### 3.247 $$\int \frac{\tanh ^5(x)}{(a+b \tanh ^2(x))^{5/2}} \, dx$$

Optimal. Leaf size=84 $-\frac{a^2}{3 b^2 (a+b) \left (a+b \tanh ^2(x)\right )^{3/2}}+\frac{a (a+2 b)}{b^2 (a+b)^2 \sqrt{a+b \tanh ^2(x)}}+\frac{\tanh ^{-1}\left (\frac{\sqrt{a+b \tanh ^2(x)}}{\sqrt{a+b}}\right )}{(a+b)^{5/2}}$

[Out]

ArcTanh[Sqrt[a + b*Tanh[x]^2]/Sqrt[a + b]]/(a + b)^(5/2) - a^2/(3*b^2*(a + b)*(a + b*Tanh[x]^2)^(3/2)) + (a*(a
+ 2*b))/(b^2*(a + b)^2*Sqrt[a + b*Tanh[x]^2])

________________________________________________________________________________________

Rubi [A]  time = 0.180589, antiderivative size = 84, normalized size of antiderivative = 1., number of steps used = 6, number of rules used = 5, integrand size = 17, $$\frac{\text{number of rules}}{\text{integrand size}}$$ = 0.294, Rules used = {3670, 446, 87, 63, 208} $-\frac{a^2}{3 b^2 (a+b) \left (a+b \tanh ^2(x)\right )^{3/2}}+\frac{a (a+2 b)}{b^2 (a+b)^2 \sqrt{a+b \tanh ^2(x)}}+\frac{\tanh ^{-1}\left (\frac{\sqrt{a+b \tanh ^2(x)}}{\sqrt{a+b}}\right )}{(a+b)^{5/2}}$

Antiderivative was successfully veriﬁed.

[In]

Int[Tanh[x]^5/(a + b*Tanh[x]^2)^(5/2),x]

[Out]

ArcTanh[Sqrt[a + b*Tanh[x]^2]/Sqrt[a + b]]/(a + b)^(5/2) - a^2/(3*b^2*(a + b)*(a + b*Tanh[x]^2)^(3/2)) + (a*(a
+ 2*b))/(b^2*(a + b)^2*Sqrt[a + b*Tanh[x]^2])

Rule 3670

Int[((d_.)*tan[(e_.) + (f_.)*(x_)])^(m_.)*((a_) + (b_.)*((c_.)*tan[(e_.) + (f_.)*(x_)])^(n_))^(p_.), x_Symbol]
:> With[{ff = FreeFactors[Tan[e + f*x], x]}, Dist[(c*ff)/f, Subst[Int[(((d*ff*x)/c)^m*(a + b*(ff*x)^n)^p)/(c^
2 + ff^2*x^2), x], x, (c*Tan[e + f*x])/ff], x]] /; FreeQ[{a, b, c, d, e, f, m, n, p}, x] && (IGtQ[p, 0] || EqQ
[n, 2] || EqQ[n, 4] || (IntegerQ[p] && RationalQ[n]))

Rule 446

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_))^(q_.), x_Symbol] :> Dist[1/n, Subst[Int
[x^(Simplify[(m + 1)/n] - 1)*(a + b*x)^p*(c + d*x)^q, x], x, x^n], x] /; FreeQ[{a, b, c, d, m, n, p, q}, x] &&
NeQ[b*c - a*d, 0] && IntegerQ[Simplify[(m + 1)/n]]

Rule 87

Int[(((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_))/((a_.) + (b_.)*(x_)), x_Symbol] :> Int[ExpandIntegr
and[(e + f*x)^FractionalPart[p], ((c + d*x)^n*(e + f*x)^IntegerPart[p])/(a + b*x), x], x] /; FreeQ[{a, b, c, d
, e, f}, x] && IGtQ[n, 0] && LtQ[p, -1] && FractionQ[p]

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rubi steps

\begin{align*} \int \frac{\tanh ^5(x)}{\left (a+b \tanh ^2(x)\right )^{5/2}} \, dx &=\operatorname{Subst}\left (\int \frac{x^5}{\left (1-x^2\right ) \left (a+b x^2\right )^{5/2}} \, dx,x,\tanh (x)\right )\\ &=\frac{1}{2} \operatorname{Subst}\left (\int \frac{x^2}{(1-x) (a+b x)^{5/2}} \, dx,x,\tanh ^2(x)\right )\\ &=\frac{1}{2} \operatorname{Subst}\left (\int \left (\frac{a^2}{b (a+b) (a+b x)^{5/2}}-\frac{a (a+2 b)}{b (a+b)^2 (a+b x)^{3/2}}-\frac{1}{(a+b)^2 (-1+x) \sqrt{a+b x}}\right ) \, dx,x,\tanh ^2(x)\right )\\ &=-\frac{a^2}{3 b^2 (a+b) \left (a+b \tanh ^2(x)\right )^{3/2}}+\frac{a (a+2 b)}{b^2 (a+b)^2 \sqrt{a+b \tanh ^2(x)}}-\frac{\operatorname{Subst}\left (\int \frac{1}{(-1+x) \sqrt{a+b x}} \, dx,x,\tanh ^2(x)\right )}{2 (a+b)^2}\\ &=-\frac{a^2}{3 b^2 (a+b) \left (a+b \tanh ^2(x)\right )^{3/2}}+\frac{a (a+2 b)}{b^2 (a+b)^2 \sqrt{a+b \tanh ^2(x)}}-\frac{\operatorname{Subst}\left (\int \frac{1}{-1-\frac{a}{b}+\frac{x^2}{b}} \, dx,x,\sqrt{a+b \tanh ^2(x)}\right )}{b (a+b)^2}\\ &=\frac{\tanh ^{-1}\left (\frac{\sqrt{a+b \tanh ^2(x)}}{\sqrt{a+b}}\right )}{(a+b)^{5/2}}-\frac{a^2}{3 b^2 (a+b) \left (a+b \tanh ^2(x)\right )^{3/2}}+\frac{a (a+2 b)}{b^2 (a+b)^2 \sqrt{a+b \tanh ^2(x)}}\\ \end{align*}

Mathematica [C]  time = 0.110645, size = 68, normalized size = 0.81 $\frac{(a+b) \left (2 a+3 b \tanh ^2(x)+b\right )-b^2 \, _2F_1\left (-\frac{3}{2},1;-\frac{1}{2};\frac{b \tanh ^2(x)+a}{a+b}\right )}{3 b^2 (a+b) \left (a+b \tanh ^2(x)\right )^{3/2}}$

Antiderivative was successfully veriﬁed.

[In]

Integrate[Tanh[x]^5/(a + b*Tanh[x]^2)^(5/2),x]

[Out]

(-(b^2*Hypergeometric2F1[-3/2, 1, -1/2, (a + b*Tanh[x]^2)/(a + b)]) + (a + b)*(2*a + b + 3*b*Tanh[x]^2))/(3*b^
2*(a + b)*(a + b*Tanh[x]^2)^(3/2))

________________________________________________________________________________________

Maple [B]  time = 0.027, size = 469, normalized size = 5.6 \begin{align*} \text{result too large to display} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

int(tanh(x)^5/(a+b*tanh(x)^2)^(5/2),x)

[Out]

tanh(x)^2/b/(a+b*tanh(x)^2)^(3/2)+2/3*a/b^2/(a+b*tanh(x)^2)^(3/2)+1/3/b/(a+b*tanh(x)^2)^(3/2)-1/6/(a+b)/((1+ta
nh(x))^2*b-2*(1+tanh(x))*b+a+b)^(3/2)-1/6*b/(a+b)/a/((1+tanh(x))^2*b-2*(1+tanh(x))*b+a+b)^(3/2)*tanh(x)-1/3*b/
(a+b)/a^2/((1+tanh(x))^2*b-2*(1+tanh(x))*b+a+b)^(1/2)*tanh(x)-1/2/(a+b)^2/((1+tanh(x))^2*b-2*(1+tanh(x))*b+a+b
)^(1/2)-1/2/(a+b)^2/a/((1+tanh(x))^2*b-2*(1+tanh(x))*b+a+b)^(1/2)*b*tanh(x)+1/2/(a+b)^(5/2)*ln((2*a+2*b-2*(1+t
anh(x))*b+2*(a+b)^(1/2)*((1+tanh(x))^2*b-2*(1+tanh(x))*b+a+b)^(1/2))/(1+tanh(x)))-1/6/(a+b)/((tanh(x)-1)^2*b+2
*(tanh(x)-1)*b+a+b)^(3/2)+1/6*b/(a+b)/a/((tanh(x)-1)^2*b+2*(tanh(x)-1)*b+a+b)^(3/2)*tanh(x)+1/3*b/(a+b)/a^2/((
tanh(x)-1)^2*b+2*(tanh(x)-1)*b+a+b)^(1/2)*tanh(x)-1/2/(a+b)^2/((tanh(x)-1)^2*b+2*(tanh(x)-1)*b+a+b)^(1/2)+1/2/
(a+b)^2/a/((tanh(x)-1)^2*b+2*(tanh(x)-1)*b+a+b)^(1/2)*b*tanh(x)+1/2/(a+b)^(5/2)*ln((2*a+2*b+2*(tanh(x)-1)*b+2*
(a+b)^(1/2)*((tanh(x)-1)^2*b+2*(tanh(x)-1)*b+a+b)^(1/2))/(tanh(x)-1))

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\tanh \left (x\right )^{5}}{{\left (b \tanh \left (x\right )^{2} + a\right )}^{\frac{5}{2}}}\,{d x} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(tanh(x)^5/(a+b*tanh(x)^2)^(5/2),x, algorithm="maxima")

[Out]

integrate(tanh(x)^5/(b*tanh(x)^2 + a)^(5/2), x)

________________________________________________________________________________________

Fricas [B]  time = 9.05503, size = 16629, normalized size = 197.96 \begin{align*} \text{result too large to display} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(tanh(x)^5/(a+b*tanh(x)^2)^(5/2),x, algorithm="fricas")

[Out]

[1/12*(3*((a^2*b^2 + 2*a*b^3 + b^4)*cosh(x)^8 + 8*(a^2*b^2 + 2*a*b^3 + b^4)*cosh(x)*sinh(x)^7 + (a^2*b^2 + 2*a
*b^3 + b^4)*sinh(x)^8 + 4*(a^2*b^2 - b^4)*cosh(x)^6 + 4*(a^2*b^2 - b^4 + 7*(a^2*b^2 + 2*a*b^3 + b^4)*cosh(x)^2
)*sinh(x)^6 + 8*(7*(a^2*b^2 + 2*a*b^3 + b^4)*cosh(x)^3 + 3*(a^2*b^2 - b^4)*cosh(x))*sinh(x)^5 + 2*(3*a^2*b^2 -
2*a*b^3 + 3*b^4)*cosh(x)^4 + 2*(35*(a^2*b^2 + 2*a*b^3 + b^4)*cosh(x)^4 + 3*a^2*b^2 - 2*a*b^3 + 3*b^4 + 30*(a^
2*b^2 - b^4)*cosh(x)^2)*sinh(x)^4 + a^2*b^2 + 2*a*b^3 + b^4 + 8*(7*(a^2*b^2 + 2*a*b^3 + b^4)*cosh(x)^5 + 10*(a
^2*b^2 - b^4)*cosh(x)^3 + (3*a^2*b^2 - 2*a*b^3 + 3*b^4)*cosh(x))*sinh(x)^3 + 4*(a^2*b^2 - b^4)*cosh(x)^2 + 4*(
7*(a^2*b^2 + 2*a*b^3 + b^4)*cosh(x)^6 + 15*(a^2*b^2 - b^4)*cosh(x)^4 + a^2*b^2 - b^4 + 3*(3*a^2*b^2 - 2*a*b^3
+ 3*b^4)*cosh(x)^2)*sinh(x)^2 + 8*((a^2*b^2 + 2*a*b^3 + b^4)*cosh(x)^7 + 3*(a^2*b^2 - b^4)*cosh(x)^5 + (3*a^2*
b^2 - 2*a*b^3 + 3*b^4)*cosh(x)^3 + (a^2*b^2 - b^4)*cosh(x))*sinh(x))*sqrt(a + b)*log(((a^3 + a^2*b)*cosh(x)^8
+ 8*(a^3 + a^2*b)*cosh(x)*sinh(x)^7 + (a^3 + a^2*b)*sinh(x)^8 + 2*(2*a^3 + a^2*b)*cosh(x)^6 + 2*(2*a^3 + a^2*b
+ 14*(a^3 + a^2*b)*cosh(x)^2)*sinh(x)^6 + 4*(14*(a^3 + a^2*b)*cosh(x)^3 + 3*(2*a^3 + a^2*b)*cosh(x))*sinh(x)^
5 + (6*a^3 + 4*a^2*b - a*b^2 + b^3)*cosh(x)^4 + (70*(a^3 + a^2*b)*cosh(x)^4 + 6*a^3 + 4*a^2*b - a*b^2 + b^3 +
30*(2*a^3 + a^2*b)*cosh(x)^2)*sinh(x)^4 + 4*(14*(a^3 + a^2*b)*cosh(x)^5 + 10*(2*a^3 + a^2*b)*cosh(x)^3 + (6*a^
3 + 4*a^2*b - a*b^2 + b^3)*cosh(x))*sinh(x)^3 + a^3 + 3*a^2*b + 3*a*b^2 + b^3 + 2*(2*a^3 + 3*a^2*b - b^3)*cosh
(x)^2 + 2*(14*(a^3 + a^2*b)*cosh(x)^6 + 15*(2*a^3 + a^2*b)*cosh(x)^4 + 2*a^3 + 3*a^2*b - b^3 + 3*(6*a^3 + 4*a^
2*b - a*b^2 + b^3)*cosh(x)^2)*sinh(x)^2 + sqrt(2)*(a^2*cosh(x)^6 + 6*a^2*cosh(x)*sinh(x)^5 + a^2*sinh(x)^6 + 3
*a^2*cosh(x)^4 + 3*(5*a^2*cosh(x)^2 + a^2)*sinh(x)^4 + 4*(5*a^2*cosh(x)^3 + 3*a^2*cosh(x))*sinh(x)^3 + (3*a^2
+ 2*a*b - b^2)*cosh(x)^2 + (15*a^2*cosh(x)^4 + 18*a^2*cosh(x)^2 + 3*a^2 + 2*a*b - b^2)*sinh(x)^2 + a^2 + 2*a*b
+ b^2 + 2*(3*a^2*cosh(x)^5 + 6*a^2*cosh(x)^3 + (3*a^2 + 2*a*b - b^2)*cosh(x))*sinh(x))*sqrt(a + b)*sqrt(((a +
b)*cosh(x)^2 + (a + b)*sinh(x)^2 + a - b)/(cosh(x)^2 - 2*cosh(x)*sinh(x) + sinh(x)^2)) + 4*(2*(a^3 + a^2*b)*c
osh(x)^7 + 3*(2*a^3 + a^2*b)*cosh(x)^5 + (6*a^3 + 4*a^2*b - a*b^2 + b^3)*cosh(x)^3 + (2*a^3 + 3*a^2*b - b^3)*c
osh(x))*sinh(x))/(cosh(x)^6 + 6*cosh(x)^5*sinh(x) + 15*cosh(x)^4*sinh(x)^2 + 20*cosh(x)^3*sinh(x)^3 + 15*cosh(
x)^2*sinh(x)^4 + 6*cosh(x)*sinh(x)^5 + sinh(x)^6)) + 3*((a^2*b^2 + 2*a*b^3 + b^4)*cosh(x)^8 + 8*(a^2*b^2 + 2*a
*b^3 + b^4)*cosh(x)*sinh(x)^7 + (a^2*b^2 + 2*a*b^3 + b^4)*sinh(x)^8 + 4*(a^2*b^2 - b^4)*cosh(x)^6 + 4*(a^2*b^2
- b^4 + 7*(a^2*b^2 + 2*a*b^3 + b^4)*cosh(x)^2)*sinh(x)^6 + 8*(7*(a^2*b^2 + 2*a*b^3 + b^4)*cosh(x)^3 + 3*(a^2*
b^2 - b^4)*cosh(x))*sinh(x)^5 + 2*(3*a^2*b^2 - 2*a*b^3 + 3*b^4)*cosh(x)^4 + 2*(35*(a^2*b^2 + 2*a*b^3 + b^4)*co
sh(x)^4 + 3*a^2*b^2 - 2*a*b^3 + 3*b^4 + 30*(a^2*b^2 - b^4)*cosh(x)^2)*sinh(x)^4 + a^2*b^2 + 2*a*b^3 + b^4 + 8*
(7*(a^2*b^2 + 2*a*b^3 + b^4)*cosh(x)^5 + 10*(a^2*b^2 - b^4)*cosh(x)^3 + (3*a^2*b^2 - 2*a*b^3 + 3*b^4)*cosh(x))
*sinh(x)^3 + 4*(a^2*b^2 - b^4)*cosh(x)^2 + 4*(7*(a^2*b^2 + 2*a*b^3 + b^4)*cosh(x)^6 + 15*(a^2*b^2 - b^4)*cosh(
x)^4 + a^2*b^2 - b^4 + 3*(3*a^2*b^2 - 2*a*b^3 + 3*b^4)*cosh(x)^2)*sinh(x)^2 + 8*((a^2*b^2 + 2*a*b^3 + b^4)*cos
h(x)^7 + 3*(a^2*b^2 - b^4)*cosh(x)^5 + (3*a^2*b^2 - 2*a*b^3 + 3*b^4)*cosh(x)^3 + (a^2*b^2 - b^4)*cosh(x))*sinh
(x))*sqrt(a + b)*log(-((a + b)*cosh(x)^4 + 4*(a + b)*cosh(x)*sinh(x)^3 + (a + b)*sinh(x)^4 - 2*b*cosh(x)^2 + 2
*(3*(a + b)*cosh(x)^2 - b)*sinh(x)^2 + sqrt(2)*(cosh(x)^2 + 2*cosh(x)*sinh(x) + sinh(x)^2 - 1)*sqrt(a + b)*sqr
t(((a + b)*cosh(x)^2 + (a + b)*sinh(x)^2 + a - b)/(cosh(x)^2 - 2*cosh(x)*sinh(x) + sinh(x)^2)) + 4*((a + b)*co
sh(x)^3 - b*cosh(x))*sinh(x) + a + b)/(cosh(x)^2 + 2*cosh(x)*sinh(x) + sinh(x)^2)) + 8*sqrt(2)*((a^4 + 5*a^3*b
+ 7*a^2*b^2 + 3*a*b^3)*cosh(x)^6 + 6*(a^4 + 5*a^3*b + 7*a^2*b^2 + 3*a*b^3)*cosh(x)*sinh(x)^5 + (a^4 + 5*a^3*b
+ 7*a^2*b^2 + 3*a*b^3)*sinh(x)^6 + 3*(a^4 + 3*a^3*b + a^2*b^2 - a*b^3)*cosh(x)^4 + 3*(a^4 + 3*a^3*b + a^2*b^2
- a*b^3 + 5*(a^4 + 5*a^3*b + 7*a^2*b^2 + 3*a*b^3)*cosh(x)^2)*sinh(x)^4 + a^4 + 5*a^3*b + 7*a^2*b^2 + 3*a*b^3
+ 4*(5*(a^4 + 5*a^3*b + 7*a^2*b^2 + 3*a*b^3)*cosh(x)^3 + 3*(a^4 + 3*a^3*b + a^2*b^2 - a*b^3)*cosh(x))*sinh(x)^
3 + 3*(a^4 + 3*a^3*b + a^2*b^2 - a*b^3)*cosh(x)^2 + 3*(5*(a^4 + 5*a^3*b + 7*a^2*b^2 + 3*a*b^3)*cosh(x)^4 + a^4
+ 3*a^3*b + a^2*b^2 - a*b^3 + 6*(a^4 + 3*a^3*b + a^2*b^2 - a*b^3)*cosh(x)^2)*sinh(x)^2 + 6*((a^4 + 5*a^3*b +
7*a^2*b^2 + 3*a*b^3)*cosh(x)^5 + 2*(a^4 + 3*a^3*b + a^2*b^2 - a*b^3)*cosh(x)^3 + (a^4 + 3*a^3*b + a^2*b^2 - a*
b^3)*cosh(x))*sinh(x))*sqrt(((a + b)*cosh(x)^2 + (a + b)*sinh(x)^2 + a - b)/(cosh(x)^2 - 2*cosh(x)*sinh(x) + s
inh(x)^2)))/((a^5*b^2 + 5*a^4*b^3 + 10*a^3*b^4 + 10*a^2*b^5 + 5*a*b^6 + b^7)*cosh(x)^8 + 8*(a^5*b^2 + 5*a^4*b^
3 + 10*a^3*b^4 + 10*a^2*b^5 + 5*a*b^6 + b^7)*cosh(x)*sinh(x)^7 + (a^5*b^2 + 5*a^4*b^3 + 10*a^3*b^4 + 10*a^2*b^
5 + 5*a*b^6 + b^7)*sinh(x)^8 + a^5*b^2 + 5*a^4*b^3 + 10*a^3*b^4 + 10*a^2*b^5 + 5*a*b^6 + b^7 + 4*(a^5*b^2 + 3*
a^4*b^3 + 2*a^3*b^4 - 2*a^2*b^5 - 3*a*b^6 - b^7)*cosh(x)^6 + 4*(a^5*b^2 + 3*a^4*b^3 + 2*a^3*b^4 - 2*a^2*b^5 -
3*a*b^6 - b^7 + 7*(a^5*b^2 + 5*a^4*b^3 + 10*a^3*b^4 + 10*a^2*b^5 + 5*a*b^6 + b^7)*cosh(x)^2)*sinh(x)^6 + 8*(7*
(a^5*b^2 + 5*a^4*b^3 + 10*a^3*b^4 + 10*a^2*b^5 + 5*a*b^6 + b^7)*cosh(x)^3 + 3*(a^5*b^2 + 3*a^4*b^3 + 2*a^3*b^4
- 2*a^2*b^5 - 3*a*b^6 - b^7)*cosh(x))*sinh(x)^5 + 2*(3*a^5*b^2 + 7*a^4*b^3 + 6*a^3*b^4 + 6*a^2*b^5 + 7*a*b^6
+ 3*b^7)*cosh(x)^4 + 2*(3*a^5*b^2 + 7*a^4*b^3 + 6*a^3*b^4 + 6*a^2*b^5 + 7*a*b^6 + 3*b^7 + 35*(a^5*b^2 + 5*a^4*
b^3 + 10*a^3*b^4 + 10*a^2*b^5 + 5*a*b^6 + b^7)*cosh(x)^4 + 30*(a^5*b^2 + 3*a^4*b^3 + 2*a^3*b^4 - 2*a^2*b^5 - 3
*a*b^6 - b^7)*cosh(x)^2)*sinh(x)^4 + 8*(7*(a^5*b^2 + 5*a^4*b^3 + 10*a^3*b^4 + 10*a^2*b^5 + 5*a*b^6 + b^7)*cosh
(x)^5 + 10*(a^5*b^2 + 3*a^4*b^3 + 2*a^3*b^4 - 2*a^2*b^5 - 3*a*b^6 - b^7)*cosh(x)^3 + (3*a^5*b^2 + 7*a^4*b^3 +
6*a^3*b^4 + 6*a^2*b^5 + 7*a*b^6 + 3*b^7)*cosh(x))*sinh(x)^3 + 4*(a^5*b^2 + 3*a^4*b^3 + 2*a^3*b^4 - 2*a^2*b^5 -
3*a*b^6 - b^7)*cosh(x)^2 + 4*(a^5*b^2 + 3*a^4*b^3 + 2*a^3*b^4 - 2*a^2*b^5 - 3*a*b^6 - b^7 + 7*(a^5*b^2 + 5*a^
4*b^3 + 10*a^3*b^4 + 10*a^2*b^5 + 5*a*b^6 + b^7)*cosh(x)^6 + 15*(a^5*b^2 + 3*a^4*b^3 + 2*a^3*b^4 - 2*a^2*b^5 -
3*a*b^6 - b^7)*cosh(x)^4 + 3*(3*a^5*b^2 + 7*a^4*b^3 + 6*a^3*b^4 + 6*a^2*b^5 + 7*a*b^6 + 3*b^7)*cosh(x)^2)*sin
h(x)^2 + 8*((a^5*b^2 + 5*a^4*b^3 + 10*a^3*b^4 + 10*a^2*b^5 + 5*a*b^6 + b^7)*cosh(x)^7 + 3*(a^5*b^2 + 3*a^4*b^3
+ 2*a^3*b^4 - 2*a^2*b^5 - 3*a*b^6 - b^7)*cosh(x)^5 + (3*a^5*b^2 + 7*a^4*b^3 + 6*a^3*b^4 + 6*a^2*b^5 + 7*a*b^6
+ 3*b^7)*cosh(x)^3 + (a^5*b^2 + 3*a^4*b^3 + 2*a^3*b^4 - 2*a^2*b^5 - 3*a*b^6 - b^7)*cosh(x))*sinh(x)), -1/6*(3
*((a^2*b^2 + 2*a*b^3 + b^4)*cosh(x)^8 + 8*(a^2*b^2 + 2*a*b^3 + b^4)*cosh(x)*sinh(x)^7 + (a^2*b^2 + 2*a*b^3 + b
^4)*sinh(x)^8 + 4*(a^2*b^2 - b^4)*cosh(x)^6 + 4*(a^2*b^2 - b^4 + 7*(a^2*b^2 + 2*a*b^3 + b^4)*cosh(x)^2)*sinh(x
)^6 + 8*(7*(a^2*b^2 + 2*a*b^3 + b^4)*cosh(x)^3 + 3*(a^2*b^2 - b^4)*cosh(x))*sinh(x)^5 + 2*(3*a^2*b^2 - 2*a*b^3
+ 3*b^4)*cosh(x)^4 + 2*(35*(a^2*b^2 + 2*a*b^3 + b^4)*cosh(x)^4 + 3*a^2*b^2 - 2*a*b^3 + 3*b^4 + 30*(a^2*b^2 -
b^4)*cosh(x)^2)*sinh(x)^4 + a^2*b^2 + 2*a*b^3 + b^4 + 8*(7*(a^2*b^2 + 2*a*b^3 + b^4)*cosh(x)^5 + 10*(a^2*b^2 -
b^4)*cosh(x)^3 + (3*a^2*b^2 - 2*a*b^3 + 3*b^4)*cosh(x))*sinh(x)^3 + 4*(a^2*b^2 - b^4)*cosh(x)^2 + 4*(7*(a^2*b
^2 + 2*a*b^3 + b^4)*cosh(x)^6 + 15*(a^2*b^2 - b^4)*cosh(x)^4 + a^2*b^2 - b^4 + 3*(3*a^2*b^2 - 2*a*b^3 + 3*b^4)
*cosh(x)^2)*sinh(x)^2 + 8*((a^2*b^2 + 2*a*b^3 + b^4)*cosh(x)^7 + 3*(a^2*b^2 - b^4)*cosh(x)^5 + (3*a^2*b^2 - 2*
a*b^3 + 3*b^4)*cosh(x)^3 + (a^2*b^2 - b^4)*cosh(x))*sinh(x))*sqrt(-a - b)*arctan(sqrt(2)*(a*cosh(x)^2 + 2*a*co
sh(x)*sinh(x) + a*sinh(x)^2 + a + b)*sqrt(-a - b)*sqrt(((a + b)*cosh(x)^2 + (a + b)*sinh(x)^2 + a - b)/(cosh(x
)^2 - 2*cosh(x)*sinh(x) + sinh(x)^2))/((a^2 + a*b)*cosh(x)^4 + 4*(a^2 + a*b)*cosh(x)*sinh(x)^3 + (a^2 + a*b)*s
inh(x)^4 + (2*a^2 + a*b - b^2)*cosh(x)^2 + (6*(a^2 + a*b)*cosh(x)^2 + 2*a^2 + a*b - b^2)*sinh(x)^2 + a^2 + 2*a
*b + b^2 + 2*(2*(a^2 + a*b)*cosh(x)^3 + (2*a^2 + a*b - b^2)*cosh(x))*sinh(x))) + 3*((a^2*b^2 + 2*a*b^3 + b^4)*
cosh(x)^8 + 8*(a^2*b^2 + 2*a*b^3 + b^4)*cosh(x)*sinh(x)^7 + (a^2*b^2 + 2*a*b^3 + b^4)*sinh(x)^8 + 4*(a^2*b^2 -
b^4)*cosh(x)^6 + 4*(a^2*b^2 - b^4 + 7*(a^2*b^2 + 2*a*b^3 + b^4)*cosh(x)^2)*sinh(x)^6 + 8*(7*(a^2*b^2 + 2*a*b^
3 + b^4)*cosh(x)^3 + 3*(a^2*b^2 - b^4)*cosh(x))*sinh(x)^5 + 2*(3*a^2*b^2 - 2*a*b^3 + 3*b^4)*cosh(x)^4 + 2*(35*
(a^2*b^2 + 2*a*b^3 + b^4)*cosh(x)^4 + 3*a^2*b^2 - 2*a*b^3 + 3*b^4 + 30*(a^2*b^2 - b^4)*cosh(x)^2)*sinh(x)^4 +
a^2*b^2 + 2*a*b^3 + b^4 + 8*(7*(a^2*b^2 + 2*a*b^3 + b^4)*cosh(x)^5 + 10*(a^2*b^2 - b^4)*cosh(x)^3 + (3*a^2*b^2
- 2*a*b^3 + 3*b^4)*cosh(x))*sinh(x)^3 + 4*(a^2*b^2 - b^4)*cosh(x)^2 + 4*(7*(a^2*b^2 + 2*a*b^3 + b^4)*cosh(x)^
6 + 15*(a^2*b^2 - b^4)*cosh(x)^4 + a^2*b^2 - b^4 + 3*(3*a^2*b^2 - 2*a*b^3 + 3*b^4)*cosh(x)^2)*sinh(x)^2 + 8*((
a^2*b^2 + 2*a*b^3 + b^4)*cosh(x)^7 + 3*(a^2*b^2 - b^4)*cosh(x)^5 + (3*a^2*b^2 - 2*a*b^3 + 3*b^4)*cosh(x)^3 + (
a^2*b^2 - b^4)*cosh(x))*sinh(x))*sqrt(-a - b)*arctan(sqrt(2)*(cosh(x)^2 + 2*cosh(x)*sinh(x) + sinh(x)^2 - 1)*s
qrt(-a - b)*sqrt(((a + b)*cosh(x)^2 + (a + b)*sinh(x)^2 + a - b)/(cosh(x)^2 - 2*cosh(x)*sinh(x) + sinh(x)^2))/
((a + b)*cosh(x)^4 + 4*(a + b)*cosh(x)*sinh(x)^3 + (a + b)*sinh(x)^4 + 2*(a - b)*cosh(x)^2 + 2*(3*(a + b)*cosh
(x)^2 + a - b)*sinh(x)^2 + 4*((a + b)*cosh(x)^3 + (a - b)*cosh(x))*sinh(x) + a + b)) - 4*sqrt(2)*((a^4 + 5*a^3
*b + 7*a^2*b^2 + 3*a*b^3)*cosh(x)^6 + 6*(a^4 + 5*a^3*b + 7*a^2*b^2 + 3*a*b^3)*cosh(x)*sinh(x)^5 + (a^4 + 5*a^3
*b + 7*a^2*b^2 + 3*a*b^3)*sinh(x)^6 + 3*(a^4 + 3*a^3*b + a^2*b^2 - a*b^3)*cosh(x)^4 + 3*(a^4 + 3*a^3*b + a^2*b
^2 - a*b^3 + 5*(a^4 + 5*a^3*b + 7*a^2*b^2 + 3*a*b^3)*cosh(x)^2)*sinh(x)^4 + a^4 + 5*a^3*b + 7*a^2*b^2 + 3*a*b^
3 + 4*(5*(a^4 + 5*a^3*b + 7*a^2*b^2 + 3*a*b^3)*cosh(x)^3 + 3*(a^4 + 3*a^3*b + a^2*b^2 - a*b^3)*cosh(x))*sinh(x
)^3 + 3*(a^4 + 3*a^3*b + a^2*b^2 - a*b^3)*cosh(x)^2 + 3*(5*(a^4 + 5*a^3*b + 7*a^2*b^2 + 3*a*b^3)*cosh(x)^4 + a
^4 + 3*a^3*b + a^2*b^2 - a*b^3 + 6*(a^4 + 3*a^3*b + a^2*b^2 - a*b^3)*cosh(x)^2)*sinh(x)^2 + 6*((a^4 + 5*a^3*b
+ 7*a^2*b^2 + 3*a*b^3)*cosh(x)^5 + 2*(a^4 + 3*a^3*b + a^2*b^2 - a*b^3)*cosh(x)^3 + (a^4 + 3*a^3*b + a^2*b^2 -
a*b^3)*cosh(x))*sinh(x))*sqrt(((a + b)*cosh(x)^2 + (a + b)*sinh(x)^2 + a - b)/(cosh(x)^2 - 2*cosh(x)*sinh(x) +
sinh(x)^2)))/((a^5*b^2 + 5*a^4*b^3 + 10*a^3*b^4 + 10*a^2*b^5 + 5*a*b^6 + b^7)*cosh(x)^8 + 8*(a^5*b^2 + 5*a^4*
b^3 + 10*a^3*b^4 + 10*a^2*b^5 + 5*a*b^6 + b^7)*cosh(x)*sinh(x)^7 + (a^5*b^2 + 5*a^4*b^3 + 10*a^3*b^4 + 10*a^2*
b^5 + 5*a*b^6 + b^7)*sinh(x)^8 + a^5*b^2 + 5*a^4*b^3 + 10*a^3*b^4 + 10*a^2*b^5 + 5*a*b^6 + b^7 + 4*(a^5*b^2 +
3*a^4*b^3 + 2*a^3*b^4 - 2*a^2*b^5 - 3*a*b^6 - b^7)*cosh(x)^6 + 4*(a^5*b^2 + 3*a^4*b^3 + 2*a^3*b^4 - 2*a^2*b^5
- 3*a*b^6 - b^7 + 7*(a^5*b^2 + 5*a^4*b^3 + 10*a^3*b^4 + 10*a^2*b^5 + 5*a*b^6 + b^7)*cosh(x)^2)*sinh(x)^6 + 8*(
7*(a^5*b^2 + 5*a^4*b^3 + 10*a^3*b^4 + 10*a^2*b^5 + 5*a*b^6 + b^7)*cosh(x)^3 + 3*(a^5*b^2 + 3*a^4*b^3 + 2*a^3*b
^4 - 2*a^2*b^5 - 3*a*b^6 - b^7)*cosh(x))*sinh(x)^5 + 2*(3*a^5*b^2 + 7*a^4*b^3 + 6*a^3*b^4 + 6*a^2*b^5 + 7*a*b^
6 + 3*b^7)*cosh(x)^4 + 2*(3*a^5*b^2 + 7*a^4*b^3 + 6*a^3*b^4 + 6*a^2*b^5 + 7*a*b^6 + 3*b^7 + 35*(a^5*b^2 + 5*a^
4*b^3 + 10*a^3*b^4 + 10*a^2*b^5 + 5*a*b^6 + b^7)*cosh(x)^4 + 30*(a^5*b^2 + 3*a^4*b^3 + 2*a^3*b^4 - 2*a^2*b^5 -
3*a*b^6 - b^7)*cosh(x)^2)*sinh(x)^4 + 8*(7*(a^5*b^2 + 5*a^4*b^3 + 10*a^3*b^4 + 10*a^2*b^5 + 5*a*b^6 + b^7)*co
sh(x)^5 + 10*(a^5*b^2 + 3*a^4*b^3 + 2*a^3*b^4 - 2*a^2*b^5 - 3*a*b^6 - b^7)*cosh(x)^3 + (3*a^5*b^2 + 7*a^4*b^3
+ 6*a^3*b^4 + 6*a^2*b^5 + 7*a*b^6 + 3*b^7)*cosh(x))*sinh(x)^3 + 4*(a^5*b^2 + 3*a^4*b^3 + 2*a^3*b^4 - 2*a^2*b^5
- 3*a*b^6 - b^7)*cosh(x)^2 + 4*(a^5*b^2 + 3*a^4*b^3 + 2*a^3*b^4 - 2*a^2*b^5 - 3*a*b^6 - b^7 + 7*(a^5*b^2 + 5*
a^4*b^3 + 10*a^3*b^4 + 10*a^2*b^5 + 5*a*b^6 + b^7)*cosh(x)^6 + 15*(a^5*b^2 + 3*a^4*b^3 + 2*a^3*b^4 - 2*a^2*b^5
- 3*a*b^6 - b^7)*cosh(x)^4 + 3*(3*a^5*b^2 + 7*a^4*b^3 + 6*a^3*b^4 + 6*a^2*b^5 + 7*a*b^6 + 3*b^7)*cosh(x)^2)*s
inh(x)^2 + 8*((a^5*b^2 + 5*a^4*b^3 + 10*a^3*b^4 + 10*a^2*b^5 + 5*a*b^6 + b^7)*cosh(x)^7 + 3*(a^5*b^2 + 3*a^4*b
^3 + 2*a^3*b^4 - 2*a^2*b^5 - 3*a*b^6 - b^7)*cosh(x)^5 + (3*a^5*b^2 + 7*a^4*b^3 + 6*a^3*b^4 + 6*a^2*b^5 + 7*a*b
^6 + 3*b^7)*cosh(x)^3 + (a^5*b^2 + 3*a^4*b^3 + 2*a^3*b^4 - 2*a^2*b^5 - 3*a*b^6 - b^7)*cosh(x))*sinh(x))]

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\tanh ^{5}{\left (x \right )}}{\left (a + b \tanh ^{2}{\left (x \right )}\right )^{\frac{5}{2}}}\, dx \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(tanh(x)**5/(a+b*tanh(x)**2)**(5/2),x)

[Out]

Integral(tanh(x)**5/(a + b*tanh(x)**2)**(5/2), x)

________________________________________________________________________________________

Giac [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: TypeError} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(tanh(x)^5/(a+b*tanh(x)^2)^(5/2),x, algorithm="giac")

[Out]

Exception raised: TypeError