### 3.211 $$\int \tanh ^2(x) \sqrt{a+b \tanh ^2(x)} \, dx$$

Optimal. Leaf size=85 $-\frac{(a+2 b) \tanh ^{-1}\left (\frac{\sqrt{b} \tanh (x)}{\sqrt{a+b \tanh ^2(x)}}\right )}{2 \sqrt{b}}+\sqrt{a+b} \tanh ^{-1}\left (\frac{\sqrt{a+b} \tanh (x)}{\sqrt{a+b \tanh ^2(x)}}\right )-\frac{1}{2} \tanh (x) \sqrt{a+b \tanh ^2(x)}$

[Out]

-((a + 2*b)*ArcTanh[(Sqrt[b]*Tanh[x])/Sqrt[a + b*Tanh[x]^2]])/(2*Sqrt[b]) + Sqrt[a + b]*ArcTanh[(Sqrt[a + b]*T
anh[x])/Sqrt[a + b*Tanh[x]^2]] - (Tanh[x]*Sqrt[a + b*Tanh[x]^2])/2

________________________________________________________________________________________

Rubi [A]  time = 0.124518, antiderivative size = 85, normalized size of antiderivative = 1., number of steps used = 7, number of rules used = 6, integrand size = 17, $$\frac{\text{number of rules}}{\text{integrand size}}$$ = 0.353, Rules used = {3670, 478, 523, 217, 206, 377} $-\frac{(a+2 b) \tanh ^{-1}\left (\frac{\sqrt{b} \tanh (x)}{\sqrt{a+b \tanh ^2(x)}}\right )}{2 \sqrt{b}}+\sqrt{a+b} \tanh ^{-1}\left (\frac{\sqrt{a+b} \tanh (x)}{\sqrt{a+b \tanh ^2(x)}}\right )-\frac{1}{2} \tanh (x) \sqrt{a+b \tanh ^2(x)}$

Antiderivative was successfully veriﬁed.

[In]

Int[Tanh[x]^2*Sqrt[a + b*Tanh[x]^2],x]

[Out]

-((a + 2*b)*ArcTanh[(Sqrt[b]*Tanh[x])/Sqrt[a + b*Tanh[x]^2]])/(2*Sqrt[b]) + Sqrt[a + b]*ArcTanh[(Sqrt[a + b]*T
anh[x])/Sqrt[a + b*Tanh[x]^2]] - (Tanh[x]*Sqrt[a + b*Tanh[x]^2])/2

Rule 3670

Int[((d_.)*tan[(e_.) + (f_.)*(x_)])^(m_.)*((a_) + (b_.)*((c_.)*tan[(e_.) + (f_.)*(x_)])^(n_))^(p_.), x_Symbol]
:> With[{ff = FreeFactors[Tan[e + f*x], x]}, Dist[(c*ff)/f, Subst[Int[(((d*ff*x)/c)^m*(a + b*(ff*x)^n)^p)/(c^
2 + ff^2*x^2), x], x, (c*Tan[e + f*x])/ff], x]] /; FreeQ[{a, b, c, d, e, f, m, n, p}, x] && (IGtQ[p, 0] || EqQ
[n, 2] || EqQ[n, 4] || (IntegerQ[p] && RationalQ[n]))

Rule 478

Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] :> Simp[(e^(n -
1)*(e*x)^(m - n + 1)*(a + b*x^n)^(p + 1)*(c + d*x^n)^q)/(b*(m + n*(p + q) + 1)), x] - Dist[e^n/(b*(m + n*(p +
q) + 1)), Int[(e*x)^(m - n)*(a + b*x^n)^p*(c + d*x^n)^(q - 1)*Simp[a*c*(m - n + 1) + (a*d*(m - n + 1) - n*q*(b
*c - a*d))*x^n, x], x], x] /; FreeQ[{a, b, c, d, e, p}, x] && NeQ[b*c - a*d, 0] && IGtQ[n, 0] && GtQ[q, 0] &&
GtQ[m - n + 1, 0] && IntBinomialQ[a, b, c, d, e, m, n, p, q, x]

Rule 523

Int[((e_) + (f_.)*(x_)^(n_))/(((a_) + (b_.)*(x_)^(n_))*Sqrt[(c_) + (d_.)*(x_)^(n_)]), x_Symbol] :> Dist[f/b, I
nt[1/Sqrt[c + d*x^n], x], x] + Dist[(b*e - a*f)/b, Int[1/((a + b*x^n)*Sqrt[c + d*x^n]), x], x] /; FreeQ[{a, b,
c, d, e, f, n}, x]

Rule 217

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Subst[Int[1/(1 - b*x^2), x], x, x/Sqrt[a + b*x^2]] /; FreeQ[{a,
b}, x] &&  !GtQ[a, 0]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
/; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 377

Int[((a_) + (b_.)*(x_)^(n_))^(p_)/((c_) + (d_.)*(x_)^(n_)), x_Symbol] :> Subst[Int[1/(c - (b*c - a*d)*x^n), x]
, x, x/(a + b*x^n)^(1/n)] /; FreeQ[{a, b, c, d}, x] && NeQ[b*c - a*d, 0] && EqQ[n*p + 1, 0] && IntegerQ[n]

Rubi steps

\begin{align*} \int \tanh ^2(x) \sqrt{a+b \tanh ^2(x)} \, dx &=\operatorname{Subst}\left (\int \frac{x^2 \sqrt{a+b x^2}}{1-x^2} \, dx,x,\tanh (x)\right )\\ &=-\frac{1}{2} \tanh (x) \sqrt{a+b \tanh ^2(x)}+\frac{1}{2} \operatorname{Subst}\left (\int \frac{a+(a+2 b) x^2}{\left (1-x^2\right ) \sqrt{a+b x^2}} \, dx,x,\tanh (x)\right )\\ &=-\frac{1}{2} \tanh (x) \sqrt{a+b \tanh ^2(x)}+\frac{1}{2} (-a-2 b) \operatorname{Subst}\left (\int \frac{1}{\sqrt{a+b x^2}} \, dx,x,\tanh (x)\right )+(a+b) \operatorname{Subst}\left (\int \frac{1}{\left (1-x^2\right ) \sqrt{a+b x^2}} \, dx,x,\tanh (x)\right )\\ &=-\frac{1}{2} \tanh (x) \sqrt{a+b \tanh ^2(x)}+\frac{1}{2} (-a-2 b) \operatorname{Subst}\left (\int \frac{1}{1-b x^2} \, dx,x,\frac{\tanh (x)}{\sqrt{a+b \tanh ^2(x)}}\right )+(a+b) \operatorname{Subst}\left (\int \frac{1}{1-(a+b) x^2} \, dx,x,\frac{\tanh (x)}{\sqrt{a+b \tanh ^2(x)}}\right )\\ &=-\frac{(a+2 b) \tanh ^{-1}\left (\frac{\sqrt{b} \tanh (x)}{\sqrt{a+b \tanh ^2(x)}}\right )}{2 \sqrt{b}}+\sqrt{a+b} \tanh ^{-1}\left (\frac{\sqrt{a+b} \tanh (x)}{\sqrt{a+b \tanh ^2(x)}}\right )-\frac{1}{2} \tanh (x) \sqrt{a+b \tanh ^2(x)}\\ \end{align*}

Mathematica [C]  time = 3.26176, size = 193, normalized size = 2.27 $\frac{\tanh (x) \left (\sqrt{2} a \sqrt{\frac{\text{csch}^2(x) ((a+b) \cosh (2 x)+a-b)}{b}} \text{EllipticF}\left (\sin ^{-1}\left (\frac{\sqrt{\frac{\text{csch}^2(x) ((a+b) \cosh (2 x)+a-b)}{b}}}{\sqrt{2}}\right ),1\right )+\text{sech}^2(x) (-((a+b) \cosh (2 x)+a-b))-2 \sqrt{2} a \sqrt{\frac{\text{csch}^2(x) ((a+b) \cosh (2 x)+a-b)}{b}} \Pi \left (\frac{b}{a+b};\left .\sin ^{-1}\left (\frac{\sqrt{\frac{(a-b+(a+b) \cosh (2 x)) \text{csch}^2(x)}{b}}}{\sqrt{2}}\right )\right |1\right )\right )}{2 \sqrt{2} \sqrt{\text{sech}^2(x) ((a+b) \cosh (2 x)+a-b)}}$

Antiderivative was successfully veriﬁed.

[In]

Integrate[Tanh[x]^2*Sqrt[a + b*Tanh[x]^2],x]

[Out]

((Sqrt[2]*a*Sqrt[((a - b + (a + b)*Cosh[2*x])*Csch[x]^2)/b]*EllipticF[ArcSin[Sqrt[((a - b + (a + b)*Cosh[2*x])
*Csch[x]^2)/b]/Sqrt[2]], 1] - 2*Sqrt[2]*a*Sqrt[((a - b + (a + b)*Cosh[2*x])*Csch[x]^2)/b]*EllipticPi[b/(a + b)
, ArcSin[Sqrt[((a - b + (a + b)*Cosh[2*x])*Csch[x]^2)/b]/Sqrt[2]], 1] - (a - b + (a + b)*Cosh[2*x])*Sech[x]^2)
*Tanh[x])/(2*Sqrt[2]*Sqrt[(a - b + (a + b)*Cosh[2*x])*Sech[x]^2])

________________________________________________________________________________________

Maple [B]  time = 0.042, size = 276, normalized size = 3.3 \begin{align*} -{\frac{\tanh \left ( x \right ) }{2}\sqrt{a+b \left ( \tanh \left ( x \right ) \right ) ^{2}}}-{\frac{a}{2}\ln \left ( \tanh \left ( x \right ) \sqrt{b}+\sqrt{a+b \left ( \tanh \left ( x \right ) \right ) ^{2}} \right ){\frac{1}{\sqrt{b}}}}+{\frac{1}{2}\sqrt{ \left ( 1+\tanh \left ( x \right ) \right ) ^{2}b-2\, \left ( 1+\tanh \left ( x \right ) \right ) b+a+b}}-{\frac{1}{2}\sqrt{b}\ln \left ({( \left ( 1+\tanh \left ( x \right ) \right ) b-b){\frac{1}{\sqrt{b}}}}+\sqrt{ \left ( 1+\tanh \left ( x \right ) \right ) ^{2}b-2\, \left ( 1+\tanh \left ( x \right ) \right ) b+a+b} \right ) }-{\frac{1}{2}\sqrt{a+b}\ln \left ({\frac{1}{1+\tanh \left ( x \right ) } \left ( 2\,a+2\,b-2\, \left ( 1+\tanh \left ( x \right ) \right ) b+2\,\sqrt{a+b}\sqrt{ \left ( 1+\tanh \left ( x \right ) \right ) ^{2}b-2\, \left ( 1+\tanh \left ( x \right ) \right ) b+a+b} \right ) } \right ) }-{\frac{1}{2}\sqrt{ \left ( \tanh \left ( x \right ) -1 \right ) ^{2}b+2\, \left ( \tanh \left ( x \right ) -1 \right ) b+a+b}}-{\frac{1}{2}\sqrt{b}\ln \left ({( \left ( \tanh \left ( x \right ) -1 \right ) b+b){\frac{1}{\sqrt{b}}}}+\sqrt{ \left ( \tanh \left ( x \right ) -1 \right ) ^{2}b+2\, \left ( \tanh \left ( x \right ) -1 \right ) b+a+b} \right ) }+{\frac{1}{2}\sqrt{a+b}\ln \left ({\frac{1}{\tanh \left ( x \right ) -1} \left ( 2\,a+2\,b+2\, \left ( \tanh \left ( x \right ) -1 \right ) b+2\,\sqrt{a+b}\sqrt{ \left ( \tanh \left ( x \right ) -1 \right ) ^{2}b+2\, \left ( \tanh \left ( x \right ) -1 \right ) b+a+b} \right ) } \right ) } \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

int((a+b*tanh(x)^2)^(1/2)*tanh(x)^2,x)

[Out]

-1/2*(a+b*tanh(x)^2)^(1/2)*tanh(x)-1/2*a/b^(1/2)*ln(tanh(x)*b^(1/2)+(a+b*tanh(x)^2)^(1/2))+1/2*((1+tanh(x))^2*
b-2*(1+tanh(x))*b+a+b)^(1/2)-1/2*b^(1/2)*ln(((1+tanh(x))*b-b)/b^(1/2)+((1+tanh(x))^2*b-2*(1+tanh(x))*b+a+b)^(1
/2))-1/2*(a+b)^(1/2)*ln((2*a+2*b-2*(1+tanh(x))*b+2*(a+b)^(1/2)*((1+tanh(x))^2*b-2*(1+tanh(x))*b+a+b)^(1/2))/(1
+tanh(x)))-1/2*((tanh(x)-1)^2*b+2*(tanh(x)-1)*b+a+b)^(1/2)-1/2*b^(1/2)*ln(((tanh(x)-1)*b+b)/b^(1/2)+((tanh(x)-
1)^2*b+2*(tanh(x)-1)*b+a+b)^(1/2))+1/2*(a+b)^(1/2)*ln((2*a+2*b+2*(tanh(x)-1)*b+2*(a+b)^(1/2)*((tanh(x)-1)^2*b+
2*(tanh(x)-1)*b+a+b)^(1/2))/(tanh(x)-1))

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \sqrt{b \tanh \left (x\right )^{2} + a} \tanh \left (x\right )^{2}\,{d x} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*tanh(x)^2)^(1/2)*tanh(x)^2,x, algorithm="maxima")

[Out]

integrate(sqrt(b*tanh(x)^2 + a)*tanh(x)^2, x)

________________________________________________________________________________________

Fricas [B]  time = 4.62177, size = 14340, normalized size = 168.71 \begin{align*} \text{result too large to display} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*tanh(x)^2)^(1/2)*tanh(x)^2,x, algorithm="fricas")

[Out]

[1/4*((b*cosh(x)^4 + 4*b*cosh(x)*sinh(x)^3 + b*sinh(x)^4 + 2*b*cosh(x)^2 + 2*(3*b*cosh(x)^2 + b)*sinh(x)^2 + 4
*(b*cosh(x)^3 + b*cosh(x))*sinh(x) + b)*sqrt(a + b)*log(-((a*b^2 + b^3)*cosh(x)^8 + 8*(a*b^2 + b^3)*cosh(x)*si
nh(x)^7 + (a*b^2 + b^3)*sinh(x)^8 - 2*(a*b^2 + 2*b^3)*cosh(x)^6 - 2*(a*b^2 + 2*b^3 - 14*(a*b^2 + b^3)*cosh(x)^
2)*sinh(x)^6 + 4*(14*(a*b^2 + b^3)*cosh(x)^3 - 3*(a*b^2 + 2*b^3)*cosh(x))*sinh(x)^5 + (a^3 - a^2*b + 4*a*b^2 +
6*b^3)*cosh(x)^4 + (70*(a*b^2 + b^3)*cosh(x)^4 + a^3 - a^2*b + 4*a*b^2 + 6*b^3 - 30*(a*b^2 + 2*b^3)*cosh(x)^2
)*sinh(x)^4 + 4*(14*(a*b^2 + b^3)*cosh(x)^5 - 10*(a*b^2 + 2*b^3)*cosh(x)^3 + (a^3 - a^2*b + 4*a*b^2 + 6*b^3)*c
osh(x))*sinh(x)^3 + a^3 + 3*a^2*b + 3*a*b^2 + b^3 + 2*(a^3 - 3*a*b^2 - 2*b^3)*cosh(x)^2 + 2*(14*(a*b^2 + b^3)*
cosh(x)^6 - 15*(a*b^2 + 2*b^3)*cosh(x)^4 + a^3 - 3*a*b^2 - 2*b^3 + 3*(a^3 - a^2*b + 4*a*b^2 + 6*b^3)*cosh(x)^2
)*sinh(x)^2 + sqrt(2)*(b^2*cosh(x)^6 + 6*b^2*cosh(x)*sinh(x)^5 + b^2*sinh(x)^6 - 3*b^2*cosh(x)^4 + 3*(5*b^2*co
sh(x)^2 - b^2)*sinh(x)^4 + 4*(5*b^2*cosh(x)^3 - 3*b^2*cosh(x))*sinh(x)^3 - (a^2 - 2*a*b - 3*b^2)*cosh(x)^2 + (
15*b^2*cosh(x)^4 - 18*b^2*cosh(x)^2 - a^2 + 2*a*b + 3*b^2)*sinh(x)^2 - a^2 - 2*a*b - b^2 + 2*(3*b^2*cosh(x)^5
- 6*b^2*cosh(x)^3 - (a^2 - 2*a*b - 3*b^2)*cosh(x))*sinh(x))*sqrt(a + b)*sqrt(((a + b)*cosh(x)^2 + (a + b)*sinh
(x)^2 + a - b)/(cosh(x)^2 - 2*cosh(x)*sinh(x) + sinh(x)^2)) + 4*(2*(a*b^2 + b^3)*cosh(x)^7 - 3*(a*b^2 + 2*b^3)
*cosh(x)^5 + (a^3 - a^2*b + 4*a*b^2 + 6*b^3)*cosh(x)^3 + (a^3 - 3*a*b^2 - 2*b^3)*cosh(x))*sinh(x))/(cosh(x)^6
+ 6*cosh(x)^5*sinh(x) + 15*cosh(x)^4*sinh(x)^2 + 20*cosh(x)^3*sinh(x)^3 + 15*cosh(x)^2*sinh(x)^4 + 6*cosh(x)*s
inh(x)^5 + sinh(x)^6)) + ((a + 2*b)*cosh(x)^4 + 4*(a + 2*b)*cosh(x)*sinh(x)^3 + (a + 2*b)*sinh(x)^4 + 2*(a + 2
*b)*cosh(x)^2 + 2*(3*(a + 2*b)*cosh(x)^2 + a + 2*b)*sinh(x)^2 + 4*((a + 2*b)*cosh(x)^3 + (a + 2*b)*cosh(x))*si
nh(x) + a + 2*b)*sqrt(b)*log(-((a + 2*b)*cosh(x)^4 + 4*(a + 2*b)*cosh(x)*sinh(x)^3 + (a + 2*b)*sinh(x)^4 + 2*(
a - 2*b)*cosh(x)^2 + 2*(3*(a + 2*b)*cosh(x)^2 + a - 2*b)*sinh(x)^2 - 2*sqrt(2)*(cosh(x)^2 + 2*cosh(x)*sinh(x)
+ sinh(x)^2 - 1)*sqrt(b)*sqrt(((a + b)*cosh(x)^2 + (a + b)*sinh(x)^2 + a - b)/(cosh(x)^2 - 2*cosh(x)*sinh(x) +
sinh(x)^2)) + 4*((a + 2*b)*cosh(x)^3 + (a - 2*b)*cosh(x))*sinh(x) + a + 2*b)/(cosh(x)^4 + 4*cosh(x)*sinh(x)^3
+ sinh(x)^4 + 2*(3*cosh(x)^2 + 1)*sinh(x)^2 + 2*cosh(x)^2 + 4*(cosh(x)^3 + cosh(x))*sinh(x) + 1)) + (b*cosh(x
)^4 + 4*b*cosh(x)*sinh(x)^3 + b*sinh(x)^4 + 2*b*cosh(x)^2 + 2*(3*b*cosh(x)^2 + b)*sinh(x)^2 + 4*(b*cosh(x)^3 +
b*cosh(x))*sinh(x) + b)*sqrt(a + b)*log(((a + b)*cosh(x)^4 + 4*(a + b)*cosh(x)*sinh(x)^3 + (a + b)*sinh(x)^4
+ 2*a*cosh(x)^2 + 2*(3*(a + b)*cosh(x)^2 + a)*sinh(x)^2 + sqrt(2)*(cosh(x)^2 + 2*cosh(x)*sinh(x) + sinh(x)^2 +
1)*sqrt(a + b)*sqrt(((a + b)*cosh(x)^2 + (a + b)*sinh(x)^2 + a - b)/(cosh(x)^2 - 2*cosh(x)*sinh(x) + sinh(x)^
2)) + 4*((a + b)*cosh(x)^3 + a*cosh(x))*sinh(x) + a + b)/(cosh(x)^2 + 2*cosh(x)*sinh(x) + sinh(x)^2)) - 2*sqrt
(2)*(b*cosh(x)^2 + 2*b*cosh(x)*sinh(x) + b*sinh(x)^2 - b)*sqrt(((a + b)*cosh(x)^2 + (a + b)*sinh(x)^2 + a - b)
/(cosh(x)^2 - 2*cosh(x)*sinh(x) + sinh(x)^2)))/(b*cosh(x)^4 + 4*b*cosh(x)*sinh(x)^3 + b*sinh(x)^4 + 2*b*cosh(x
)^2 + 2*(3*b*cosh(x)^2 + b)*sinh(x)^2 + 4*(b*cosh(x)^3 + b*cosh(x))*sinh(x) + b), 1/4*(2*((a + 2*b)*cosh(x)^4
+ 4*(a + 2*b)*cosh(x)*sinh(x)^3 + (a + 2*b)*sinh(x)^4 + 2*(a + 2*b)*cosh(x)^2 + 2*(3*(a + 2*b)*cosh(x)^2 + a +
2*b)*sinh(x)^2 + 4*((a + 2*b)*cosh(x)^3 + (a + 2*b)*cosh(x))*sinh(x) + a + 2*b)*sqrt(-b)*arctan(sqrt(2)*(cosh
(x)^2 + 2*cosh(x)*sinh(x) + sinh(x)^2 - 1)*sqrt(-b)*sqrt(((a + b)*cosh(x)^2 + (a + b)*sinh(x)^2 + a - b)/(cosh
(x)^2 - 2*cosh(x)*sinh(x) + sinh(x)^2))/((a + b)*cosh(x)^4 + 4*(a + b)*cosh(x)*sinh(x)^3 + (a + b)*sinh(x)^4 +
2*(a - b)*cosh(x)^2 + 2*(3*(a + b)*cosh(x)^2 + a - b)*sinh(x)^2 + 4*((a + b)*cosh(x)^3 + (a - b)*cosh(x))*sin
h(x) + a + b)) + (b*cosh(x)^4 + 4*b*cosh(x)*sinh(x)^3 + b*sinh(x)^4 + 2*b*cosh(x)^2 + 2*(3*b*cosh(x)^2 + b)*si
nh(x)^2 + 4*(b*cosh(x)^3 + b*cosh(x))*sinh(x) + b)*sqrt(a + b)*log(-((a*b^2 + b^3)*cosh(x)^8 + 8*(a*b^2 + b^3)
*cosh(x)*sinh(x)^7 + (a*b^2 + b^3)*sinh(x)^8 - 2*(a*b^2 + 2*b^3)*cosh(x)^6 - 2*(a*b^2 + 2*b^3 - 14*(a*b^2 + b^
3)*cosh(x)^2)*sinh(x)^6 + 4*(14*(a*b^2 + b^3)*cosh(x)^3 - 3*(a*b^2 + 2*b^3)*cosh(x))*sinh(x)^5 + (a^3 - a^2*b
+ 4*a*b^2 + 6*b^3)*cosh(x)^4 + (70*(a*b^2 + b^3)*cosh(x)^4 + a^3 - a^2*b + 4*a*b^2 + 6*b^3 - 30*(a*b^2 + 2*b^3
)*cosh(x)^2)*sinh(x)^4 + 4*(14*(a*b^2 + b^3)*cosh(x)^5 - 10*(a*b^2 + 2*b^3)*cosh(x)^3 + (a^3 - a^2*b + 4*a*b^2
+ 6*b^3)*cosh(x))*sinh(x)^3 + a^3 + 3*a^2*b + 3*a*b^2 + b^3 + 2*(a^3 - 3*a*b^2 - 2*b^3)*cosh(x)^2 + 2*(14*(a*
b^2 + b^3)*cosh(x)^6 - 15*(a*b^2 + 2*b^3)*cosh(x)^4 + a^3 - 3*a*b^2 - 2*b^3 + 3*(a^3 - a^2*b + 4*a*b^2 + 6*b^3
)*cosh(x)^2)*sinh(x)^2 + sqrt(2)*(b^2*cosh(x)^6 + 6*b^2*cosh(x)*sinh(x)^5 + b^2*sinh(x)^6 - 3*b^2*cosh(x)^4 +
3*(5*b^2*cosh(x)^2 - b^2)*sinh(x)^4 + 4*(5*b^2*cosh(x)^3 - 3*b^2*cosh(x))*sinh(x)^3 - (a^2 - 2*a*b - 3*b^2)*co
sh(x)^2 + (15*b^2*cosh(x)^4 - 18*b^2*cosh(x)^2 - a^2 + 2*a*b + 3*b^2)*sinh(x)^2 - a^2 - 2*a*b - b^2 + 2*(3*b^2
*cosh(x)^5 - 6*b^2*cosh(x)^3 - (a^2 - 2*a*b - 3*b^2)*cosh(x))*sinh(x))*sqrt(a + b)*sqrt(((a + b)*cosh(x)^2 + (
a + b)*sinh(x)^2 + a - b)/(cosh(x)^2 - 2*cosh(x)*sinh(x) + sinh(x)^2)) + 4*(2*(a*b^2 + b^3)*cosh(x)^7 - 3*(a*b
^2 + 2*b^3)*cosh(x)^5 + (a^3 - a^2*b + 4*a*b^2 + 6*b^3)*cosh(x)^3 + (a^3 - 3*a*b^2 - 2*b^3)*cosh(x))*sinh(x))/
(cosh(x)^6 + 6*cosh(x)^5*sinh(x) + 15*cosh(x)^4*sinh(x)^2 + 20*cosh(x)^3*sinh(x)^3 + 15*cosh(x)^2*sinh(x)^4 +
6*cosh(x)*sinh(x)^5 + sinh(x)^6)) + (b*cosh(x)^4 + 4*b*cosh(x)*sinh(x)^3 + b*sinh(x)^4 + 2*b*cosh(x)^2 + 2*(3*
b*cosh(x)^2 + b)*sinh(x)^2 + 4*(b*cosh(x)^3 + b*cosh(x))*sinh(x) + b)*sqrt(a + b)*log(((a + b)*cosh(x)^4 + 4*(
a + b)*cosh(x)*sinh(x)^3 + (a + b)*sinh(x)^4 + 2*a*cosh(x)^2 + 2*(3*(a + b)*cosh(x)^2 + a)*sinh(x)^2 + sqrt(2)
*(cosh(x)^2 + 2*cosh(x)*sinh(x) + sinh(x)^2 + 1)*sqrt(a + b)*sqrt(((a + b)*cosh(x)^2 + (a + b)*sinh(x)^2 + a -
b)/(cosh(x)^2 - 2*cosh(x)*sinh(x) + sinh(x)^2)) + 4*((a + b)*cosh(x)^3 + a*cosh(x))*sinh(x) + a + b)/(cosh(x)
^2 + 2*cosh(x)*sinh(x) + sinh(x)^2)) - 2*sqrt(2)*(b*cosh(x)^2 + 2*b*cosh(x)*sinh(x) + b*sinh(x)^2 - b)*sqrt(((
a + b)*cosh(x)^2 + (a + b)*sinh(x)^2 + a - b)/(cosh(x)^2 - 2*cosh(x)*sinh(x) + sinh(x)^2)))/(b*cosh(x)^4 + 4*b
*cosh(x)*sinh(x)^3 + b*sinh(x)^4 + 2*b*cosh(x)^2 + 2*(3*b*cosh(x)^2 + b)*sinh(x)^2 + 4*(b*cosh(x)^3 + b*cosh(x
))*sinh(x) + b), -1/4*(2*(b*cosh(x)^4 + 4*b*cosh(x)*sinh(x)^3 + b*sinh(x)^4 + 2*b*cosh(x)^2 + 2*(3*b*cosh(x)^2
+ b)*sinh(x)^2 + 4*(b*cosh(x)^3 + b*cosh(x))*sinh(x) + b)*sqrt(-a - b)*arctan(sqrt(2)*(b*cosh(x)^2 + 2*b*cosh
(x)*sinh(x) + b*sinh(x)^2 - a - b)*sqrt(-a - b)*sqrt(((a + b)*cosh(x)^2 + (a + b)*sinh(x)^2 + a - b)/(cosh(x)^
2 - 2*cosh(x)*sinh(x) + sinh(x)^2))/((a*b + b^2)*cosh(x)^4 + 4*(a*b + b^2)*cosh(x)*sinh(x)^3 + (a*b + b^2)*sin
h(x)^4 + (a^2 - a*b - 2*b^2)*cosh(x)^2 + (6*(a*b + b^2)*cosh(x)^2 + a^2 - a*b - 2*b^2)*sinh(x)^2 + a^2 + 2*a*b
+ b^2 + 2*(2*(a*b + b^2)*cosh(x)^3 + (a^2 - a*b - 2*b^2)*cosh(x))*sinh(x))) + 2*(b*cosh(x)^4 + 4*b*cosh(x)*si
nh(x)^3 + b*sinh(x)^4 + 2*b*cosh(x)^2 + 2*(3*b*cosh(x)^2 + b)*sinh(x)^2 + 4*(b*cosh(x)^3 + b*cosh(x))*sinh(x)
+ b)*sqrt(-a - b)*arctan(sqrt(2)*(cosh(x)^2 + 2*cosh(x)*sinh(x) + sinh(x)^2 + 1)*sqrt(-a - b)*sqrt(((a + b)*co
sh(x)^2 + (a + b)*sinh(x)^2 + a - b)/(cosh(x)^2 - 2*cosh(x)*sinh(x) + sinh(x)^2))/((a + b)*cosh(x)^4 + 4*(a +
b)*cosh(x)*sinh(x)^3 + (a + b)*sinh(x)^4 + 2*(a - b)*cosh(x)^2 + 2*(3*(a + b)*cosh(x)^2 + a - b)*sinh(x)^2 + 4
*((a + b)*cosh(x)^3 + (a - b)*cosh(x))*sinh(x) + a + b)) - ((a + 2*b)*cosh(x)^4 + 4*(a + 2*b)*cosh(x)*sinh(x)^
3 + (a + 2*b)*sinh(x)^4 + 2*(a + 2*b)*cosh(x)^2 + 2*(3*(a + 2*b)*cosh(x)^2 + a + 2*b)*sinh(x)^2 + 4*((a + 2*b)
*cosh(x)^3 + (a + 2*b)*cosh(x))*sinh(x) + a + 2*b)*sqrt(b)*log(-((a + 2*b)*cosh(x)^4 + 4*(a + 2*b)*cosh(x)*sin
h(x)^3 + (a + 2*b)*sinh(x)^4 + 2*(a - 2*b)*cosh(x)^2 + 2*(3*(a + 2*b)*cosh(x)^2 + a - 2*b)*sinh(x)^2 - 2*sqrt(
2)*(cosh(x)^2 + 2*cosh(x)*sinh(x) + sinh(x)^2 - 1)*sqrt(b)*sqrt(((a + b)*cosh(x)^2 + (a + b)*sinh(x)^2 + a - b
)/(cosh(x)^2 - 2*cosh(x)*sinh(x) + sinh(x)^2)) + 4*((a + 2*b)*cosh(x)^3 + (a - 2*b)*cosh(x))*sinh(x) + a + 2*b
)/(cosh(x)^4 + 4*cosh(x)*sinh(x)^3 + sinh(x)^4 + 2*(3*cosh(x)^2 + 1)*sinh(x)^2 + 2*cosh(x)^2 + 4*(cosh(x)^3 +
cosh(x))*sinh(x) + 1)) + 2*sqrt(2)*(b*cosh(x)^2 + 2*b*cosh(x)*sinh(x) + b*sinh(x)^2 - b)*sqrt(((a + b)*cosh(x)
^2 + (a + b)*sinh(x)^2 + a - b)/(cosh(x)^2 - 2*cosh(x)*sinh(x) + sinh(x)^2)))/(b*cosh(x)^4 + 4*b*cosh(x)*sinh(
x)^3 + b*sinh(x)^4 + 2*b*cosh(x)^2 + 2*(3*b*cosh(x)^2 + b)*sinh(x)^2 + 4*(b*cosh(x)^3 + b*cosh(x))*sinh(x) + b
), -1/2*((b*cosh(x)^4 + 4*b*cosh(x)*sinh(x)^3 + b*sinh(x)^4 + 2*b*cosh(x)^2 + 2*(3*b*cosh(x)^2 + b)*sinh(x)^2
+ 4*(b*cosh(x)^3 + b*cosh(x))*sinh(x) + b)*sqrt(-a - b)*arctan(sqrt(2)*(b*cosh(x)^2 + 2*b*cosh(x)*sinh(x) + b*
sinh(x)^2 - a - b)*sqrt(-a - b)*sqrt(((a + b)*cosh(x)^2 + (a + b)*sinh(x)^2 + a - b)/(cosh(x)^2 - 2*cosh(x)*si
nh(x) + sinh(x)^2))/((a*b + b^2)*cosh(x)^4 + 4*(a*b + b^2)*cosh(x)*sinh(x)^3 + (a*b + b^2)*sinh(x)^4 + (a^2 -
a*b - 2*b^2)*cosh(x)^2 + (6*(a*b + b^2)*cosh(x)^2 + a^2 - a*b - 2*b^2)*sinh(x)^2 + a^2 + 2*a*b + b^2 + 2*(2*(a
*b + b^2)*cosh(x)^3 + (a^2 - a*b - 2*b^2)*cosh(x))*sinh(x))) + (b*cosh(x)^4 + 4*b*cosh(x)*sinh(x)^3 + b*sinh(x
)^4 + 2*b*cosh(x)^2 + 2*(3*b*cosh(x)^2 + b)*sinh(x)^2 + 4*(b*cosh(x)^3 + b*cosh(x))*sinh(x) + b)*sqrt(-a - b)*
arctan(sqrt(2)*(cosh(x)^2 + 2*cosh(x)*sinh(x) + sinh(x)^2 + 1)*sqrt(-a - b)*sqrt(((a + b)*cosh(x)^2 + (a + b)*
sinh(x)^2 + a - b)/(cosh(x)^2 - 2*cosh(x)*sinh(x) + sinh(x)^2))/((a + b)*cosh(x)^4 + 4*(a + b)*cosh(x)*sinh(x)
^3 + (a + b)*sinh(x)^4 + 2*(a - b)*cosh(x)^2 + 2*(3*(a + b)*cosh(x)^2 + a - b)*sinh(x)^2 + 4*((a + b)*cosh(x)^
3 + (a - b)*cosh(x))*sinh(x) + a + b)) - ((a + 2*b)*cosh(x)^4 + 4*(a + 2*b)*cosh(x)*sinh(x)^3 + (a + 2*b)*sinh
(x)^4 + 2*(a + 2*b)*cosh(x)^2 + 2*(3*(a + 2*b)*cosh(x)^2 + a + 2*b)*sinh(x)^2 + 4*((a + 2*b)*cosh(x)^3 + (a +
2*b)*cosh(x))*sinh(x) + a + 2*b)*sqrt(-b)*arctan(sqrt(2)*(cosh(x)^2 + 2*cosh(x)*sinh(x) + sinh(x)^2 - 1)*sqrt(
-b)*sqrt(((a + b)*cosh(x)^2 + (a + b)*sinh(x)^2 + a - b)/(cosh(x)^2 - 2*cosh(x)*sinh(x) + sinh(x)^2))/((a + b)
*cosh(x)^4 + 4*(a + b)*cosh(x)*sinh(x)^3 + (a + b)*sinh(x)^4 + 2*(a - b)*cosh(x)^2 + 2*(3*(a + b)*cosh(x)^2 +
a - b)*sinh(x)^2 + 4*((a + b)*cosh(x)^3 + (a - b)*cosh(x))*sinh(x) + a + b)) + sqrt(2)*(b*cosh(x)^2 + 2*b*cosh
(x)*sinh(x) + b*sinh(x)^2 - b)*sqrt(((a + b)*cosh(x)^2 + (a + b)*sinh(x)^2 + a - b)/(cosh(x)^2 - 2*cosh(x)*sin
h(x) + sinh(x)^2)))/(b*cosh(x)^4 + 4*b*cosh(x)*sinh(x)^3 + b*sinh(x)^4 + 2*b*cosh(x)^2 + 2*(3*b*cosh(x)^2 + b)
*sinh(x)^2 + 4*(b*cosh(x)^3 + b*cosh(x))*sinh(x) + b)]

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \sqrt{a + b \tanh ^{2}{\left (x \right )}} \tanh ^{2}{\left (x \right )}\, dx \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*tanh(x)**2)**(1/2)*tanh(x)**2,x)

[Out]

Integral(sqrt(a + b*tanh(x)**2)*tanh(x)**2, x)

________________________________________________________________________________________

Giac [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: NotImplementedError} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*tanh(x)^2)^(1/2)*tanh(x)^2,x, algorithm="giac")

[Out]

Exception raised: NotImplementedError