3.116 $$\int \frac{\cosh ^2(c+d x)}{(a+b \tanh ^2(c+d x))^2} \, dx$$

Optimal. Leaf size=140 $\frac{b^{3/2} (5 a+b) \tan ^{-1}\left (\frac{\sqrt{b} \tanh (c+d x)}{\sqrt{a}}\right )}{2 a^{3/2} d (a+b)^3}-\frac{b (a-b) \tanh (c+d x)}{2 a d (a+b)^2 \left (a+b \tanh ^2(c+d x)\right )}+\frac{\sinh (c+d x) \cosh (c+d x)}{2 d (a+b) \left (a+b \tanh ^2(c+d x)\right )}+\frac{x (a+5 b)}{2 (a+b)^3}$

[Out]

((a + 5*b)*x)/(2*(a + b)^3) + (b^(3/2)*(5*a + b)*ArcTan[(Sqrt[b]*Tanh[c + d*x])/Sqrt[a]])/(2*a^(3/2)*(a + b)^3
*d) + (Cosh[c + d*x]*Sinh[c + d*x])/(2*(a + b)*d*(a + b*Tanh[c + d*x]^2)) - ((a - b)*b*Tanh[c + d*x])/(2*a*(a
+ b)^2*d*(a + b*Tanh[c + d*x]^2))

________________________________________________________________________________________

Rubi [A]  time = 0.193778, antiderivative size = 140, normalized size of antiderivative = 1., number of steps used = 6, number of rules used = 6, integrand size = 23, $$\frac{\text{number of rules}}{\text{integrand size}}$$ = 0.261, Rules used = {3675, 414, 527, 522, 206, 205} $\frac{b^{3/2} (5 a+b) \tan ^{-1}\left (\frac{\sqrt{b} \tanh (c+d x)}{\sqrt{a}}\right )}{2 a^{3/2} d (a+b)^3}-\frac{b (a-b) \tanh (c+d x)}{2 a d (a+b)^2 \left (a+b \tanh ^2(c+d x)\right )}+\frac{\sinh (c+d x) \cosh (c+d x)}{2 d (a+b) \left (a+b \tanh ^2(c+d x)\right )}+\frac{x (a+5 b)}{2 (a+b)^3}$

Antiderivative was successfully veriﬁed.

[In]

Int[Cosh[c + d*x]^2/(a + b*Tanh[c + d*x]^2)^2,x]

[Out]

((a + 5*b)*x)/(2*(a + b)^3) + (b^(3/2)*(5*a + b)*ArcTan[(Sqrt[b]*Tanh[c + d*x])/Sqrt[a]])/(2*a^(3/2)*(a + b)^3
*d) + (Cosh[c + d*x]*Sinh[c + d*x])/(2*(a + b)*d*(a + b*Tanh[c + d*x]^2)) - ((a - b)*b*Tanh[c + d*x])/(2*a*(a
+ b)^2*d*(a + b*Tanh[c + d*x]^2))

Rule 3675

Int[sec[(e_.) + (f_.)*(x_)]^(m_)*((a_) + (b_.)*((c_.)*tan[(e_.) + (f_.)*(x_)])^(n_))^(p_.), x_Symbol] :> With[
{ff = FreeFactors[Tan[e + f*x], x]}, Dist[ff/(c^(m - 1)*f), Subst[Int[(c^2 + ff^2*x^2)^(m/2 - 1)*(a + b*(ff*x)
^n)^p, x], x, (c*Tan[e + f*x])/ff], x]] /; FreeQ[{a, b, c, e, f, n, p}, x] && IntegerQ[m/2] && (IntegersQ[n, p
] || IGtQ[m, 0] || IGtQ[p, 0] || EqQ[n^2, 4] || EqQ[n^2, 16])

Rule 414

Int[((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] :> -Simp[(b*x*(a + b*x^n)^(p + 1)*(
c + d*x^n)^(q + 1))/(a*n*(p + 1)*(b*c - a*d)), x] + Dist[1/(a*n*(p + 1)*(b*c - a*d)), Int[(a + b*x^n)^(p + 1)*
(c + d*x^n)^q*Simp[b*c + n*(p + 1)*(b*c - a*d) + d*b*(n*(p + q + 2) + 1)*x^n, x], x], x] /; FreeQ[{a, b, c, d,
n, q}, x] && NeQ[b*c - a*d, 0] && LtQ[p, -1] &&  !( !IntegerQ[p] && IntegerQ[q] && LtQ[q, -1]) && IntBinomial
Q[a, b, c, d, n, p, q, x]

Rule 527

Int[((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_.)*((e_) + (f_.)*(x_)^(n_)), x_Symbol] :> -Simp[
((b*e - a*f)*x*(a + b*x^n)^(p + 1)*(c + d*x^n)^(q + 1))/(a*n*(b*c - a*d)*(p + 1)), x] + Dist[1/(a*n*(b*c - a*d
)*(p + 1)), Int[(a + b*x^n)^(p + 1)*(c + d*x^n)^q*Simp[c*(b*e - a*f) + e*n*(b*c - a*d)*(p + 1) + d*(b*e - a*f)
*(n*(p + q + 2) + 1)*x^n, x], x], x] /; FreeQ[{a, b, c, d, e, f, n, q}, x] && LtQ[p, -1]

Rule 522

Int[((e_) + (f_.)*(x_)^(n_))/(((a_) + (b_.)*(x_)^(n_))*((c_) + (d_.)*(x_)^(n_))), x_Symbol] :> Dist[(b*e - a*f
)/(b*c - a*d), Int[1/(a + b*x^n), x], x] - Dist[(d*e - c*f)/(b*c - a*d), Int[1/(c + d*x^n), x], x] /; FreeQ[{a
, b, c, d, e, f, n}, x]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
/; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 205

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]*ArcTan[x/Rt[a/b, 2]])/a, x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rubi steps

\begin{align*} \int \frac{\cosh ^2(c+d x)}{\left (a+b \tanh ^2(c+d x)\right )^2} \, dx &=\frac{\operatorname{Subst}\left (\int \frac{1}{\left (1-x^2\right )^2 \left (a+b x^2\right )^2} \, dx,x,\tanh (c+d x)\right )}{d}\\ &=\frac{\cosh (c+d x) \sinh (c+d x)}{2 (a+b) d \left (a+b \tanh ^2(c+d x)\right )}+\frac{\operatorname{Subst}\left (\int \frac{a+2 b+3 b x^2}{\left (1-x^2\right ) \left (a+b x^2\right )^2} \, dx,x,\tanh (c+d x)\right )}{2 (a+b) d}\\ &=\frac{\cosh (c+d x) \sinh (c+d x)}{2 (a+b) d \left (a+b \tanh ^2(c+d x)\right )}-\frac{(a-b) b \tanh (c+d x)}{2 a (a+b)^2 d \left (a+b \tanh ^2(c+d x)\right )}-\frac{\operatorname{Subst}\left (\int \frac{-2 \left (a^2+4 a b+b^2\right )-2 (a-b) b x^2}{\left (1-x^2\right ) \left (a+b x^2\right )} \, dx,x,\tanh (c+d x)\right )}{4 a (a+b)^2 d}\\ &=\frac{\cosh (c+d x) \sinh (c+d x)}{2 (a+b) d \left (a+b \tanh ^2(c+d x)\right )}-\frac{(a-b) b \tanh (c+d x)}{2 a (a+b)^2 d \left (a+b \tanh ^2(c+d x)\right )}+\frac{\left (b^2 (5 a+b)\right ) \operatorname{Subst}\left (\int \frac{1}{a+b x^2} \, dx,x,\tanh (c+d x)\right )}{2 a (a+b)^3 d}+\frac{(a+5 b) \operatorname{Subst}\left (\int \frac{1}{1-x^2} \, dx,x,\tanh (c+d x)\right )}{2 (a+b)^3 d}\\ &=\frac{(a+5 b) x}{2 (a+b)^3}+\frac{b^{3/2} (5 a+b) \tan ^{-1}\left (\frac{\sqrt{b} \tanh (c+d x)}{\sqrt{a}}\right )}{2 a^{3/2} (a+b)^3 d}+\frac{\cosh (c+d x) \sinh (c+d x)}{2 (a+b) d \left (a+b \tanh ^2(c+d x)\right )}-\frac{(a-b) b \tanh (c+d x)}{2 a (a+b)^2 d \left (a+b \tanh ^2(c+d x)\right )}\\ \end{align*}

Mathematica [A]  time = 0.747527, size = 110, normalized size = 0.79 $\frac{\frac{2 b^{3/2} (5 a+b) \tan ^{-1}\left (\frac{\sqrt{b} \tanh (c+d x)}{\sqrt{a}}\right )}{a^{3/2}}+\frac{2 b^2 (a+b) \sinh (2 (c+d x))}{a ((a+b) \cosh (2 (c+d x))+a-b)}+2 (a+5 b) (c+d x)+(a+b) \sinh (2 (c+d x))}{4 d (a+b)^3}$

Antiderivative was successfully veriﬁed.

[In]

Integrate[Cosh[c + d*x]^2/(a + b*Tanh[c + d*x]^2)^2,x]

[Out]

(2*(a + 5*b)*(c + d*x) + (2*b^(3/2)*(5*a + b)*ArcTan[(Sqrt[b]*Tanh[c + d*x])/Sqrt[a]])/a^(3/2) + (a + b)*Sinh[
2*(c + d*x)] + (2*b^2*(a + b)*Sinh[2*(c + d*x)])/(a*(a - b + (a + b)*Cosh[2*(c + d*x)])))/(4*(a + b)^3*d)

________________________________________________________________________________________

Maple [B]  time = 0.107, size = 1146, normalized size = 8.2 \begin{align*} \text{result too large to display} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

int(cosh(d*x+c)^2/(a+b*tanh(d*x+c)^2)^2,x)

[Out]

-1/2/d/(a+b)^2/(tanh(1/2*d*x+1/2*c)+1)^2+1/2/d/(a+b)^2/(tanh(1/2*d*x+1/2*c)+1)+1/2/d/(a+b)^3*ln(tanh(1/2*d*x+1
/2*c)+1)*a+5/2/d/(a+b)^3*ln(tanh(1/2*d*x+1/2*c)+1)*b+1/d*b^2/(a+b)^3/(tanh(1/2*d*x+1/2*c)^4*a+2*tanh(1/2*d*x+1
/2*c)^2*a+4*tanh(1/2*d*x+1/2*c)^2*b+a)*tanh(1/2*d*x+1/2*c)^3+1/d*b^3/(a+b)^3/(tanh(1/2*d*x+1/2*c)^4*a+2*tanh(1
/2*d*x+1/2*c)^2*a+4*tanh(1/2*d*x+1/2*c)^2*b+a)/a*tanh(1/2*d*x+1/2*c)^3+1/d*b^2/(a+b)^3/(tanh(1/2*d*x+1/2*c)^4*
a+2*tanh(1/2*d*x+1/2*c)^2*a+4*tanh(1/2*d*x+1/2*c)^2*b+a)*tanh(1/2*d*x+1/2*c)+1/d*b^3/(a+b)^3/(tanh(1/2*d*x+1/2
*c)^4*a+2*tanh(1/2*d*x+1/2*c)^2*a+4*tanh(1/2*d*x+1/2*c)^2*b+a)/a*tanh(1/2*d*x+1/2*c)-5/2/d*b^2/(a+b)^3*a/(b*(a
+b))^(1/2)/((2*(b*(a+b))^(1/2)-a-2*b)*a)^(1/2)*arctanh(a*tanh(1/2*d*x+1/2*c)/((2*(b*(a+b))^(1/2)-a-2*b)*a)^(1/
2))+5/2/d*b^2/(a+b)^3/((2*(b*(a+b))^(1/2)-a-2*b)*a)^(1/2)*arctanh(a*tanh(1/2*d*x+1/2*c)/((2*(b*(a+b))^(1/2)-a-
2*b)*a)^(1/2))-3/d*b^3/(a+b)^3/(b*(a+b))^(1/2)/((2*(b*(a+b))^(1/2)-a-2*b)*a)^(1/2)*arctanh(a*tanh(1/2*d*x+1/2*
c)/((2*(b*(a+b))^(1/2)-a-2*b)*a)^(1/2))-5/2/d*b^2/(a+b)^3*a/(b*(a+b))^(1/2)/((2*(b*(a+b))^(1/2)+a+2*b)*a)^(1/2
)*arctan(a*tanh(1/2*d*x+1/2*c)/((2*(b*(a+b))^(1/2)+a+2*b)*a)^(1/2))-5/2/d*b^2/(a+b)^3/((2*(b*(a+b))^(1/2)+a+2*
b)*a)^(1/2)*arctan(a*tanh(1/2*d*x+1/2*c)/((2*(b*(a+b))^(1/2)+a+2*b)*a)^(1/2))-3/d*b^3/(a+b)^3/(b*(a+b))^(1/2)/
((2*(b*(a+b))^(1/2)+a+2*b)*a)^(1/2)*arctan(a*tanh(1/2*d*x+1/2*c)/((2*(b*(a+b))^(1/2)+a+2*b)*a)^(1/2))+1/2/d*b^
3/(a+b)^3/a/((2*(b*(a+b))^(1/2)-a-2*b)*a)^(1/2)*arctanh(a*tanh(1/2*d*x+1/2*c)/((2*(b*(a+b))^(1/2)-a-2*b)*a)^(1
/2))-1/2/d*b^4/(a+b)^3/a/(b*(a+b))^(1/2)/((2*(b*(a+b))^(1/2)-a-2*b)*a)^(1/2)*arctanh(a*tanh(1/2*d*x+1/2*c)/((2
*(b*(a+b))^(1/2)-a-2*b)*a)^(1/2))-1/2/d*b^3/(a+b)^3/a/((2*(b*(a+b))^(1/2)+a+2*b)*a)^(1/2)*arctan(a*tanh(1/2*d*
x+1/2*c)/((2*(b*(a+b))^(1/2)+a+2*b)*a)^(1/2))-1/2/d*b^4/(a+b)^3/a/(b*(a+b))^(1/2)/((2*(b*(a+b))^(1/2)+a+2*b)*a
)^(1/2)*arctan(a*tanh(1/2*d*x+1/2*c)/((2*(b*(a+b))^(1/2)+a+2*b)*a)^(1/2))+1/2/d/(a+b)^2/(tanh(1/2*d*x+1/2*c)-1
)^2+1/2/d/(a+b)^2/(tanh(1/2*d*x+1/2*c)-1)-1/2/d/(a+b)^3*ln(tanh(1/2*d*x+1/2*c)-1)*a-5/2/d/(a+b)^3*ln(tanh(1/2*
d*x+1/2*c)-1)*b

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(cosh(d*x+c)^2/(a+b*tanh(d*x+c)^2)^2,x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [B]  time = 2.86065, size = 10118, normalized size = 72.27 \begin{align*} \text{result too large to display} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(cosh(d*x+c)^2/(a+b*tanh(d*x+c)^2)^2,x, algorithm="fricas")

[Out]

[1/8*((a^3 + 2*a^2*b + a*b^2)*cosh(d*x + c)^8 + 8*(a^3 + 2*a^2*b + a*b^2)*cosh(d*x + c)*sinh(d*x + c)^7 + (a^3
+ 2*a^2*b + a*b^2)*sinh(d*x + c)^8 + 2*(a^3 - a*b^2 + 2*(a^3 + 6*a^2*b + 5*a*b^2)*d*x)*cosh(d*x + c)^6 + 2*(a
^3 - a*b^2 + 2*(a^3 + 6*a^2*b + 5*a*b^2)*d*x + 14*(a^3 + 2*a^2*b + a*b^2)*cosh(d*x + c)^2)*sinh(d*x + c)^6 + 4
*(14*(a^3 + 2*a^2*b + a*b^2)*cosh(d*x + c)^3 + 3*(a^3 - a*b^2 + 2*(a^3 + 6*a^2*b + 5*a*b^2)*d*x)*cosh(d*x + c)
)*sinh(d*x + c)^5 - 8*(a*b^2 - b^3 - (a^3 + 4*a^2*b - 5*a*b^2)*d*x)*cosh(d*x + c)^4 + 2*(35*(a^3 + 2*a^2*b + a
*b^2)*cosh(d*x + c)^4 - 4*a*b^2 + 4*b^3 + 4*(a^3 + 4*a^2*b - 5*a*b^2)*d*x + 15*(a^3 - a*b^2 + 2*(a^3 + 6*a^2*b
+ 5*a*b^2)*d*x)*cosh(d*x + c)^2)*sinh(d*x + c)^4 + 8*(7*(a^3 + 2*a^2*b + a*b^2)*cosh(d*x + c)^5 + 5*(a^3 - a*
b^2 + 2*(a^3 + 6*a^2*b + 5*a*b^2)*d*x)*cosh(d*x + c)^3 - 4*(a*b^2 - b^3 - (a^3 + 4*a^2*b - 5*a*b^2)*d*x)*cosh(
d*x + c))*sinh(d*x + c)^3 - a^3 - 2*a^2*b - a*b^2 - 2*(a^3 + 3*a*b^2 + 4*b^3 - 2*(a^3 + 6*a^2*b + 5*a*b^2)*d*x
)*cosh(d*x + c)^2 + 2*(14*(a^3 + 2*a^2*b + a*b^2)*cosh(d*x + c)^6 + 15*(a^3 - a*b^2 + 2*(a^3 + 6*a^2*b + 5*a*b
^2)*d*x)*cosh(d*x + c)^4 - a^3 - 3*a*b^2 - 4*b^3 + 2*(a^3 + 6*a^2*b + 5*a*b^2)*d*x - 24*(a*b^2 - b^3 - (a^3 +
4*a^2*b - 5*a*b^2)*d*x)*cosh(d*x + c)^2)*sinh(d*x + c)^2 + 2*((5*a^2*b + 6*a*b^2 + b^3)*cosh(d*x + c)^6 + 6*(5
*a^2*b + 6*a*b^2 + b^3)*cosh(d*x + c)*sinh(d*x + c)^5 + (5*a^2*b + 6*a*b^2 + b^3)*sinh(d*x + c)^6 + 2*(5*a^2*b
- 4*a*b^2 - b^3)*cosh(d*x + c)^4 + (10*a^2*b - 8*a*b^2 - 2*b^3 + 15*(5*a^2*b + 6*a*b^2 + b^3)*cosh(d*x + c)^2
)*sinh(d*x + c)^4 + 4*(5*(5*a^2*b + 6*a*b^2 + b^3)*cosh(d*x + c)^3 + 2*(5*a^2*b - 4*a*b^2 - b^3)*cosh(d*x + c)
)*sinh(d*x + c)^3 + (5*a^2*b + 6*a*b^2 + b^3)*cosh(d*x + c)^2 + (15*(5*a^2*b + 6*a*b^2 + b^3)*cosh(d*x + c)^4
+ 5*a^2*b + 6*a*b^2 + b^3 + 12*(5*a^2*b - 4*a*b^2 - b^3)*cosh(d*x + c)^2)*sinh(d*x + c)^2 + 2*(3*(5*a^2*b + 6*
a*b^2 + b^3)*cosh(d*x + c)^5 + 4*(5*a^2*b - 4*a*b^2 - b^3)*cosh(d*x + c)^3 + (5*a^2*b + 6*a*b^2 + b^3)*cosh(d*
x + c))*sinh(d*x + c))*sqrt(-b/a)*log(((a^2 + 2*a*b + b^2)*cosh(d*x + c)^4 + 4*(a^2 + 2*a*b + b^2)*cosh(d*x +
c)*sinh(d*x + c)^3 + (a^2 + 2*a*b + b^2)*sinh(d*x + c)^4 + 2*(a^2 - b^2)*cosh(d*x + c)^2 + 2*(3*(a^2 + 2*a*b +
b^2)*cosh(d*x + c)^2 + a^2 - b^2)*sinh(d*x + c)^2 + a^2 - 6*a*b + b^2 + 4*((a^2 + 2*a*b + b^2)*cosh(d*x + c)^
3 + (a^2 - b^2)*cosh(d*x + c))*sinh(d*x + c) + 4*((a^2 + a*b)*cosh(d*x + c)^2 + 2*(a^2 + a*b)*cosh(d*x + c)*si
nh(d*x + c) + (a^2 + a*b)*sinh(d*x + c)^2 + a^2 - a*b)*sqrt(-b/a))/((a + b)*cosh(d*x + c)^4 + 4*(a + b)*cosh(d
*x + c)*sinh(d*x + c)^3 + (a + b)*sinh(d*x + c)^4 + 2*(a - b)*cosh(d*x + c)^2 + 2*(3*(a + b)*cosh(d*x + c)^2 +
a - b)*sinh(d*x + c)^2 + 4*((a + b)*cosh(d*x + c)^3 + (a - b)*cosh(d*x + c))*sinh(d*x + c) + a + b)) + 4*(2*(
a^3 + 2*a^2*b + a*b^2)*cosh(d*x + c)^7 + 3*(a^3 - a*b^2 + 2*(a^3 + 6*a^2*b + 5*a*b^2)*d*x)*cosh(d*x + c)^5 - 8
*(a*b^2 - b^3 - (a^3 + 4*a^2*b - 5*a*b^2)*d*x)*cosh(d*x + c)^3 - (a^3 + 3*a*b^2 + 4*b^3 - 2*(a^3 + 6*a^2*b + 5
*a*b^2)*d*x)*cosh(d*x + c))*sinh(d*x + c))/((a^5 + 4*a^4*b + 6*a^3*b^2 + 4*a^2*b^3 + a*b^4)*d*cosh(d*x + c)^6
+ 6*(a^5 + 4*a^4*b + 6*a^3*b^2 + 4*a^2*b^3 + a*b^4)*d*cosh(d*x + c)*sinh(d*x + c)^5 + (a^5 + 4*a^4*b + 6*a^3*b
^2 + 4*a^2*b^3 + a*b^4)*d*sinh(d*x + c)^6 + 2*(a^5 + 2*a^4*b - 2*a^2*b^3 - a*b^4)*d*cosh(d*x + c)^4 + (15*(a^5
+ 4*a^4*b + 6*a^3*b^2 + 4*a^2*b^3 + a*b^4)*d*cosh(d*x + c)^2 + 2*(a^5 + 2*a^4*b - 2*a^2*b^3 - a*b^4)*d)*sinh(
d*x + c)^4 + (a^5 + 4*a^4*b + 6*a^3*b^2 + 4*a^2*b^3 + a*b^4)*d*cosh(d*x + c)^2 + 4*(5*(a^5 + 4*a^4*b + 6*a^3*b
^2 + 4*a^2*b^3 + a*b^4)*d*cosh(d*x + c)^3 + 2*(a^5 + 2*a^4*b - 2*a^2*b^3 - a*b^4)*d*cosh(d*x + c))*sinh(d*x +
c)^3 + (15*(a^5 + 4*a^4*b + 6*a^3*b^2 + 4*a^2*b^3 + a*b^4)*d*cosh(d*x + c)^4 + 12*(a^5 + 2*a^4*b - 2*a^2*b^3 -
a*b^4)*d*cosh(d*x + c)^2 + (a^5 + 4*a^4*b + 6*a^3*b^2 + 4*a^2*b^3 + a*b^4)*d)*sinh(d*x + c)^2 + 2*(3*(a^5 + 4
*a^4*b + 6*a^3*b^2 + 4*a^2*b^3 + a*b^4)*d*cosh(d*x + c)^5 + 4*(a^5 + 2*a^4*b - 2*a^2*b^3 - a*b^4)*d*cosh(d*x +
c)^3 + (a^5 + 4*a^4*b + 6*a^3*b^2 + 4*a^2*b^3 + a*b^4)*d*cosh(d*x + c))*sinh(d*x + c)), 1/8*((a^3 + 2*a^2*b +
a*b^2)*cosh(d*x + c)^8 + 8*(a^3 + 2*a^2*b + a*b^2)*cosh(d*x + c)*sinh(d*x + c)^7 + (a^3 + 2*a^2*b + a*b^2)*si
nh(d*x + c)^8 + 2*(a^3 - a*b^2 + 2*(a^3 + 6*a^2*b + 5*a*b^2)*d*x)*cosh(d*x + c)^6 + 2*(a^3 - a*b^2 + 2*(a^3 +
6*a^2*b + 5*a*b^2)*d*x + 14*(a^3 + 2*a^2*b + a*b^2)*cosh(d*x + c)^2)*sinh(d*x + c)^6 + 4*(14*(a^3 + 2*a^2*b +
a*b^2)*cosh(d*x + c)^3 + 3*(a^3 - a*b^2 + 2*(a^3 + 6*a^2*b + 5*a*b^2)*d*x)*cosh(d*x + c))*sinh(d*x + c)^5 - 8*
(a*b^2 - b^3 - (a^3 + 4*a^2*b - 5*a*b^2)*d*x)*cosh(d*x + c)^4 + 2*(35*(a^3 + 2*a^2*b + a*b^2)*cosh(d*x + c)^4
- 4*a*b^2 + 4*b^3 + 4*(a^3 + 4*a^2*b - 5*a*b^2)*d*x + 15*(a^3 - a*b^2 + 2*(a^3 + 6*a^2*b + 5*a*b^2)*d*x)*cosh(
d*x + c)^2)*sinh(d*x + c)^4 + 8*(7*(a^3 + 2*a^2*b + a*b^2)*cosh(d*x + c)^5 + 5*(a^3 - a*b^2 + 2*(a^3 + 6*a^2*b
+ 5*a*b^2)*d*x)*cosh(d*x + c)^3 - 4*(a*b^2 - b^3 - (a^3 + 4*a^2*b - 5*a*b^2)*d*x)*cosh(d*x + c))*sinh(d*x + c
)^3 - a^3 - 2*a^2*b - a*b^2 - 2*(a^3 + 3*a*b^2 + 4*b^3 - 2*(a^3 + 6*a^2*b + 5*a*b^2)*d*x)*cosh(d*x + c)^2 + 2*
(14*(a^3 + 2*a^2*b + a*b^2)*cosh(d*x + c)^6 + 15*(a^3 - a*b^2 + 2*(a^3 + 6*a^2*b + 5*a*b^2)*d*x)*cosh(d*x + c)
^4 - a^3 - 3*a*b^2 - 4*b^3 + 2*(a^3 + 6*a^2*b + 5*a*b^2)*d*x - 24*(a*b^2 - b^3 - (a^3 + 4*a^2*b - 5*a*b^2)*d*x
)*cosh(d*x + c)^2)*sinh(d*x + c)^2 + 4*((5*a^2*b + 6*a*b^2 + b^3)*cosh(d*x + c)^6 + 6*(5*a^2*b + 6*a*b^2 + b^3
)*cosh(d*x + c)*sinh(d*x + c)^5 + (5*a^2*b + 6*a*b^2 + b^3)*sinh(d*x + c)^6 + 2*(5*a^2*b - 4*a*b^2 - b^3)*cosh
(d*x + c)^4 + (10*a^2*b - 8*a*b^2 - 2*b^3 + 15*(5*a^2*b + 6*a*b^2 + b^3)*cosh(d*x + c)^2)*sinh(d*x + c)^4 + 4*
(5*(5*a^2*b + 6*a*b^2 + b^3)*cosh(d*x + c)^3 + 2*(5*a^2*b - 4*a*b^2 - b^3)*cosh(d*x + c))*sinh(d*x + c)^3 + (5
*a^2*b + 6*a*b^2 + b^3)*cosh(d*x + c)^2 + (15*(5*a^2*b + 6*a*b^2 + b^3)*cosh(d*x + c)^4 + 5*a^2*b + 6*a*b^2 +
b^3 + 12*(5*a^2*b - 4*a*b^2 - b^3)*cosh(d*x + c)^2)*sinh(d*x + c)^2 + 2*(3*(5*a^2*b + 6*a*b^2 + b^3)*cosh(d*x
+ c)^5 + 4*(5*a^2*b - 4*a*b^2 - b^3)*cosh(d*x + c)^3 + (5*a^2*b + 6*a*b^2 + b^3)*cosh(d*x + c))*sinh(d*x + c))
*sqrt(b/a)*arctan(1/2*((a + b)*cosh(d*x + c)^2 + 2*(a + b)*cosh(d*x + c)*sinh(d*x + c) + (a + b)*sinh(d*x + c)
^2 + a - b)*sqrt(b/a)/b) + 4*(2*(a^3 + 2*a^2*b + a*b^2)*cosh(d*x + c)^7 + 3*(a^3 - a*b^2 + 2*(a^3 + 6*a^2*b +
5*a*b^2)*d*x)*cosh(d*x + c)^5 - 8*(a*b^2 - b^3 - (a^3 + 4*a^2*b - 5*a*b^2)*d*x)*cosh(d*x + c)^3 - (a^3 + 3*a*b
^2 + 4*b^3 - 2*(a^3 + 6*a^2*b + 5*a*b^2)*d*x)*cosh(d*x + c))*sinh(d*x + c))/((a^5 + 4*a^4*b + 6*a^3*b^2 + 4*a^
2*b^3 + a*b^4)*d*cosh(d*x + c)^6 + 6*(a^5 + 4*a^4*b + 6*a^3*b^2 + 4*a^2*b^3 + a*b^4)*d*cosh(d*x + c)*sinh(d*x
+ c)^5 + (a^5 + 4*a^4*b + 6*a^3*b^2 + 4*a^2*b^3 + a*b^4)*d*sinh(d*x + c)^6 + 2*(a^5 + 2*a^4*b - 2*a^2*b^3 - a*
b^4)*d*cosh(d*x + c)^4 + (15*(a^5 + 4*a^4*b + 6*a^3*b^2 + 4*a^2*b^3 + a*b^4)*d*cosh(d*x + c)^2 + 2*(a^5 + 2*a^
4*b - 2*a^2*b^3 - a*b^4)*d)*sinh(d*x + c)^4 + (a^5 + 4*a^4*b + 6*a^3*b^2 + 4*a^2*b^3 + a*b^4)*d*cosh(d*x + c)^
2 + 4*(5*(a^5 + 4*a^4*b + 6*a^3*b^2 + 4*a^2*b^3 + a*b^4)*d*cosh(d*x + c)^3 + 2*(a^5 + 2*a^4*b - 2*a^2*b^3 - a*
b^4)*d*cosh(d*x + c))*sinh(d*x + c)^3 + (15*(a^5 + 4*a^4*b + 6*a^3*b^2 + 4*a^2*b^3 + a*b^4)*d*cosh(d*x + c)^4
+ 12*(a^5 + 2*a^4*b - 2*a^2*b^3 - a*b^4)*d*cosh(d*x + c)^2 + (a^5 + 4*a^4*b + 6*a^3*b^2 + 4*a^2*b^3 + a*b^4)*d
)*sinh(d*x + c)^2 + 2*(3*(a^5 + 4*a^4*b + 6*a^3*b^2 + 4*a^2*b^3 + a*b^4)*d*cosh(d*x + c)^5 + 4*(a^5 + 2*a^4*b
- 2*a^2*b^3 - a*b^4)*d*cosh(d*x + c)^3 + (a^5 + 4*a^4*b + 6*a^3*b^2 + 4*a^2*b^3 + a*b^4)*d*cosh(d*x + c))*sinh
(d*x + c))]

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(cosh(d*x+c)**2/(a+b*tanh(d*x+c)**2)**2,x)

[Out]

Timed out

________________________________________________________________________________________

Giac [B]  time = 2.3075, size = 606, normalized size = 4.33 \begin{align*} \frac{\frac{12 \,{\left (a + 5 \, b\right )} d x}{a^{3} + 3 \, a^{2} b + 3 \, a b^{2} + b^{3}} + \frac{12 \,{\left (5 \, a b^{2} e^{\left (2 \, c\right )} + b^{3} e^{\left (2 \, c\right )}\right )} \arctan \left (\frac{a e^{\left (2 \, d x + 2 \, c\right )} + b e^{\left (2 \, d x + 2 \, c\right )} + a - b}{2 \, \sqrt{a b}}\right ) e^{\left (-2 \, c\right )}}{{\left (a^{4} + 3 \, a^{3} b + 3 \, a^{2} b^{2} + a b^{3}\right )} \sqrt{a b}} + \frac{3 \, e^{\left (2 \, d x + 12 \, c\right )}}{a^{2} e^{\left (10 \, c\right )} + 2 \, a b e^{\left (10 \, c\right )} + b^{2} e^{\left (10 \, c\right )}} - \frac{2 \, a^{3} e^{\left (6 \, d x + 6 \, c\right )} + 12 \, a^{2} b e^{\left (6 \, d x + 6 \, c\right )} + 10 \, a b^{2} e^{\left (6 \, d x + 6 \, c\right )} + 7 \, a^{3} e^{\left (4 \, d x + 4 \, c\right )} + 22 \, a^{2} b e^{\left (4 \, d x + 4 \, c\right )} + 7 \, a b^{2} e^{\left (4 \, d x + 4 \, c\right )} - 24 \, b^{3} e^{\left (4 \, d x + 4 \, c\right )} + 8 \, a^{3} e^{\left (2 \, d x + 2 \, c\right )} + 12 \, a^{2} b e^{\left (2 \, d x + 2 \, c\right )} + 28 \, a b^{2} e^{\left (2 \, d x + 2 \, c\right )} + 24 \, b^{3} e^{\left (2 \, d x + 2 \, c\right )} + 3 \, a^{3} + 6 \, a^{2} b + 3 \, a b^{2}}{{\left (a^{4} e^{\left (2 \, c\right )} + 3 \, a^{3} b e^{\left (2 \, c\right )} + 3 \, a^{2} b^{2} e^{\left (2 \, c\right )} + a b^{3} e^{\left (2 \, c\right )}\right )}{\left (a e^{\left (2 \, d x\right )} + b e^{\left (2 \, d x\right )} + a e^{\left (6 \, d x + 4 \, c\right )} + b e^{\left (6 \, d x + 4 \, c\right )} + 2 \, a e^{\left (4 \, d x + 2 \, c\right )} - 2 \, b e^{\left (4 \, d x + 2 \, c\right )}\right )}}}{24 \, d} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(cosh(d*x+c)^2/(a+b*tanh(d*x+c)^2)^2,x, algorithm="giac")

[Out]

1/24*(12*(a + 5*b)*d*x/(a^3 + 3*a^2*b + 3*a*b^2 + b^3) + 12*(5*a*b^2*e^(2*c) + b^3*e^(2*c))*arctan(1/2*(a*e^(2
*d*x + 2*c) + b*e^(2*d*x + 2*c) + a - b)/sqrt(a*b))*e^(-2*c)/((a^4 + 3*a^3*b + 3*a^2*b^2 + a*b^3)*sqrt(a*b)) +
3*e^(2*d*x + 12*c)/(a^2*e^(10*c) + 2*a*b*e^(10*c) + b^2*e^(10*c)) - (2*a^3*e^(6*d*x + 6*c) + 12*a^2*b*e^(6*d*
x + 6*c) + 10*a*b^2*e^(6*d*x + 6*c) + 7*a^3*e^(4*d*x + 4*c) + 22*a^2*b*e^(4*d*x + 4*c) + 7*a*b^2*e^(4*d*x + 4*
c) - 24*b^3*e^(4*d*x + 4*c) + 8*a^3*e^(2*d*x + 2*c) + 12*a^2*b*e^(2*d*x + 2*c) + 28*a*b^2*e^(2*d*x + 2*c) + 24
*b^3*e^(2*d*x + 2*c) + 3*a^3 + 6*a^2*b + 3*a*b^2)/((a^4*e^(2*c) + 3*a^3*b*e^(2*c) + 3*a^2*b^2*e^(2*c) + a*b^3*
e^(2*c))*(a*e^(2*d*x) + b*e^(2*d*x) + a*e^(6*d*x + 4*c) + b*e^(6*d*x + 4*c) + 2*a*e^(4*d*x + 2*c) - 2*b*e^(4*d
*x + 2*c))))/d