3.161 $$\int \coth (c+d x) (a+b \tanh ^2(c+d x))^3 \, dx$$

Optimal. Leaf size=72 $\frac{a^3 \log (\tanh (c+d x))}{d}-\frac{b^2 (3 a+b) \tanh ^2(c+d x)}{2 d}+\frac{(a+b)^3 \log (\cosh (c+d x))}{d}-\frac{b^3 \tanh ^4(c+d x)}{4 d}$

[Out]

((a + b)^3*Log[Cosh[c + d*x]])/d + (a^3*Log[Tanh[c + d*x]])/d - (b^2*(3*a + b)*Tanh[c + d*x]^2)/(2*d) - (b^3*T
anh[c + d*x]^4)/(4*d)

________________________________________________________________________________________

Rubi [A]  time = 0.0984251, antiderivative size = 72, normalized size of antiderivative = 1., number of steps used = 4, number of rules used = 3, integrand size = 21, $$\frac{\text{number of rules}}{\text{integrand size}}$$ = 0.143, Rules used = {3670, 446, 72} $\frac{a^3 \log (\tanh (c+d x))}{d}-\frac{b^2 (3 a+b) \tanh ^2(c+d x)}{2 d}+\frac{(a+b)^3 \log (\cosh (c+d x))}{d}-\frac{b^3 \tanh ^4(c+d x)}{4 d}$

Antiderivative was successfully veriﬁed.

[In]

Int[Coth[c + d*x]*(a + b*Tanh[c + d*x]^2)^3,x]

[Out]

((a + b)^3*Log[Cosh[c + d*x]])/d + (a^3*Log[Tanh[c + d*x]])/d - (b^2*(3*a + b)*Tanh[c + d*x]^2)/(2*d) - (b^3*T
anh[c + d*x]^4)/(4*d)

Rule 3670

Int[((d_.)*tan[(e_.) + (f_.)*(x_)])^(m_.)*((a_) + (b_.)*((c_.)*tan[(e_.) + (f_.)*(x_)])^(n_))^(p_.), x_Symbol]
:> With[{ff = FreeFactors[Tan[e + f*x], x]}, Dist[(c*ff)/f, Subst[Int[(((d*ff*x)/c)^m*(a + b*(ff*x)^n)^p)/(c^
2 + ff^2*x^2), x], x, (c*Tan[e + f*x])/ff], x]] /; FreeQ[{a, b, c, d, e, f, m, n, p}, x] && (IGtQ[p, 0] || EqQ
[n, 2] || EqQ[n, 4] || (IntegerQ[p] && RationalQ[n]))

Rule 446

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_))^(q_.), x_Symbol] :> Dist[1/n, Subst[Int
[x^(Simplify[(m + 1)/n] - 1)*(a + b*x)^p*(c + d*x)^q, x], x, x^n], x] /; FreeQ[{a, b, c, d, m, n, p, q}, x] &&
NeQ[b*c - a*d, 0] && IntegerQ[Simplify[(m + 1)/n]]

Rule 72

Int[((e_.) + (f_.)*(x_))^(p_.)/(((a_.) + (b_.)*(x_))*((c_.) + (d_.)*(x_))), x_Symbol] :> Int[ExpandIntegrand[(
e + f*x)^p/((a + b*x)*(c + d*x)), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && IntegerQ[p]

Rubi steps

\begin{align*} \int \coth (c+d x) \left (a+b \tanh ^2(c+d x)\right )^3 \, dx &=\frac{\operatorname{Subst}\left (\int \frac{\left (a+b x^2\right )^3}{x \left (1-x^2\right )} \, dx,x,\tanh (c+d x)\right )}{d}\\ &=\frac{\operatorname{Subst}\left (\int \frac{(a+b x)^3}{(1-x) x} \, dx,x,\tanh ^2(c+d x)\right )}{2 d}\\ &=\frac{\operatorname{Subst}\left (\int \left (-b^2 (3 a+b)-\frac{(a+b)^3}{-1+x}+\frac{a^3}{x}-b^3 x\right ) \, dx,x,\tanh ^2(c+d x)\right )}{2 d}\\ &=\frac{(a+b)^3 \log (\cosh (c+d x))}{d}+\frac{a^3 \log (\tanh (c+d x))}{d}-\frac{b^2 (3 a+b) \tanh ^2(c+d x)}{2 d}-\frac{b^3 \tanh ^4(c+d x)}{4 d}\\ \end{align*}

Mathematica [A]  time = 0.518212, size = 67, normalized size = 0.93 $\frac{2 a^3 \log (\tanh (c+d x))-b^2 (3 a+b) \tanh ^2(c+d x)+2 (a+b)^3 \log (\cosh (c+d x))-\frac{1}{2} b^3 \tanh ^4(c+d x)}{2 d}$

Antiderivative was successfully veriﬁed.

[In]

Integrate[Coth[c + d*x]*(a + b*Tanh[c + d*x]^2)^3,x]

[Out]

(2*(a + b)^3*Log[Cosh[c + d*x]] + 2*a^3*Log[Tanh[c + d*x]] - b^2*(3*a + b)*Tanh[c + d*x]^2 - (b^3*Tanh[c + d*x
]^4)/2)/(2*d)

________________________________________________________________________________________

Maple [A]  time = 0.055, size = 111, normalized size = 1.5 \begin{align*}{\frac{{a}^{3}\ln \left ( \sinh \left ( dx+c \right ) \right ) }{d}}+3\,{\frac{{a}^{2}b\ln \left ( \cosh \left ( dx+c \right ) \right ) }{d}}+3\,{\frac{a{b}^{2}\ln \left ( \cosh \left ( dx+c \right ) \right ) }{d}}-{\frac{3\, \left ( \tanh \left ( dx+c \right ) \right ) ^{2}a{b}^{2}}{2\,d}}+{\frac{{b}^{3}\ln \left ( \cosh \left ( dx+c \right ) \right ) }{d}}-{\frac{{b}^{3} \left ( \tanh \left ( dx+c \right ) \right ) ^{2}}{2\,d}}-{\frac{{b}^{3} \left ( \tanh \left ( dx+c \right ) \right ) ^{4}}{4\,d}} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

int(coth(d*x+c)*(a+b*tanh(d*x+c)^2)^3,x)

[Out]

1/d*a^3*ln(sinh(d*x+c))+3/d*a^2*b*ln(cosh(d*x+c))+3/d*a*b^2*ln(cosh(d*x+c))-3/2/d*tanh(d*x+c)^2*a*b^2+1/d*b^3*
ln(cosh(d*x+c))-1/2/d*b^3*tanh(d*x+c)^2-1/4*b^3*tanh(d*x+c)^4/d

________________________________________________________________________________________

Maxima [B]  time = 1.70616, size = 289, normalized size = 4.01 \begin{align*} b^{3}{\left (x + \frac{c}{d} + \frac{\log \left (e^{\left (-2 \, d x - 2 \, c\right )} + 1\right )}{d} + \frac{4 \,{\left (e^{\left (-2 \, d x - 2 \, c\right )} + e^{\left (-4 \, d x - 4 \, c\right )} + e^{\left (-6 \, d x - 6 \, c\right )}\right )}}{d{\left (4 \, e^{\left (-2 \, d x - 2 \, c\right )} + 6 \, e^{\left (-4 \, d x - 4 \, c\right )} + 4 \, e^{\left (-6 \, d x - 6 \, c\right )} + e^{\left (-8 \, d x - 8 \, c\right )} + 1\right )}}\right )} + 3 \, a b^{2}{\left (x + \frac{c}{d} + \frac{\log \left (e^{\left (-2 \, d x - 2 \, c\right )} + 1\right )}{d} + \frac{2 \, e^{\left (-2 \, d x - 2 \, c\right )}}{d{\left (2 \, e^{\left (-2 \, d x - 2 \, c\right )} + e^{\left (-4 \, d x - 4 \, c\right )} + 1\right )}}\right )} + \frac{3 \, a^{2} b \log \left (e^{\left (d x + c\right )} + e^{\left (-d x - c\right )}\right )}{d} + \frac{a^{3} \log \left (\sinh \left (d x + c\right )\right )}{d} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(coth(d*x+c)*(a+b*tanh(d*x+c)^2)^3,x, algorithm="maxima")

[Out]

b^3*(x + c/d + log(e^(-2*d*x - 2*c) + 1)/d + 4*(e^(-2*d*x - 2*c) + e^(-4*d*x - 4*c) + e^(-6*d*x - 6*c))/(d*(4*
e^(-2*d*x - 2*c) + 6*e^(-4*d*x - 4*c) + 4*e^(-6*d*x - 6*c) + e^(-8*d*x - 8*c) + 1))) + 3*a*b^2*(x + c/d + log(
e^(-2*d*x - 2*c) + 1)/d + 2*e^(-2*d*x - 2*c)/(d*(2*e^(-2*d*x - 2*c) + e^(-4*d*x - 4*c) + 1))) + 3*a^2*b*log(e^
(d*x + c) + e^(-d*x - c))/d + a^3*log(sinh(d*x + c))/d

________________________________________________________________________________________

Fricas [B]  time = 2.22105, size = 5854, normalized size = 81.31 \begin{align*} \text{result too large to display} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(coth(d*x+c)*(a+b*tanh(d*x+c)^2)^3,x, algorithm="fricas")

[Out]

-((a^3 + 3*a^2*b + 3*a*b^2 + b^3)*d*x*cosh(d*x + c)^8 + 8*(a^3 + 3*a^2*b + 3*a*b^2 + b^3)*d*x*cosh(d*x + c)*si
nh(d*x + c)^7 + (a^3 + 3*a^2*b + 3*a*b^2 + b^3)*d*x*sinh(d*x + c)^8 - 2*(3*a*b^2 + 2*b^3 - 2*(a^3 + 3*a^2*b +
3*a*b^2 + b^3)*d*x)*cosh(d*x + c)^6 + 2*(14*(a^3 + 3*a^2*b + 3*a*b^2 + b^3)*d*x*cosh(d*x + c)^2 - 3*a*b^2 - 2*
b^3 + 2*(a^3 + 3*a^2*b + 3*a*b^2 + b^3)*d*x)*sinh(d*x + c)^6 + 4*(14*(a^3 + 3*a^2*b + 3*a*b^2 + b^3)*d*x*cosh(
d*x + c)^3 - 3*(3*a*b^2 + 2*b^3 - 2*(a^3 + 3*a^2*b + 3*a*b^2 + b^3)*d*x)*cosh(d*x + c))*sinh(d*x + c)^5 - 2*(6
*a*b^2 + 2*b^3 - 3*(a^3 + 3*a^2*b + 3*a*b^2 + b^3)*d*x)*cosh(d*x + c)^4 + 2*(35*(a^3 + 3*a^2*b + 3*a*b^2 + b^3
)*d*x*cosh(d*x + c)^4 - 6*a*b^2 - 2*b^3 + 3*(a^3 + 3*a^2*b + 3*a*b^2 + b^3)*d*x - 15*(3*a*b^2 + 2*b^3 - 2*(a^3
+ 3*a^2*b + 3*a*b^2 + b^3)*d*x)*cosh(d*x + c)^2)*sinh(d*x + c)^4 + 8*(7*(a^3 + 3*a^2*b + 3*a*b^2 + b^3)*d*x*c
osh(d*x + c)^5 - 5*(3*a*b^2 + 2*b^3 - 2*(a^3 + 3*a^2*b + 3*a*b^2 + b^3)*d*x)*cosh(d*x + c)^3 - (6*a*b^2 + 2*b^
3 - 3*(a^3 + 3*a^2*b + 3*a*b^2 + b^3)*d*x)*cosh(d*x + c))*sinh(d*x + c)^3 + (a^3 + 3*a^2*b + 3*a*b^2 + b^3)*d*
x - 2*(3*a*b^2 + 2*b^3 - 2*(a^3 + 3*a^2*b + 3*a*b^2 + b^3)*d*x)*cosh(d*x + c)^2 + 2*(14*(a^3 + 3*a^2*b + 3*a*b
^2 + b^3)*d*x*cosh(d*x + c)^6 - 15*(3*a*b^2 + 2*b^3 - 2*(a^3 + 3*a^2*b + 3*a*b^2 + b^3)*d*x)*cosh(d*x + c)^4 -
3*a*b^2 - 2*b^3 + 2*(a^3 + 3*a^2*b + 3*a*b^2 + b^3)*d*x - 6*(6*a*b^2 + 2*b^3 - 3*(a^3 + 3*a^2*b + 3*a*b^2 + b
^3)*d*x)*cosh(d*x + c)^2)*sinh(d*x + c)^2 - ((3*a^2*b + 3*a*b^2 + b^3)*cosh(d*x + c)^8 + 8*(3*a^2*b + 3*a*b^2
+ b^3)*cosh(d*x + c)*sinh(d*x + c)^7 + (3*a^2*b + 3*a*b^2 + b^3)*sinh(d*x + c)^8 + 4*(3*a^2*b + 3*a*b^2 + b^3)
*cosh(d*x + c)^6 + 4*(3*a^2*b + 3*a*b^2 + b^3 + 7*(3*a^2*b + 3*a*b^2 + b^3)*cosh(d*x + c)^2)*sinh(d*x + c)^6 +
8*(7*(3*a^2*b + 3*a*b^2 + b^3)*cosh(d*x + c)^3 + 3*(3*a^2*b + 3*a*b^2 + b^3)*cosh(d*x + c))*sinh(d*x + c)^5 +
6*(3*a^2*b + 3*a*b^2 + b^3)*cosh(d*x + c)^4 + 2*(35*(3*a^2*b + 3*a*b^2 + b^3)*cosh(d*x + c)^4 + 9*a^2*b + 9*a
*b^2 + 3*b^3 + 30*(3*a^2*b + 3*a*b^2 + b^3)*cosh(d*x + c)^2)*sinh(d*x + c)^4 + 8*(7*(3*a^2*b + 3*a*b^2 + b^3)*
cosh(d*x + c)^5 + 10*(3*a^2*b + 3*a*b^2 + b^3)*cosh(d*x + c)^3 + 3*(3*a^2*b + 3*a*b^2 + b^3)*cosh(d*x + c))*si
nh(d*x + c)^3 + 3*a^2*b + 3*a*b^2 + b^3 + 4*(3*a^2*b + 3*a*b^2 + b^3)*cosh(d*x + c)^2 + 4*(7*(3*a^2*b + 3*a*b^
2 + b^3)*cosh(d*x + c)^6 + 15*(3*a^2*b + 3*a*b^2 + b^3)*cosh(d*x + c)^4 + 3*a^2*b + 3*a*b^2 + b^3 + 9*(3*a^2*b
+ 3*a*b^2 + b^3)*cosh(d*x + c)^2)*sinh(d*x + c)^2 + 8*((3*a^2*b + 3*a*b^2 + b^3)*cosh(d*x + c)^7 + 3*(3*a^2*b
+ 3*a*b^2 + b^3)*cosh(d*x + c)^5 + 3*(3*a^2*b + 3*a*b^2 + b^3)*cosh(d*x + c)^3 + (3*a^2*b + 3*a*b^2 + b^3)*co
sh(d*x + c))*sinh(d*x + c))*log(2*cosh(d*x + c)/(cosh(d*x + c) - sinh(d*x + c))) - (a^3*cosh(d*x + c)^8 + 8*a^
3*cosh(d*x + c)*sinh(d*x + c)^7 + a^3*sinh(d*x + c)^8 + 4*a^3*cosh(d*x + c)^6 + 6*a^3*cosh(d*x + c)^4 + 4*(7*a
^3*cosh(d*x + c)^2 + a^3)*sinh(d*x + c)^6 + 8*(7*a^3*cosh(d*x + c)^3 + 3*a^3*cosh(d*x + c))*sinh(d*x + c)^5 +
4*a^3*cosh(d*x + c)^2 + 2*(35*a^3*cosh(d*x + c)^4 + 30*a^3*cosh(d*x + c)^2 + 3*a^3)*sinh(d*x + c)^4 + 8*(7*a^3
*cosh(d*x + c)^5 + 10*a^3*cosh(d*x + c)^3 + 3*a^3*cosh(d*x + c))*sinh(d*x + c)^3 + a^3 + 4*(7*a^3*cosh(d*x + c
)^6 + 15*a^3*cosh(d*x + c)^4 + 9*a^3*cosh(d*x + c)^2 + a^3)*sinh(d*x + c)^2 + 8*(a^3*cosh(d*x + c)^7 + 3*a^3*c
osh(d*x + c)^5 + 3*a^3*cosh(d*x + c)^3 + a^3*cosh(d*x + c))*sinh(d*x + c))*log(2*sinh(d*x + c)/(cosh(d*x + c)
- sinh(d*x + c))) + 4*(2*(a^3 + 3*a^2*b + 3*a*b^2 + b^3)*d*x*cosh(d*x + c)^7 - 3*(3*a*b^2 + 2*b^3 - 2*(a^3 + 3
*a^2*b + 3*a*b^2 + b^3)*d*x)*cosh(d*x + c)^5 - 2*(6*a*b^2 + 2*b^3 - 3*(a^3 + 3*a^2*b + 3*a*b^2 + b^3)*d*x)*cos
h(d*x + c)^3 - (3*a*b^2 + 2*b^3 - 2*(a^3 + 3*a^2*b + 3*a*b^2 + b^3)*d*x)*cosh(d*x + c))*sinh(d*x + c))/(d*cosh
(d*x + c)^8 + 8*d*cosh(d*x + c)*sinh(d*x + c)^7 + d*sinh(d*x + c)^8 + 4*d*cosh(d*x + c)^6 + 4*(7*d*cosh(d*x +
c)^2 + d)*sinh(d*x + c)^6 + 8*(7*d*cosh(d*x + c)^3 + 3*d*cosh(d*x + c))*sinh(d*x + c)^5 + 6*d*cosh(d*x + c)^4
+ 2*(35*d*cosh(d*x + c)^4 + 30*d*cosh(d*x + c)^2 + 3*d)*sinh(d*x + c)^4 + 8*(7*d*cosh(d*x + c)^5 + 10*d*cosh(d
*x + c)^3 + 3*d*cosh(d*x + c))*sinh(d*x + c)^3 + 4*d*cosh(d*x + c)^2 + 4*(7*d*cosh(d*x + c)^6 + 15*d*cosh(d*x
+ c)^4 + 9*d*cosh(d*x + c)^2 + d)*sinh(d*x + c)^2 + 8*(d*cosh(d*x + c)^7 + 3*d*cosh(d*x + c)^5 + 3*d*cosh(d*x
+ c)^3 + d*cosh(d*x + c))*sinh(d*x + c) + d)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(coth(d*x+c)*(a+b*tanh(d*x+c)**2)**3,x)

[Out]

Timed out

________________________________________________________________________________________

Giac [B]  time = 1.41302, size = 366, normalized size = 5.08 \begin{align*} \frac{a^{3} \log \left (e^{\left (2 \, d x + 2 \, c\right )} + e^{\left (-2 \, d x - 2 \, c\right )} - 2\right )}{2 \, d} + \frac{{\left (3 \, a^{2} b + 3 \, a b^{2} + b^{3}\right )} \log \left (e^{\left (2 \, d x + 2 \, c\right )} + e^{\left (-2 \, d x - 2 \, c\right )} + 2\right )}{2 \, d} - \frac{9 \, a^{2} b{\left (e^{\left (2 \, d x + 2 \, c\right )} + e^{\left (-2 \, d x - 2 \, c\right )}\right )}^{2} + 9 \, a b^{2}{\left (e^{\left (2 \, d x + 2 \, c\right )} + e^{\left (-2 \, d x - 2 \, c\right )}\right )}^{2} + 3 \, b^{3}{\left (e^{\left (2 \, d x + 2 \, c\right )} + e^{\left (-2 \, d x - 2 \, c\right )}\right )}^{2} + 36 \, a^{2} b{\left (e^{\left (2 \, d x + 2 \, c\right )} + e^{\left (-2 \, d x - 2 \, c\right )}\right )} + 12 \, a b^{2}{\left (e^{\left (2 \, d x + 2 \, c\right )} + e^{\left (-2 \, d x - 2 \, c\right )}\right )} - 4 \, b^{3}{\left (e^{\left (2 \, d x + 2 \, c\right )} + e^{\left (-2 \, d x - 2 \, c\right )}\right )} + 36 \, a^{2} b - 12 \, a b^{2} - 4 \, b^{3}}{4 \, d{\left (e^{\left (2 \, d x + 2 \, c\right )} + e^{\left (-2 \, d x - 2 \, c\right )} + 2\right )}^{2}} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(coth(d*x+c)*(a+b*tanh(d*x+c)^2)^3,x, algorithm="giac")

[Out]

1/2*a^3*log(e^(2*d*x + 2*c) + e^(-2*d*x - 2*c) - 2)/d + 1/2*(3*a^2*b + 3*a*b^2 + b^3)*log(e^(2*d*x + 2*c) + e^
(-2*d*x - 2*c) + 2)/d - 1/4*(9*a^2*b*(e^(2*d*x + 2*c) + e^(-2*d*x - 2*c))^2 + 9*a*b^2*(e^(2*d*x + 2*c) + e^(-2
*d*x - 2*c))^2 + 3*b^3*(e^(2*d*x + 2*c) + e^(-2*d*x - 2*c))^2 + 36*a^2*b*(e^(2*d*x + 2*c) + e^(-2*d*x - 2*c))
+ 12*a*b^2*(e^(2*d*x + 2*c) + e^(-2*d*x - 2*c)) - 4*b^3*(e^(2*d*x + 2*c) + e^(-2*d*x - 2*c)) + 36*a^2*b - 12*a
*b^2 - 4*b^3)/(d*(e^(2*d*x + 2*c) + e^(-2*d*x - 2*c) + 2)^2)