### 3.229 $$\int \frac{\tanh ^5(x)}{\sqrt{a+b \tanh ^2(x)}} \, dx$$

Optimal. Leaf size=70 $-\frac{\left (a+b \tanh ^2(x)\right )^{3/2}}{3 b^2}+\frac{(a-b) \sqrt{a+b \tanh ^2(x)}}{b^2}+\frac{\tanh ^{-1}\left (\frac{\sqrt{a+b \tanh ^2(x)}}{\sqrt{a+b}}\right )}{\sqrt{a+b}}$

[Out]

ArcTanh[Sqrt[a + b*Tanh[x]^2]/Sqrt[a + b]]/Sqrt[a + b] + ((a - b)*Sqrt[a + b*Tanh[x]^2])/b^2 - (a + b*Tanh[x]^
2)^(3/2)/(3*b^2)

________________________________________________________________________________________

Rubi [A]  time = 0.136063, antiderivative size = 70, normalized size of antiderivative = 1., number of steps used = 6, number of rules used = 5, integrand size = 17, $$\frac{\text{number of rules}}{\text{integrand size}}$$ = 0.294, Rules used = {3670, 446, 88, 63, 208} $-\frac{\left (a+b \tanh ^2(x)\right )^{3/2}}{3 b^2}+\frac{(a-b) \sqrt{a+b \tanh ^2(x)}}{b^2}+\frac{\tanh ^{-1}\left (\frac{\sqrt{a+b \tanh ^2(x)}}{\sqrt{a+b}}\right )}{\sqrt{a+b}}$

Antiderivative was successfully veriﬁed.

[In]

Int[Tanh[x]^5/Sqrt[a + b*Tanh[x]^2],x]

[Out]

ArcTanh[Sqrt[a + b*Tanh[x]^2]/Sqrt[a + b]]/Sqrt[a + b] + ((a - b)*Sqrt[a + b*Tanh[x]^2])/b^2 - (a + b*Tanh[x]^
2)^(3/2)/(3*b^2)

Rule 3670

Int[((d_.)*tan[(e_.) + (f_.)*(x_)])^(m_.)*((a_) + (b_.)*((c_.)*tan[(e_.) + (f_.)*(x_)])^(n_))^(p_.), x_Symbol]
:> With[{ff = FreeFactors[Tan[e + f*x], x]}, Dist[(c*ff)/f, Subst[Int[(((d*ff*x)/c)^m*(a + b*(ff*x)^n)^p)/(c^
2 + ff^2*x^2), x], x, (c*Tan[e + f*x])/ff], x]] /; FreeQ[{a, b, c, d, e, f, m, n, p}, x] && (IGtQ[p, 0] || EqQ
[n, 2] || EqQ[n, 4] || (IntegerQ[p] && RationalQ[n]))

Rule 446

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_))^(q_.), x_Symbol] :> Dist[1/n, Subst[Int
[x^(Simplify[(m + 1)/n] - 1)*(a + b*x)^p*(c + d*x)^q, x], x, x^n], x] /; FreeQ[{a, b, c, d, m, n, p, q}, x] &&
NeQ[b*c - a*d, 0] && IntegerQ[Simplify[(m + 1)/n]]

Rule 88

Int[((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Int[ExpandI
ntegrand[(a + b*x)^m*(c + d*x)^n*(e + f*x)^p, x], x] /; FreeQ[{a, b, c, d, e, f, p}, x] && IntegersQ[m, n] &&
(IntegerQ[p] || (GtQ[m, 0] && GeQ[n, -1]))

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rubi steps

\begin{align*} \int \frac{\tanh ^5(x)}{\sqrt{a+b \tanh ^2(x)}} \, dx &=\operatorname{Subst}\left (\int \frac{x^5}{\left (1-x^2\right ) \sqrt{a+b x^2}} \, dx,x,\tanh (x)\right )\\ &=\frac{1}{2} \operatorname{Subst}\left (\int \frac{x^2}{(1-x) \sqrt{a+b x}} \, dx,x,\tanh ^2(x)\right )\\ &=\frac{1}{2} \operatorname{Subst}\left (\int \left (\frac{a-b}{b \sqrt{a+b x}}+\frac{1}{(1-x) \sqrt{a+b x}}-\frac{\sqrt{a+b x}}{b}\right ) \, dx,x,\tanh ^2(x)\right )\\ &=\frac{(a-b) \sqrt{a+b \tanh ^2(x)}}{b^2}-\frac{\left (a+b \tanh ^2(x)\right )^{3/2}}{3 b^2}+\frac{1}{2} \operatorname{Subst}\left (\int \frac{1}{(1-x) \sqrt{a+b x}} \, dx,x,\tanh ^2(x)\right )\\ &=\frac{(a-b) \sqrt{a+b \tanh ^2(x)}}{b^2}-\frac{\left (a+b \tanh ^2(x)\right )^{3/2}}{3 b^2}+\frac{\operatorname{Subst}\left (\int \frac{1}{1+\frac{a}{b}-\frac{x^2}{b}} \, dx,x,\sqrt{a+b \tanh ^2(x)}\right )}{b}\\ &=\frac{\tanh ^{-1}\left (\frac{\sqrt{a+b \tanh ^2(x)}}{\sqrt{a+b}}\right )}{\sqrt{a+b}}+\frac{(a-b) \sqrt{a+b \tanh ^2(x)}}{b^2}-\frac{\left (a+b \tanh ^2(x)\right )^{3/2}}{3 b^2}\\ \end{align*}

Mathematica [A]  time = 0.482292, size = 68, normalized size = 0.97 $\frac{\text{sech}^2(x) ((a-2 b) \cosh (2 x)+a-b) \sqrt{a+b \tanh ^2(x)}}{3 b^2}+\frac{\tanh ^{-1}\left (\frac{\sqrt{a+b \tanh ^2(x)}}{\sqrt{a+b}}\right )}{\sqrt{a+b}}$

Antiderivative was successfully veriﬁed.

[In]

Integrate[Tanh[x]^5/Sqrt[a + b*Tanh[x]^2],x]

[Out]

ArcTanh[Sqrt[a + b*Tanh[x]^2]/Sqrt[a + b]]/Sqrt[a + b] + ((a - b + (a - 2*b)*Cosh[2*x])*Sech[x]^2*Sqrt[a + b*T
anh[x]^2])/(3*b^2)

________________________________________________________________________________________

Maple [B]  time = 0.053, size = 164, normalized size = 2.3 \begin{align*} -{\frac{ \left ( \tanh \left ( x \right ) \right ) ^{2}}{3\,b}\sqrt{a+b \left ( \tanh \left ( x \right ) \right ) ^{2}}}+{\frac{2\,a}{3\,{b}^{2}}\sqrt{a+b \left ( \tanh \left ( x \right ) \right ) ^{2}}}-{\frac{1}{b}\sqrt{a+b \left ( \tanh \left ( x \right ) \right ) ^{2}}}+{\frac{1}{2}\ln \left ({\frac{1}{1+\tanh \left ( x \right ) } \left ( 2\,a+2\,b-2\, \left ( 1+\tanh \left ( x \right ) \right ) b+2\,\sqrt{a+b}\sqrt{ \left ( 1+\tanh \left ( x \right ) \right ) ^{2}b-2\, \left ( 1+\tanh \left ( x \right ) \right ) b+a+b} \right ) } \right ){\frac{1}{\sqrt{a+b}}}}+{\frac{1}{2}\ln \left ({\frac{1}{\tanh \left ( x \right ) -1} \left ( 2\,a+2\,b+2\, \left ( \tanh \left ( x \right ) -1 \right ) b+2\,\sqrt{a+b}\sqrt{ \left ( \tanh \left ( x \right ) -1 \right ) ^{2}b+2\, \left ( \tanh \left ( x \right ) -1 \right ) b+a+b} \right ) } \right ){\frac{1}{\sqrt{a+b}}}} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

int(tanh(x)^5/(a+b*tanh(x)^2)^(1/2),x)

[Out]

-1/3*tanh(x)^2/b*(a+b*tanh(x)^2)^(1/2)+2/3*a/b^2*(a+b*tanh(x)^2)^(1/2)-(a+b*tanh(x)^2)^(1/2)/b+1/2/(a+b)^(1/2)
*ln((2*a+2*b-2*(1+tanh(x))*b+2*(a+b)^(1/2)*((1+tanh(x))^2*b-2*(1+tanh(x))*b+a+b)^(1/2))/(1+tanh(x)))+1/2/(a+b)
^(1/2)*ln((2*a+2*b+2*(tanh(x)-1)*b+2*(a+b)^(1/2)*((tanh(x)-1)^2*b+2*(tanh(x)-1)*b+a+b)^(1/2))/(tanh(x)-1))

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\tanh \left (x\right )^{5}}{\sqrt{b \tanh \left (x\right )^{2} + a}}\,{d x} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(tanh(x)^5/(a+b*tanh(x)^2)^(1/2),x, algorithm="maxima")

[Out]

integrate(tanh(x)^5/sqrt(b*tanh(x)^2 + a), x)

________________________________________________________________________________________

Fricas [B]  time = 4.37119, size = 7692, normalized size = 109.89 \begin{align*} \text{result too large to display} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(tanh(x)^5/(a+b*tanh(x)^2)^(1/2),x, algorithm="fricas")

[Out]

[1/12*(3*(b^2*cosh(x)^6 + 6*b^2*cosh(x)*sinh(x)^5 + b^2*sinh(x)^6 + 3*b^2*cosh(x)^4 + 3*(5*b^2*cosh(x)^2 + b^2
)*sinh(x)^4 + 3*b^2*cosh(x)^2 + 4*(5*b^2*cosh(x)^3 + 3*b^2*cosh(x))*sinh(x)^3 + 3*(5*b^2*cosh(x)^4 + 6*b^2*cos
h(x)^2 + b^2)*sinh(x)^2 + b^2 + 6*(b^2*cosh(x)^5 + 2*b^2*cosh(x)^3 + b^2*cosh(x))*sinh(x))*sqrt(a + b)*log(((a
^3 + a^2*b)*cosh(x)^8 + 8*(a^3 + a^2*b)*cosh(x)*sinh(x)^7 + (a^3 + a^2*b)*sinh(x)^8 + 2*(2*a^3 + a^2*b)*cosh(x
)^6 + 2*(2*a^3 + a^2*b + 14*(a^3 + a^2*b)*cosh(x)^2)*sinh(x)^6 + 4*(14*(a^3 + a^2*b)*cosh(x)^3 + 3*(2*a^3 + a^
2*b)*cosh(x))*sinh(x)^5 + (6*a^3 + 4*a^2*b - a*b^2 + b^3)*cosh(x)^4 + (70*(a^3 + a^2*b)*cosh(x)^4 + 6*a^3 + 4*
a^2*b - a*b^2 + b^3 + 30*(2*a^3 + a^2*b)*cosh(x)^2)*sinh(x)^4 + 4*(14*(a^3 + a^2*b)*cosh(x)^5 + 10*(2*a^3 + a^
2*b)*cosh(x)^3 + (6*a^3 + 4*a^2*b - a*b^2 + b^3)*cosh(x))*sinh(x)^3 + a^3 + 3*a^2*b + 3*a*b^2 + b^3 + 2*(2*a^3
+ 3*a^2*b - b^3)*cosh(x)^2 + 2*(14*(a^3 + a^2*b)*cosh(x)^6 + 15*(2*a^3 + a^2*b)*cosh(x)^4 + 2*a^3 + 3*a^2*b -
b^3 + 3*(6*a^3 + 4*a^2*b - a*b^2 + b^3)*cosh(x)^2)*sinh(x)^2 + sqrt(2)*(a^2*cosh(x)^6 + 6*a^2*cosh(x)*sinh(x)
^5 + a^2*sinh(x)^6 + 3*a^2*cosh(x)^4 + 3*(5*a^2*cosh(x)^2 + a^2)*sinh(x)^4 + 4*(5*a^2*cosh(x)^3 + 3*a^2*cosh(x
))*sinh(x)^3 + (3*a^2 + 2*a*b - b^2)*cosh(x)^2 + (15*a^2*cosh(x)^4 + 18*a^2*cosh(x)^2 + 3*a^2 + 2*a*b - b^2)*s
inh(x)^2 + a^2 + 2*a*b + b^2 + 2*(3*a^2*cosh(x)^5 + 6*a^2*cosh(x)^3 + (3*a^2 + 2*a*b - b^2)*cosh(x))*sinh(x))*
sqrt(a + b)*sqrt(((a + b)*cosh(x)^2 + (a + b)*sinh(x)^2 + a - b)/(cosh(x)^2 - 2*cosh(x)*sinh(x) + sinh(x)^2))
+ 4*(2*(a^3 + a^2*b)*cosh(x)^7 + 3*(2*a^3 + a^2*b)*cosh(x)^5 + (6*a^3 + 4*a^2*b - a*b^2 + b^3)*cosh(x)^3 + (2*
a^3 + 3*a^2*b - b^3)*cosh(x))*sinh(x))/(cosh(x)^6 + 6*cosh(x)^5*sinh(x) + 15*cosh(x)^4*sinh(x)^2 + 20*cosh(x)^
3*sinh(x)^3 + 15*cosh(x)^2*sinh(x)^4 + 6*cosh(x)*sinh(x)^5 + sinh(x)^6)) + 3*(b^2*cosh(x)^6 + 6*b^2*cosh(x)*si
nh(x)^5 + b^2*sinh(x)^6 + 3*b^2*cosh(x)^4 + 3*(5*b^2*cosh(x)^2 + b^2)*sinh(x)^4 + 3*b^2*cosh(x)^2 + 4*(5*b^2*c
osh(x)^3 + 3*b^2*cosh(x))*sinh(x)^3 + 3*(5*b^2*cosh(x)^4 + 6*b^2*cosh(x)^2 + b^2)*sinh(x)^2 + b^2 + 6*(b^2*cos
h(x)^5 + 2*b^2*cosh(x)^3 + b^2*cosh(x))*sinh(x))*sqrt(a + b)*log(-((a + b)*cosh(x)^4 + 4*(a + b)*cosh(x)*sinh(
x)^3 + (a + b)*sinh(x)^4 - 2*b*cosh(x)^2 + 2*(3*(a + b)*cosh(x)^2 - b)*sinh(x)^2 + sqrt(2)*(cosh(x)^2 + 2*cosh
(x)*sinh(x) + sinh(x)^2 - 1)*sqrt(a + b)*sqrt(((a + b)*cosh(x)^2 + (a + b)*sinh(x)^2 + a - b)/(cosh(x)^2 - 2*c
osh(x)*sinh(x) + sinh(x)^2)) + 4*((a + b)*cosh(x)^3 - b*cosh(x))*sinh(x) + a + b)/(cosh(x)^2 + 2*cosh(x)*sinh(
x) + sinh(x)^2)) + 8*sqrt(2)*((a^2 - a*b - 2*b^2)*cosh(x)^4 + 4*(a^2 - a*b - 2*b^2)*cosh(x)*sinh(x)^3 + (a^2 -
a*b - 2*b^2)*sinh(x)^4 + 2*(a^2 - b^2)*cosh(x)^2 + 2*(3*(a^2 - a*b - 2*b^2)*cosh(x)^2 + a^2 - b^2)*sinh(x)^2
+ a^2 - a*b - 2*b^2 + 4*((a^2 - a*b - 2*b^2)*cosh(x)^3 + (a^2 - b^2)*cosh(x))*sinh(x))*sqrt(((a + b)*cosh(x)^2
+ (a + b)*sinh(x)^2 + a - b)/(cosh(x)^2 - 2*cosh(x)*sinh(x) + sinh(x)^2)))/((a*b^2 + b^3)*cosh(x)^6 + 6*(a*b^
2 + b^3)*cosh(x)*sinh(x)^5 + (a*b^2 + b^3)*sinh(x)^6 + 3*(a*b^2 + b^3)*cosh(x)^4 + 3*(a*b^2 + b^3 + 5*(a*b^2 +
b^3)*cosh(x)^2)*sinh(x)^4 + 4*(5*(a*b^2 + b^3)*cosh(x)^3 + 3*(a*b^2 + b^3)*cosh(x))*sinh(x)^3 + a*b^2 + b^3 +
3*(a*b^2 + b^3)*cosh(x)^2 + 3*(5*(a*b^2 + b^3)*cosh(x)^4 + a*b^2 + b^3 + 6*(a*b^2 + b^3)*cosh(x)^2)*sinh(x)^2
+ 6*((a*b^2 + b^3)*cosh(x)^5 + 2*(a*b^2 + b^3)*cosh(x)^3 + (a*b^2 + b^3)*cosh(x))*sinh(x)), -1/6*(3*(b^2*cosh
(x)^6 + 6*b^2*cosh(x)*sinh(x)^5 + b^2*sinh(x)^6 + 3*b^2*cosh(x)^4 + 3*(5*b^2*cosh(x)^2 + b^2)*sinh(x)^4 + 3*b^
2*cosh(x)^2 + 4*(5*b^2*cosh(x)^3 + 3*b^2*cosh(x))*sinh(x)^3 + 3*(5*b^2*cosh(x)^4 + 6*b^2*cosh(x)^2 + b^2)*sinh
(x)^2 + b^2 + 6*(b^2*cosh(x)^5 + 2*b^2*cosh(x)^3 + b^2*cosh(x))*sinh(x))*sqrt(-a - b)*arctan(sqrt(2)*(a*cosh(x
)^2 + 2*a*cosh(x)*sinh(x) + a*sinh(x)^2 + a + b)*sqrt(-a - b)*sqrt(((a + b)*cosh(x)^2 + (a + b)*sinh(x)^2 + a
- b)/(cosh(x)^2 - 2*cosh(x)*sinh(x) + sinh(x)^2))/((a^2 + a*b)*cosh(x)^4 + 4*(a^2 + a*b)*cosh(x)*sinh(x)^3 + (
a^2 + a*b)*sinh(x)^4 + (2*a^2 + a*b - b^2)*cosh(x)^2 + (6*(a^2 + a*b)*cosh(x)^2 + 2*a^2 + a*b - b^2)*sinh(x)^2
+ a^2 + 2*a*b + b^2 + 2*(2*(a^2 + a*b)*cosh(x)^3 + (2*a^2 + a*b - b^2)*cosh(x))*sinh(x))) + 3*(b^2*cosh(x)^6
+ 6*b^2*cosh(x)*sinh(x)^5 + b^2*sinh(x)^6 + 3*b^2*cosh(x)^4 + 3*(5*b^2*cosh(x)^2 + b^2)*sinh(x)^4 + 3*b^2*cosh
(x)^2 + 4*(5*b^2*cosh(x)^3 + 3*b^2*cosh(x))*sinh(x)^3 + 3*(5*b^2*cosh(x)^4 + 6*b^2*cosh(x)^2 + b^2)*sinh(x)^2
+ b^2 + 6*(b^2*cosh(x)^5 + 2*b^2*cosh(x)^3 + b^2*cosh(x))*sinh(x))*sqrt(-a - b)*arctan(sqrt(2)*(cosh(x)^2 + 2*
cosh(x)*sinh(x) + sinh(x)^2 - 1)*sqrt(-a - b)*sqrt(((a + b)*cosh(x)^2 + (a + b)*sinh(x)^2 + a - b)/(cosh(x)^2
- 2*cosh(x)*sinh(x) + sinh(x)^2))/((a + b)*cosh(x)^4 + 4*(a + b)*cosh(x)*sinh(x)^3 + (a + b)*sinh(x)^4 + 2*(a
- b)*cosh(x)^2 + 2*(3*(a + b)*cosh(x)^2 + a - b)*sinh(x)^2 + 4*((a + b)*cosh(x)^3 + (a - b)*cosh(x))*sinh(x) +
a + b)) - 4*sqrt(2)*((a^2 - a*b - 2*b^2)*cosh(x)^4 + 4*(a^2 - a*b - 2*b^2)*cosh(x)*sinh(x)^3 + (a^2 - a*b - 2
*b^2)*sinh(x)^4 + 2*(a^2 - b^2)*cosh(x)^2 + 2*(3*(a^2 - a*b - 2*b^2)*cosh(x)^2 + a^2 - b^2)*sinh(x)^2 + a^2 -
a*b - 2*b^2 + 4*((a^2 - a*b - 2*b^2)*cosh(x)^3 + (a^2 - b^2)*cosh(x))*sinh(x))*sqrt(((a + b)*cosh(x)^2 + (a +
b)*sinh(x)^2 + a - b)/(cosh(x)^2 - 2*cosh(x)*sinh(x) + sinh(x)^2)))/((a*b^2 + b^3)*cosh(x)^6 + 6*(a*b^2 + b^3)
*cosh(x)*sinh(x)^5 + (a*b^2 + b^3)*sinh(x)^6 + 3*(a*b^2 + b^3)*cosh(x)^4 + 3*(a*b^2 + b^3 + 5*(a*b^2 + b^3)*co
sh(x)^2)*sinh(x)^4 + 4*(5*(a*b^2 + b^3)*cosh(x)^3 + 3*(a*b^2 + b^3)*cosh(x))*sinh(x)^3 + a*b^2 + b^3 + 3*(a*b^
2 + b^3)*cosh(x)^2 + 3*(5*(a*b^2 + b^3)*cosh(x)^4 + a*b^2 + b^3 + 6*(a*b^2 + b^3)*cosh(x)^2)*sinh(x)^2 + 6*((a
*b^2 + b^3)*cosh(x)^5 + 2*(a*b^2 + b^3)*cosh(x)^3 + (a*b^2 + b^3)*cosh(x))*sinh(x))]

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\tanh ^{5}{\left (x \right )}}{\sqrt{a + b \tanh ^{2}{\left (x \right )}}}\, dx \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(tanh(x)**5/(a+b*tanh(x)**2)**(1/2),x)

[Out]

Integral(tanh(x)**5/sqrt(a + b*tanh(x)**2), x)

________________________________________________________________________________________

Giac [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: TypeError} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(tanh(x)^5/(a+b*tanh(x)^2)^(1/2),x, algorithm="giac")

[Out]

Exception raised: TypeError