### 3.193 $$\int \frac{\tanh ^3(c+d x)}{(a+b \tanh ^2(c+d x))^3} \, dx$$

Optimal. Leaf size=98 $\frac{a}{4 b d (a+b) \left (a+b \tanh ^2(c+d x)\right )^2}-\frac{1}{2 d (a+b)^2 \left (a+b \tanh ^2(c+d x)\right )}+\frac{\log \left (a+b \tanh ^2(c+d x)\right )}{2 d (a+b)^3}+\frac{\log (\cosh (c+d x))}{d (a+b)^3}$

[Out]

Log[Cosh[c + d*x]]/((a + b)^3*d) + Log[a + b*Tanh[c + d*x]^2]/(2*(a + b)^3*d) + a/(4*b*(a + b)*d*(a + b*Tanh[c
+ d*x]^2)^2) - 1/(2*(a + b)^2*d*(a + b*Tanh[c + d*x]^2))

________________________________________________________________________________________

Rubi [A]  time = 0.138291, antiderivative size = 98, normalized size of antiderivative = 1., number of steps used = 4, number of rules used = 3, integrand size = 23, $$\frac{\text{number of rules}}{\text{integrand size}}$$ = 0.13, Rules used = {3670, 446, 77} $\frac{a}{4 b d (a+b) \left (a+b \tanh ^2(c+d x)\right )^2}-\frac{1}{2 d (a+b)^2 \left (a+b \tanh ^2(c+d x)\right )}+\frac{\log \left (a+b \tanh ^2(c+d x)\right )}{2 d (a+b)^3}+\frac{\log (\cosh (c+d x))}{d (a+b)^3}$

Antiderivative was successfully veriﬁed.

[In]

Int[Tanh[c + d*x]^3/(a + b*Tanh[c + d*x]^2)^3,x]

[Out]

Log[Cosh[c + d*x]]/((a + b)^3*d) + Log[a + b*Tanh[c + d*x]^2]/(2*(a + b)^3*d) + a/(4*b*(a + b)*d*(a + b*Tanh[c
+ d*x]^2)^2) - 1/(2*(a + b)^2*d*(a + b*Tanh[c + d*x]^2))

Rule 3670

Int[((d_.)*tan[(e_.) + (f_.)*(x_)])^(m_.)*((a_) + (b_.)*((c_.)*tan[(e_.) + (f_.)*(x_)])^(n_))^(p_.), x_Symbol]
:> With[{ff = FreeFactors[Tan[e + f*x], x]}, Dist[(c*ff)/f, Subst[Int[(((d*ff*x)/c)^m*(a + b*(ff*x)^n)^p)/(c^
2 + ff^2*x^2), x], x, (c*Tan[e + f*x])/ff], x]] /; FreeQ[{a, b, c, d, e, f, m, n, p}, x] && (IGtQ[p, 0] || EqQ
[n, 2] || EqQ[n, 4] || (IntegerQ[p] && RationalQ[n]))

Rule 446

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_))^(q_.), x_Symbol] :> Dist[1/n, Subst[Int
[x^(Simplify[(m + 1)/n] - 1)*(a + b*x)^p*(c + d*x)^q, x], x, x^n], x] /; FreeQ[{a, b, c, d, m, n, p, q}, x] &&
NeQ[b*c - a*d, 0] && IntegerQ[Simplify[(m + 1)/n]]

Rule 77

Int[((a_.) + (b_.)*(x_))*((c_) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Int[ExpandIntegran
d[(a + b*x)*(c + d*x)^n*(e + f*x)^p, x], x] /; FreeQ[{a, b, c, d, e, f, n}, x] && NeQ[b*c - a*d, 0] && ((ILtQ[
n, 0] && ILtQ[p, 0]) || EqQ[p, 1] || (IGtQ[p, 0] && ( !IntegerQ[n] || LeQ[9*p + 5*(n + 2), 0] || GeQ[n + p + 1
, 0] || (GeQ[n + p + 2, 0] && RationalQ[a, b, c, d, e, f]))))

Rubi steps

\begin{align*} \int \frac{\tanh ^3(c+d x)}{\left (a+b \tanh ^2(c+d x)\right )^3} \, dx &=\frac{\operatorname{Subst}\left (\int \frac{x^3}{\left (1-x^2\right ) \left (a+b x^2\right )^3} \, dx,x,\tanh (c+d x)\right )}{d}\\ &=\frac{\operatorname{Subst}\left (\int \frac{x}{(1-x) (a+b x)^3} \, dx,x,\tanh ^2(c+d x)\right )}{2 d}\\ &=\frac{\operatorname{Subst}\left (\int \left (-\frac{1}{(a+b)^3 (-1+x)}-\frac{a}{(a+b) (a+b x)^3}+\frac{b}{(a+b)^2 (a+b x)^2}+\frac{b}{(a+b)^3 (a+b x)}\right ) \, dx,x,\tanh ^2(c+d x)\right )}{2 d}\\ &=\frac{\log (\cosh (c+d x))}{(a+b)^3 d}+\frac{\log \left (a+b \tanh ^2(c+d x)\right )}{2 (a+b)^3 d}+\frac{a}{4 b (a+b) d \left (a+b \tanh ^2(c+d x)\right )^2}-\frac{1}{2 (a+b)^2 d \left (a+b \tanh ^2(c+d x)\right )}\\ \end{align*}

Mathematica [A]  time = 0.453482, size = 80, normalized size = 0.82 $\frac{\frac{a (a+b)^2}{b \left (a+b \tanh ^2(c+d x)\right )^2}-\frac{2 (a+b)}{a+b \tanh ^2(c+d x)}+2 \log \left (a+b \tanh ^2(c+d x)\right )+4 \log (\cosh (c+d x))}{4 d (a+b)^3}$

Antiderivative was successfully veriﬁed.

[In]

Integrate[Tanh[c + d*x]^3/(a + b*Tanh[c + d*x]^2)^3,x]

[Out]

(4*Log[Cosh[c + d*x]] + 2*Log[a + b*Tanh[c + d*x]^2] + (a*(a + b)^2)/(b*(a + b*Tanh[c + d*x]^2)^2) - (2*(a + b
))/(a + b*Tanh[c + d*x]^2))/(4*(a + b)^3*d)

________________________________________________________________________________________

Maple [B]  time = 0.027, size = 196, normalized size = 2. \begin{align*} -{\frac{\ln \left ( \tanh \left ( dx+c \right ) +1 \right ) }{2\,d \left ( a+b \right ) ^{3}}}-{\frac{a}{2\,d \left ( a+b \right ) ^{3} \left ( a+b \left ( \tanh \left ( dx+c \right ) \right ) ^{2} \right ) }}-{\frac{b}{2\,d \left ( a+b \right ) ^{3} \left ( a+b \left ( \tanh \left ( dx+c \right ) \right ) ^{2} \right ) }}+{\frac{{a}^{3}}{4\,d \left ( a+b \right ) ^{3}b \left ( a+b \left ( \tanh \left ( dx+c \right ) \right ) ^{2} \right ) ^{2}}}+{\frac{{a}^{2}}{2\,d \left ( a+b \right ) ^{3} \left ( a+b \left ( \tanh \left ( dx+c \right ) \right ) ^{2} \right ) ^{2}}}+{\frac{ab}{4\,d \left ( a+b \right ) ^{3} \left ( a+b \left ( \tanh \left ( dx+c \right ) \right ) ^{2} \right ) ^{2}}}+{\frac{\ln \left ( a+b \left ( \tanh \left ( dx+c \right ) \right ) ^{2} \right ) }{2\,d \left ( a+b \right ) ^{3}}}-{\frac{\ln \left ( \tanh \left ( dx+c \right ) -1 \right ) }{2\,d \left ( a+b \right ) ^{3}}} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

int(tanh(d*x+c)^3/(a+b*tanh(d*x+c)^2)^3,x)

[Out]

-1/2/d/(a+b)^3*ln(tanh(d*x+c)+1)-1/2/d/(a+b)^3*a/(a+b*tanh(d*x+c)^2)-1/2/d/(a+b)^3/(a+b*tanh(d*x+c)^2)*b+1/4/d
/(a+b)^3*a^3/b/(a+b*tanh(d*x+c)^2)^2+1/2/d/(a+b)^3*a^2/(a+b*tanh(d*x+c)^2)^2+1/4/d/(a+b)^3*a*b/(a+b*tanh(d*x+c
)^2)^2+1/2*ln(a+b*tanh(d*x+c)^2)/(a+b)^3/d-1/2/d/(a+b)^3*ln(tanh(d*x+c)-1)

________________________________________________________________________________________

Maxima [B]  time = 1.31291, size = 518, normalized size = 5.29 \begin{align*} \frac{d x + c}{{\left (a^{3} + 3 \, a^{2} b + 3 \, a b^{2} + b^{3}\right )} d} + \frac{2 \,{\left ({\left (a^{2} - b^{2}\right )} e^{\left (-2 \, d x - 2 \, c\right )} + 2 \,{\left (a^{2} - a b + b^{2}\right )} e^{\left (-4 \, d x - 4 \, c\right )} +{\left (a^{2} - b^{2}\right )} e^{\left (-6 \, d x - 6 \, c\right )}\right )}}{{\left (a^{5} + 5 \, a^{4} b + 10 \, a^{3} b^{2} + 10 \, a^{2} b^{3} + 5 \, a b^{4} + b^{5} + 4 \,{\left (a^{5} + 3 \, a^{4} b + 2 \, a^{3} b^{2} - 2 \, a^{2} b^{3} - 3 \, a b^{4} - b^{5}\right )} e^{\left (-2 \, d x - 2 \, c\right )} + 2 \,{\left (3 \, a^{5} + 7 \, a^{4} b + 6 \, a^{3} b^{2} + 6 \, a^{2} b^{3} + 7 \, a b^{4} + 3 \, b^{5}\right )} e^{\left (-4 \, d x - 4 \, c\right )} + 4 \,{\left (a^{5} + 3 \, a^{4} b + 2 \, a^{3} b^{2} - 2 \, a^{2} b^{3} - 3 \, a b^{4} - b^{5}\right )} e^{\left (-6 \, d x - 6 \, c\right )} +{\left (a^{5} + 5 \, a^{4} b + 10 \, a^{3} b^{2} + 10 \, a^{2} b^{3} + 5 \, a b^{4} + b^{5}\right )} e^{\left (-8 \, d x - 8 \, c\right )}\right )} d} + \frac{\log \left (2 \,{\left (a - b\right )} e^{\left (-2 \, d x - 2 \, c\right )} +{\left (a + b\right )} e^{\left (-4 \, d x - 4 \, c\right )} + a + b\right )}{2 \,{\left (a^{3} + 3 \, a^{2} b + 3 \, a b^{2} + b^{3}\right )} d} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(tanh(d*x+c)^3/(a+b*tanh(d*x+c)^2)^3,x, algorithm="maxima")

[Out]

(d*x + c)/((a^3 + 3*a^2*b + 3*a*b^2 + b^3)*d) + 2*((a^2 - b^2)*e^(-2*d*x - 2*c) + 2*(a^2 - a*b + b^2)*e^(-4*d*
x - 4*c) + (a^2 - b^2)*e^(-6*d*x - 6*c))/((a^5 + 5*a^4*b + 10*a^3*b^2 + 10*a^2*b^3 + 5*a*b^4 + b^5 + 4*(a^5 +
3*a^4*b + 2*a^3*b^2 - 2*a^2*b^3 - 3*a*b^4 - b^5)*e^(-2*d*x - 2*c) + 2*(3*a^5 + 7*a^4*b + 6*a^3*b^2 + 6*a^2*b^3
+ 7*a*b^4 + 3*b^5)*e^(-4*d*x - 4*c) + 4*(a^5 + 3*a^4*b + 2*a^3*b^2 - 2*a^2*b^3 - 3*a*b^4 - b^5)*e^(-6*d*x - 6
*c) + (a^5 + 5*a^4*b + 10*a^3*b^2 + 10*a^2*b^3 + 5*a*b^4 + b^5)*e^(-8*d*x - 8*c))*d) + 1/2*log(2*(a - b)*e^(-2
*d*x - 2*c) + (a + b)*e^(-4*d*x - 4*c) + a + b)/((a^3 + 3*a^2*b + 3*a*b^2 + b^3)*d)

________________________________________________________________________________________

Fricas [B]  time = 2.4369, size = 6130, normalized size = 62.55 \begin{align*} \text{result too large to display} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(tanh(d*x+c)^3/(a+b*tanh(d*x+c)^2)^3,x, algorithm="fricas")

[Out]

-1/2*(2*(a^2 + 2*a*b + b^2)*d*x*cosh(d*x + c)^8 + 16*(a^2 + 2*a*b + b^2)*d*x*cosh(d*x + c)*sinh(d*x + c)^7 + 2
*(a^2 + 2*a*b + b^2)*d*x*sinh(d*x + c)^8 + 4*(2*(a^2 - b^2)*d*x - a^2 + b^2)*cosh(d*x + c)^6 + 4*(14*(a^2 + 2*
a*b + b^2)*d*x*cosh(d*x + c)^2 + 2*(a^2 - b^2)*d*x - a^2 + b^2)*sinh(d*x + c)^6 + 8*(14*(a^2 + 2*a*b + b^2)*d*
x*cosh(d*x + c)^3 + 3*(2*(a^2 - b^2)*d*x - a^2 + b^2)*cosh(d*x + c))*sinh(d*x + c)^5 + 4*((3*a^2 - 2*a*b + 3*b
^2)*d*x - 2*a^2 + 2*a*b - 2*b^2)*cosh(d*x + c)^4 + 4*(35*(a^2 + 2*a*b + b^2)*d*x*cosh(d*x + c)^4 + (3*a^2 - 2*
a*b + 3*b^2)*d*x + 15*(2*(a^2 - b^2)*d*x - a^2 + b^2)*cosh(d*x + c)^2 - 2*a^2 + 2*a*b - 2*b^2)*sinh(d*x + c)^4
+ 16*(7*(a^2 + 2*a*b + b^2)*d*x*cosh(d*x + c)^5 + 5*(2*(a^2 - b^2)*d*x - a^2 + b^2)*cosh(d*x + c)^3 + ((3*a^2
- 2*a*b + 3*b^2)*d*x - 2*a^2 + 2*a*b - 2*b^2)*cosh(d*x + c))*sinh(d*x + c)^3 + 2*(a^2 + 2*a*b + b^2)*d*x + 4*
(2*(a^2 - b^2)*d*x - a^2 + b^2)*cosh(d*x + c)^2 + 4*(14*(a^2 + 2*a*b + b^2)*d*x*cosh(d*x + c)^6 + 15*(2*(a^2 -
b^2)*d*x - a^2 + b^2)*cosh(d*x + c)^4 + 2*(a^2 - b^2)*d*x + 6*((3*a^2 - 2*a*b + 3*b^2)*d*x - 2*a^2 + 2*a*b -
2*b^2)*cosh(d*x + c)^2 - a^2 + b^2)*sinh(d*x + c)^2 - ((a^2 + 2*a*b + b^2)*cosh(d*x + c)^8 + 8*(a^2 + 2*a*b +
b^2)*cosh(d*x + c)*sinh(d*x + c)^7 + (a^2 + 2*a*b + b^2)*sinh(d*x + c)^8 + 4*(a^2 - b^2)*cosh(d*x + c)^6 + 4*(
7*(a^2 + 2*a*b + b^2)*cosh(d*x + c)^2 + a^2 - b^2)*sinh(d*x + c)^6 + 8*(7*(a^2 + 2*a*b + b^2)*cosh(d*x + c)^3
+ 3*(a^2 - b^2)*cosh(d*x + c))*sinh(d*x + c)^5 + 2*(3*a^2 - 2*a*b + 3*b^2)*cosh(d*x + c)^4 + 2*(35*(a^2 + 2*a*
b + b^2)*cosh(d*x + c)^4 + 30*(a^2 - b^2)*cosh(d*x + c)^2 + 3*a^2 - 2*a*b + 3*b^2)*sinh(d*x + c)^4 + 8*(7*(a^2
+ 2*a*b + b^2)*cosh(d*x + c)^5 + 10*(a^2 - b^2)*cosh(d*x + c)^3 + (3*a^2 - 2*a*b + 3*b^2)*cosh(d*x + c))*sinh
(d*x + c)^3 + 4*(a^2 - b^2)*cosh(d*x + c)^2 + 4*(7*(a^2 + 2*a*b + b^2)*cosh(d*x + c)^6 + 15*(a^2 - b^2)*cosh(d
*x + c)^4 + 3*(3*a^2 - 2*a*b + 3*b^2)*cosh(d*x + c)^2 + a^2 - b^2)*sinh(d*x + c)^2 + a^2 + 2*a*b + b^2 + 8*((a
^2 + 2*a*b + b^2)*cosh(d*x + c)^7 + 3*(a^2 - b^2)*cosh(d*x + c)^5 + (3*a^2 - 2*a*b + 3*b^2)*cosh(d*x + c)^3 +
(a^2 - b^2)*cosh(d*x + c))*sinh(d*x + c))*log(2*((a + b)*cosh(d*x + c)^2 + (a + b)*sinh(d*x + c)^2 + a - b)/(c
osh(d*x + c)^2 - 2*cosh(d*x + c)*sinh(d*x + c) + sinh(d*x + c)^2)) + 8*(2*(a^2 + 2*a*b + b^2)*d*x*cosh(d*x + c
)^7 + 3*(2*(a^2 - b^2)*d*x - a^2 + b^2)*cosh(d*x + c)^5 + 2*((3*a^2 - 2*a*b + 3*b^2)*d*x - 2*a^2 + 2*a*b - 2*b
^2)*cosh(d*x + c)^3 + (2*(a^2 - b^2)*d*x - a^2 + b^2)*cosh(d*x + c))*sinh(d*x + c))/((a^5 + 5*a^4*b + 10*a^3*b
^2 + 10*a^2*b^3 + 5*a*b^4 + b^5)*d*cosh(d*x + c)^8 + 8*(a^5 + 5*a^4*b + 10*a^3*b^2 + 10*a^2*b^3 + 5*a*b^4 + b^
5)*d*cosh(d*x + c)*sinh(d*x + c)^7 + (a^5 + 5*a^4*b + 10*a^3*b^2 + 10*a^2*b^3 + 5*a*b^4 + b^5)*d*sinh(d*x + c)
^8 + 4*(a^5 + 3*a^4*b + 2*a^3*b^2 - 2*a^2*b^3 - 3*a*b^4 - b^5)*d*cosh(d*x + c)^6 + 4*(7*(a^5 + 5*a^4*b + 10*a^
3*b^2 + 10*a^2*b^3 + 5*a*b^4 + b^5)*d*cosh(d*x + c)^2 + (a^5 + 3*a^4*b + 2*a^3*b^2 - 2*a^2*b^3 - 3*a*b^4 - b^5
)*d)*sinh(d*x + c)^6 + 2*(3*a^5 + 7*a^4*b + 6*a^3*b^2 + 6*a^2*b^3 + 7*a*b^4 + 3*b^5)*d*cosh(d*x + c)^4 + 8*(7*
(a^5 + 5*a^4*b + 10*a^3*b^2 + 10*a^2*b^3 + 5*a*b^4 + b^5)*d*cosh(d*x + c)^3 + 3*(a^5 + 3*a^4*b + 2*a^3*b^2 - 2
*a^2*b^3 - 3*a*b^4 - b^5)*d*cosh(d*x + c))*sinh(d*x + c)^5 + 2*(35*(a^5 + 5*a^4*b + 10*a^3*b^2 + 10*a^2*b^3 +
5*a*b^4 + b^5)*d*cosh(d*x + c)^4 + 30*(a^5 + 3*a^4*b + 2*a^3*b^2 - 2*a^2*b^3 - 3*a*b^4 - b^5)*d*cosh(d*x + c)^
2 + (3*a^5 + 7*a^4*b + 6*a^3*b^2 + 6*a^2*b^3 + 7*a*b^4 + 3*b^5)*d)*sinh(d*x + c)^4 + 4*(a^5 + 3*a^4*b + 2*a^3*
b^2 - 2*a^2*b^3 - 3*a*b^4 - b^5)*d*cosh(d*x + c)^2 + 8*(7*(a^5 + 5*a^4*b + 10*a^3*b^2 + 10*a^2*b^3 + 5*a*b^4 +
b^5)*d*cosh(d*x + c)^5 + 10*(a^5 + 3*a^4*b + 2*a^3*b^2 - 2*a^2*b^3 - 3*a*b^4 - b^5)*d*cosh(d*x + c)^3 + (3*a^
5 + 7*a^4*b + 6*a^3*b^2 + 6*a^2*b^3 + 7*a*b^4 + 3*b^5)*d*cosh(d*x + c))*sinh(d*x + c)^3 + 4*(7*(a^5 + 5*a^4*b
+ 10*a^3*b^2 + 10*a^2*b^3 + 5*a*b^4 + b^5)*d*cosh(d*x + c)^6 + 15*(a^5 + 3*a^4*b + 2*a^3*b^2 - 2*a^2*b^3 - 3*a
*b^4 - b^5)*d*cosh(d*x + c)^4 + 3*(3*a^5 + 7*a^4*b + 6*a^3*b^2 + 6*a^2*b^3 + 7*a*b^4 + 3*b^5)*d*cosh(d*x + c)^
2 + (a^5 + 3*a^4*b + 2*a^3*b^2 - 2*a^2*b^3 - 3*a*b^4 - b^5)*d)*sinh(d*x + c)^2 + (a^5 + 5*a^4*b + 10*a^3*b^2 +
10*a^2*b^3 + 5*a*b^4 + b^5)*d + 8*((a^5 + 5*a^4*b + 10*a^3*b^2 + 10*a^2*b^3 + 5*a*b^4 + b^5)*d*cosh(d*x + c)^
7 + 3*(a^5 + 3*a^4*b + 2*a^3*b^2 - 2*a^2*b^3 - 3*a*b^4 - b^5)*d*cosh(d*x + c)^5 + (3*a^5 + 7*a^4*b + 6*a^3*b^2
+ 6*a^2*b^3 + 7*a*b^4 + 3*b^5)*d*cosh(d*x + c)^3 + (a^5 + 3*a^4*b + 2*a^3*b^2 - 2*a^2*b^3 - 3*a*b^4 - b^5)*d*
cosh(d*x + c))*sinh(d*x + c))

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(tanh(d*x+c)**3/(a+b*tanh(d*x+c)**2)**3,x)

[Out]

Timed out

________________________________________________________________________________________

Giac [B]  time = 1.26798, size = 339, normalized size = 3.46 \begin{align*} \frac{\log \left ({\left | a{\left (e^{\left (2 \, d x + 2 \, c\right )} + e^{\left (-2 \, d x - 2 \, c\right )}\right )} + b{\left (e^{\left (2 \, d x + 2 \, c\right )} + e^{\left (-2 \, d x - 2 \, c\right )}\right )} + 2 \, a - 2 \, b \right |}\right )}{2 \,{\left (a^{3} d + 3 \, a^{2} b d + 3 \, a b^{2} d + b^{3} d\right )}} - \frac{3 \, a{\left (e^{\left (2 \, d x + 2 \, c\right )} + e^{\left (-2 \, d x - 2 \, c\right )}\right )}^{2} + 3 \, b{\left (e^{\left (2 \, d x + 2 \, c\right )} + e^{\left (-2 \, d x - 2 \, c\right )}\right )}^{2} + 4 \, a{\left (e^{\left (2 \, d x + 2 \, c\right )} + e^{\left (-2 \, d x - 2 \, c\right )}\right )} - 4 \, b{\left (e^{\left (2 \, d x + 2 \, c\right )} + e^{\left (-2 \, d x - 2 \, c\right )}\right )} - 4 \, a - 4 \, b}{4 \,{\left (a^{2} d + 2 \, a b d + b^{2} d\right )}{\left (a{\left (e^{\left (2 \, d x + 2 \, c\right )} + e^{\left (-2 \, d x - 2 \, c\right )}\right )} + b{\left (e^{\left (2 \, d x + 2 \, c\right )} + e^{\left (-2 \, d x - 2 \, c\right )}\right )} + 2 \, a - 2 \, b\right )}^{2}} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(tanh(d*x+c)^3/(a+b*tanh(d*x+c)^2)^3,x, algorithm="giac")

[Out]

1/2*log(abs(a*(e^(2*d*x + 2*c) + e^(-2*d*x - 2*c)) + b*(e^(2*d*x + 2*c) + e^(-2*d*x - 2*c)) + 2*a - 2*b))/(a^3
*d + 3*a^2*b*d + 3*a*b^2*d + b^3*d) - 1/4*(3*a*(e^(2*d*x + 2*c) + e^(-2*d*x - 2*c))^2 + 3*b*(e^(2*d*x + 2*c) +
e^(-2*d*x - 2*c))^2 + 4*a*(e^(2*d*x + 2*c) + e^(-2*d*x - 2*c)) - 4*b*(e^(2*d*x + 2*c) + e^(-2*d*x - 2*c)) - 4
*a - 4*b)/((a^2*d + 2*a*b*d + b^2*d)*(a*(e^(2*d*x + 2*c) + e^(-2*d*x - 2*c)) + b*(e^(2*d*x + 2*c) + e^(-2*d*x
- 2*c)) + 2*a - 2*b)^2)