}{d}-\frac{a \coth (c+d x)}{d}$

[Out]

-((a*Coth[c + d*x])/d) + (b*Tanh[c + d*x])/d

________________________________________________________________________________________

Rubi [A]  time = 0.0327757, antiderivative size = 24, normalized size of antiderivative = 1., number of steps used = 3, number of rules used = 2, integrand size = 21, $$\frac{\text{number of rules}}{\text{integrand size}}$$ = 0.095, Rules used = {3663, 14} $\frac{b \tanh (c+d x)}{d}-\frac{a \coth (c+d x)}{d}$

Antiderivative was successfully veriﬁed.

[In]

Int[Csch[c + d*x]^2*(a + b*Tanh[c + d*x]^2),x]

[Out]

-((a*Coth[c + d*x])/d) + (b*Tanh[c + d*x])/d

Rule 3663

Int[sin[(e_.) + (f_.)*(x_)]^(m_)*((a_) + (b_.)*((c_.)*tan[(e_.) + (f_.)*(x_)])^(n_))^(p_.), x_Symbol] :> With[
{ff = FreeFactors[Tan[e + f*x], x]}, Dist[(c*ff^(m + 1))/f, Subst[Int[(x^m*(a + b*(ff*x)^n)^p)/(c^2 + ff^2*x^2
)^(m/2 + 1), x], x, (c*Tan[e + f*x])/ff], x]] /; FreeQ[{a, b, c, e, f, n, p}, x] && IntegerQ[m/2]

Rule 14

Int[(u_)*((c_.)*(x_))^(m_.), x_Symbol] :> Int[ExpandIntegrand[(c*x)^m*u, x], x] /; FreeQ[{c, m}, x] && SumQ[u]
&&  !LinearQ[u, x] &&  !MatchQ[u, (a_) + (b_.)*(v_) /; FreeQ[{a, b}, x] && InverseFunctionQ[v]]

Rubi steps

\begin{align*} \int \text{csch}^2(c+d x) \left (a+b \tanh ^2(c+d x)\right ) \, dx &=\frac{\operatorname{Subst}\left (\int \frac{a+b x^2}{x^2} \, dx,x,\tanh (c+d x)\right )}{d}\\ &=\frac{\operatorname{Subst}\left (\int \left (b+\frac{a}{x^2}\right ) \, dx,x,\tanh (c+d x)\right )}{d}\\ &=-\frac{a \coth (c+d x)}{d}+\frac{b \tanh (c+d x)}{d}\\ \end{align*}

Mathematica [A]  time = 0.0197248, size = 24, normalized size = 1. $\frac{b \tanh (c+d x)}{d}-\frac{a \coth (c+d x)}{d}$

Antiderivative was successfully veriﬁed.

[In]

Integrate[Csch[c + d*x]^2*(a + b*Tanh[c + d*x]^2),x]

[Out]

-((a*Coth[c + d*x])/d) + (b*Tanh[c + d*x])/d

________________________________________________________________________________________

Maple [A]  time = 0.036, size = 23, normalized size = 1. \begin{align*}{\frac{-{\rm coth} \left (dx+c\right )a+b\tanh \left ( dx+c \right ) }{d}} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

int(csch(d*x+c)^2*(a+b*tanh(d*x+c)^2),x)

[Out]

1/d*(-coth(d*x+c)*a+b*tanh(d*x+c))

________________________________________________________________________________________

Maxima [A]  time = 1.14149, size = 53, normalized size = 2.21 \begin{align*} \frac{2 \, b}{d{\left (e^{\left (-2 \, d x - 2 \, c\right )} + 1\right )}} + \frac{2 \, a}{d{\left (e^{\left (-2 \, d x - 2 \, c\right )} - 1\right )}} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(csch(d*x+c)^2*(a+b*tanh(d*x+c)^2),x, algorithm="maxima")

[Out]

2*b/(d*(e^(-2*d*x - 2*c) + 1)) + 2*a/(d*(e^(-2*d*x - 2*c) - 1))

________________________________________________________________________________________

Fricas [B]  time = 1.8861, size = 238, normalized size = 9.92 \begin{align*} -\frac{4 \,{\left (a \cosh \left (d x + c\right ) + b \sinh \left (d x + c\right )\right )}}{d \cosh \left (d x + c\right )^{3} + 3 \, d \cosh \left (d x + c\right ) \sinh \left (d x + c\right )^{2} + d \sinh \left (d x + c\right )^{3} - d \cosh \left (d x + c\right ) +{\left (3 \, d \cosh \left (d x + c\right )^{2} + d\right )} \sinh \left (d x + c\right )} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(csch(d*x+c)^2*(a+b*tanh(d*x+c)^2),x, algorithm="fricas")

[Out]

-4*(a*cosh(d*x + c) + b*sinh(d*x + c))/(d*cosh(d*x + c)^3 + 3*d*cosh(d*x + c)*sinh(d*x + c)^2 + d*sinh(d*x + c
)^3 - d*cosh(d*x + c) + (3*d*cosh(d*x + c)^2 + d)*sinh(d*x + c))

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \left (a + b \tanh ^{2}{\left (c + d x \right )}\right ) \operatorname{csch}^{2}{\left (c + d x \right )}\, dx \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(csch(d*x+c)**2*(a+b*tanh(d*x+c)**2),x)

[Out]

Integral((a + b*tanh(c + d*x)**2)*csch(c + d*x)**2, x)

________________________________________________________________________________________

Giac [A]  time = 1.26439, size = 61, normalized size = 2.54 \begin{align*} -\frac{2 \,{\left (a e^{\left (2 \, d x + 2 \, c\right )} + b e^{\left (2 \, d x + 2 \, c\right )} + a - b\right )}}{d{\left (e^{\left (4 \, d x + 4 \, c\right )} - 1\right )}} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(csch(d*x+c)^2*(a+b*tanh(d*x+c)^2),x, algorithm="giac")

[Out]

-2*(a*e^(2*d*x + 2*c) + b*e^(2*d*x + 2*c) + a - b)/(d*(e^(4*d*x + 4*c) - 1))