3.101 $$\int \text{sech}(c+d x) (a+b \tanh ^2(c+d x))^3 \, dx$$

Optimal. Leaf size=149 $\frac{(2 a+b) \left (8 a^2+8 a b+5 b^2\right ) \tan ^{-1}(\sinh (c+d x))}{16 d}-\frac{b \left (44 a^2+44 a b+15 b^2\right ) \tanh (c+d x) \text{sech}(c+d x)}{48 d}-\frac{b \tanh (c+d x) \text{sech}^5(c+d x) \left ((a+b) \sinh ^2(c+d x)+a\right )^2}{6 d}-\frac{5 b (2 a+b) \tanh (c+d x) \text{sech}^3(c+d x) \left ((a+b) \sinh ^2(c+d x)+a\right )}{24 d}$

[Out]

((2*a + b)*(8*a^2 + 8*a*b + 5*b^2)*ArcTan[Sinh[c + d*x]])/(16*d) - (b*(44*a^2 + 44*a*b + 15*b^2)*Sech[c + d*x]
*Tanh[c + d*x])/(48*d) - (5*b*(2*a + b)*Sech[c + d*x]^3*(a + (a + b)*Sinh[c + d*x]^2)*Tanh[c + d*x])/(24*d) -
(b*Sech[c + d*x]^5*(a + (a + b)*Sinh[c + d*x]^2)^2*Tanh[c + d*x])/(6*d)

________________________________________________________________________________________

Rubi [A]  time = 0.154391, antiderivative size = 149, normalized size of antiderivative = 1., number of steps used = 5, number of rules used = 5, integrand size = 21, $$\frac{\text{number of rules}}{\text{integrand size}}$$ = 0.238, Rules used = {3676, 413, 526, 385, 203} $\frac{(2 a+b) \left (8 a^2+8 a b+5 b^2\right ) \tan ^{-1}(\sinh (c+d x))}{16 d}-\frac{b \left (44 a^2+44 a b+15 b^2\right ) \tanh (c+d x) \text{sech}(c+d x)}{48 d}-\frac{b \tanh (c+d x) \text{sech}^5(c+d x) \left ((a+b) \sinh ^2(c+d x)+a\right )^2}{6 d}-\frac{5 b (2 a+b) \tanh (c+d x) \text{sech}^3(c+d x) \left ((a+b) \sinh ^2(c+d x)+a\right )}{24 d}$

Antiderivative was successfully veriﬁed.

[In]

Int[Sech[c + d*x]*(a + b*Tanh[c + d*x]^2)^3,x]

[Out]

((2*a + b)*(8*a^2 + 8*a*b + 5*b^2)*ArcTan[Sinh[c + d*x]])/(16*d) - (b*(44*a^2 + 44*a*b + 15*b^2)*Sech[c + d*x]
*Tanh[c + d*x])/(48*d) - (5*b*(2*a + b)*Sech[c + d*x]^3*(a + (a + b)*Sinh[c + d*x]^2)*Tanh[c + d*x])/(24*d) -
(b*Sech[c + d*x]^5*(a + (a + b)*Sinh[c + d*x]^2)^2*Tanh[c + d*x])/(6*d)

Rule 3676

Int[sec[(e_.) + (f_.)*(x_)]^(m_.)*((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)]^(n_))^(p_.), x_Symbol] :> With[{ff = F
reeFactors[Sin[e + f*x], x]}, Dist[ff/f, Subst[Int[ExpandToSum[b*(ff*x)^n + a*(1 - ff^2*x^2)^(n/2), x]^p/(1 -
ff^2*x^2)^((m + n*p + 1)/2), x], x, Sin[e + f*x]/ff], x]] /; FreeQ[{a, b, e, f}, x] && IntegerQ[(m - 1)/2] &&
IntegerQ[n/2] && IntegerQ[p]

Rule 413

Int[((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] :> Simp[((a*d - c*b)*x*(a + b*x^n)^
(p + 1)*(c + d*x^n)^(q - 1))/(a*b*n*(p + 1)), x] - Dist[1/(a*b*n*(p + 1)), Int[(a + b*x^n)^(p + 1)*(c + d*x^n)
^(q - 2)*Simp[c*(a*d - c*b*(n*(p + 1) + 1)) + d*(a*d*(n*(q - 1) + 1) - b*c*(n*(p + q) + 1))*x^n, x], x], x] /;
FreeQ[{a, b, c, d, n}, x] && NeQ[b*c - a*d, 0] && LtQ[p, -1] && GtQ[q, 1] && IntBinomialQ[a, b, c, d, n, p, q
, x]

Rule 526

Int[((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_.)*((e_) + (f_.)*(x_)^(n_)), x_Symbol] :> -Simp[
((b*e - a*f)*x*(a + b*x^n)^(p + 1)*(c + d*x^n)^q)/(a*b*n*(p + 1)), x] + Dist[1/(a*b*n*(p + 1)), Int[(a + b*x^n
)^(p + 1)*(c + d*x^n)^(q - 1)*Simp[c*(b*e*n*(p + 1) + b*e - a*f) + d*(b*e*n*(p + 1) + (b*e - a*f)*(n*q + 1))*x
^n, x], x], x] /; FreeQ[{a, b, c, d, e, f, n}, x] && LtQ[p, -1] && GtQ[q, 0]

Rule 385

Int[((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_)), x_Symbol] :> -Simp[((b*c - a*d)*x*(a + b*x^n)^(p +
1))/(a*b*n*(p + 1)), x] - Dist[(a*d - b*c*(n*(p + 1) + 1))/(a*b*n*(p + 1)), Int[(a + b*x^n)^(p + 1), x], x] /
; FreeQ[{a, b, c, d, n, p}, x] && NeQ[b*c - a*d, 0] && (LtQ[p, -1] || ILtQ[1/n + p, 0])

Rule 203

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTan[(Rt[b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[b, 2]), x] /;
FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rubi steps

\begin{align*} \int \text{sech}(c+d x) \left (a+b \tanh ^2(c+d x)\right )^3 \, dx &=\frac{\operatorname{Subst}\left (\int \frac{\left (a+(a+b) x^2\right )^3}{\left (1+x^2\right )^4} \, dx,x,\sinh (c+d x)\right )}{d}\\ &=-\frac{b \text{sech}^5(c+d x) \left (a+(a+b) \sinh ^2(c+d x)\right )^2 \tanh (c+d x)}{6 d}+\frac{\operatorname{Subst}\left (\int \frac{\left (a+(a+b) x^2\right ) \left (a (6 a+b)+(a+b) (6 a+5 b) x^2\right )}{\left (1+x^2\right )^3} \, dx,x,\sinh (c+d x)\right )}{6 d}\\ &=-\frac{5 b (2 a+b) \text{sech}^3(c+d x) \left (a+(a+b) \sinh ^2(c+d x)\right ) \tanh (c+d x)}{24 d}-\frac{b \text{sech}^5(c+d x) \left (a+(a+b) \sinh ^2(c+d x)\right )^2 \tanh (c+d x)}{6 d}-\frac{\operatorname{Subst}\left (\int \frac{-a \left (24 a^2+14 a b+5 b^2\right )-(a+b) \left (24 a^2+34 a b+15 b^2\right ) x^2}{\left (1+x^2\right )^2} \, dx,x,\sinh (c+d x)\right )}{24 d}\\ &=-\frac{b \left (44 a^2+44 a b+15 b^2\right ) \text{sech}(c+d x) \tanh (c+d x)}{48 d}-\frac{5 b (2 a+b) \text{sech}^3(c+d x) \left (a+(a+b) \sinh ^2(c+d x)\right ) \tanh (c+d x)}{24 d}-\frac{b \text{sech}^5(c+d x) \left (a+(a+b) \sinh ^2(c+d x)\right )^2 \tanh (c+d x)}{6 d}+\frac{\left ((2 a+b) \left (8 a^2+8 a b+5 b^2\right )\right ) \operatorname{Subst}\left (\int \frac{1}{1+x^2} \, dx,x,\sinh (c+d x)\right )}{16 d}\\ &=\frac{(2 a+b) \left (8 a^2+8 a b+5 b^2\right ) \tan ^{-1}(\sinh (c+d x))}{16 d}-\frac{b \left (44 a^2+44 a b+15 b^2\right ) \text{sech}(c+d x) \tanh (c+d x)}{48 d}-\frac{5 b (2 a+b) \text{sech}^3(c+d x) \left (a+(a+b) \sinh ^2(c+d x)\right ) \tanh (c+d x)}{24 d}-\frac{b \text{sech}^5(c+d x) \left (a+(a+b) \sinh ^2(c+d x)\right )^2 \tanh (c+d x)}{6 d}\\ \end{align*}

Mathematica [C]  time = 17.2886, size = 1341, normalized size = 9. $\text{result too large to display}$

Warning: Unable to verify antiderivative.

[In]

Integrate[Sech[c + d*x]*(a + b*Tanh[c + d*x]^2)^3,x]

[Out]

(a^3*Sinh[c + d*x]*((9514449*(a + b))/a + (135323370*(a + b)^2)/a^2 + (58009455*(a + b)^3)/a^3 + 4093425*Csch[
c + d*x]^2 + (168951510*(a + b)*Csch[c + d*x]^2)/a + (215549775*(a + b)^2*Csch[c + d*x]^2)/a^2 + 70189350*Csch
[c + d*x]^4 + (274542345*(a + b)*Csch[c + d*x]^4)/a + 117228825*Csch[c + d*x]^6 + (7808535*(a + b)^2*Sinh[c +
d*x]^2)/a^2 + (36772890*(a + b)^3*Sinh[c + d*x]^2)/a^3 - 75520*HypergeometricPFQ[{3/2, 2, 2, 2, 2}, {1, 1, 1,
11/2}, -Sinh[c + d*x]^2]*Sinh[c + d*x]^2 - 13824*HypergeometricPFQ[{3/2, 2, 2, 2, 2, 2}, {1, 1, 1, 1, 11/2}, -
Sinh[c + d*x]^2]*Sinh[c + d*x]^2 - 1024*HypergeometricPFQ[{3/2, 2, 2, 2, 2, 2, 2}, {1, 1, 1, 1, 1, 11/2}, -Sin
h[c + d*x]^2]*Sinh[c + d*x]^2 + (2160711*(a + b)^3*Sinh[c + d*x]^4)/a^3 - (189696*(a + b)*HypergeometricPFQ[{3
/2, 2, 2, 2, 2}, {1, 1, 1, 11/2}, -Sinh[c + d*x]^2]*Sinh[c + d*x]^4)/a - (38400*(a + b)*HypergeometricPFQ[{3/2
, 2, 2, 2, 2, 2}, {1, 1, 1, 1, 11/2}, -Sinh[c + d*x]^2]*Sinh[c + d*x]^4)/a - (3072*(a + b)*HypergeometricPFQ[{
3/2, 2, 2, 2, 2, 2, 2}, {1, 1, 1, 1, 1, 11/2}, -Sinh[c + d*x]^2]*Sinh[c + d*x]^4)/a - (158976*(a + b)^2*Hyperg
eometricPFQ[{3/2, 2, 2, 2, 2}, {1, 1, 1, 11/2}, -Sinh[c + d*x]^2]*Sinh[c + d*x]^6)/a^2 - (35328*(a + b)^2*Hype
rgeometricPFQ[{3/2, 2, 2, 2, 2, 2}, {1, 1, 1, 1, 11/2}, -Sinh[c + d*x]^2]*Sinh[c + d*x]^6)/a^2 - (3072*(a + b)
^2*HypergeometricPFQ[{3/2, 2, 2, 2, 2, 2, 2}, {1, 1, 1, 1, 1, 11/2}, -Sinh[c + d*x]^2]*Sinh[c + d*x]^6)/a^2 -
(44800*(a + b)^3*HypergeometricPFQ[{3/2, 2, 2, 2, 2}, {1, 1, 1, 11/2}, -Sinh[c + d*x]^2]*Sinh[c + d*x]^8)/a^3
- (10752*(a + b)^3*HypergeometricPFQ[{3/2, 2, 2, 2, 2, 2}, {1, 1, 1, 1, 11/2}, -Sinh[c + d*x]^2]*Sinh[c + d*x]
^8)/a^3 - (1024*(a + b)^3*HypergeometricPFQ[{3/2, 2, 2, 2, 2, 2, 2}, {1, 1, 1, 1, 1, 11/2}, -Sinh[c + d*x]^2]*
Sinh[c + d*x]^8)/a^3 + (142065*ArcTanh[Sqrt[-Sinh[c + d*x]^2]]*Sinh[c + d*x]^8)/(-Sinh[c + d*x]^2)^(9/2) + (11
7228825*ArcTanh[Sqrt[-Sinh[c + d*x]^2]])/(-Sinh[c + d*x]^2)^(7/2) + (17069535*ArcTanh[Sqrt[-Sinh[c + d*x]^2]]*
Sinh[c + d*x]^4)/(-Sinh[c + d*x]^2)^(7/2) + (33756345*(a + b)^2*ArcTanh[Sqrt[-Sinh[c + d*x]^2]]*Sinh[c + d*x]^
8)/(a^2*(-Sinh[c + d*x]^2)^(7/2)) + (56109375*(a + b)^3*ArcTanh[Sqrt[-Sinh[c + d*x]^2]]*Sinh[c + d*x]^8)/(a^3*
(-Sinh[c + d*x]^2)^(7/2)) - (109265625*ArcTanh[Sqrt[-Sinh[c + d*x]^2]])/(-Sinh[c + d*x]^2)^(5/2) - (274542345*
(a + b)*ArcTanh[Sqrt[-Sinh[c + d*x]^2]])/(a*(-Sinh[c + d*x]^2)^(5/2)) + (260465625*(a + b)*ArcTanh[Sqrt[-Sinh[
c + d*x]^2]])/(a*(-Sinh[c + d*x]^2)^(3/2)) + (215549775*(a + b)^2*ArcTanh[Sqrt[-Sinh[c + d*x]^2]])/(a^2*(-Sinh
[c + d*x]^2)^(3/2)) + (174825*(a + b)^2*ArcTanh[Sqrt[-Sinh[c + d*x]^2]]*Sinh[c + d*x]^6)/(a^2*(-Sinh[c + d*x]^
2)^(3/2)) + (9261945*(a + b)^3*ArcTanh[Sqrt[-Sinh[c + d*x]^2]]*Sinh[c + d*x]^6)/(a^3*(-Sinh[c + d*x]^2)^(3/2))
+ (48825*(a + b)^3*ArcTanh[Sqrt[-Sinh[c + d*x]^2]]*Sinh[c + d*x]^8)/(a^3*(-Sinh[c + d*x]^2)^(3/2)) - (4142785
5*(a + b)*ArcTanh[Sqrt[-Sinh[c + d*x]^2]])/(a*Sqrt[-Sinh[c + d*x]^2]) - (207173295*(a + b)^2*ArcTanh[Sqrt[-Sin
h[c + d*x]^2]])/(a^2*Sqrt[-Sinh[c + d*x]^2]) - (58009455*(a + b)^3*ArcTanh[Sqrt[-Sinh[c + d*x]^2]])/(a^3*Sqrt[
-Sinh[c + d*x]^2]) + (210735*(a + b)*ArcTanh[Sqrt[-Sinh[c + d*x]^2]]*Sqrt[-Sinh[c + d*x]^2])/a))/(725760*d)

________________________________________________________________________________________

Maple [B]  time = 0.041, size = 334, normalized size = 2.2 \begin{align*} 2\,{\frac{{a}^{3}\arctan \left ({{\rm e}^{dx+c}} \right ) }{d}}-3\,{\frac{{a}^{2}b\sinh \left ( dx+c \right ) }{d \left ( \cosh \left ( dx+c \right ) \right ) ^{2}}}+{\frac{3\,{a}^{2}b{\rm sech} \left (dx+c\right )\tanh \left ( dx+c \right ) }{2\,d}}+3\,{\frac{{a}^{2}b\arctan \left ({{\rm e}^{dx+c}} \right ) }{d}}-3\,{\frac{a{b}^{2} \left ( \sinh \left ( dx+c \right ) \right ) ^{3}}{d \left ( \cosh \left ( dx+c \right ) \right ) ^{4}}}-3\,{\frac{a{b}^{2}\sinh \left ( dx+c \right ) }{d \left ( \cosh \left ( dx+c \right ) \right ) ^{4}}}+{\frac{3\,a{b}^{2}\tanh \left ( dx+c \right ) \left ({\rm sech} \left (dx+c\right ) \right ) ^{3}}{4\,d}}+{\frac{9\,a{b}^{2}{\rm sech} \left (dx+c\right )\tanh \left ( dx+c \right ) }{8\,d}}+{\frac{9\,a{b}^{2}\arctan \left ({{\rm e}^{dx+c}} \right ) }{4\,d}}-{\frac{{b}^{3} \left ( \sinh \left ( dx+c \right ) \right ) ^{5}}{d \left ( \cosh \left ( dx+c \right ) \right ) ^{6}}}-{\frac{5\,{b}^{3} \left ( \sinh \left ( dx+c \right ) \right ) ^{3}}{3\,d \left ( \cosh \left ( dx+c \right ) \right ) ^{6}}}-{\frac{{b}^{3}\sinh \left ( dx+c \right ) }{d \left ( \cosh \left ( dx+c \right ) \right ) ^{6}}}+{\frac{{b}^{3}\tanh \left ( dx+c \right ) \left ({\rm sech} \left (dx+c\right ) \right ) ^{5}}{6\,d}}+{\frac{5\,{b}^{3} \left ({\rm sech} \left (dx+c\right ) \right ) ^{3}\tanh \left ( dx+c \right ) }{24\,d}}+{\frac{5\,{b}^{3}{\rm sech} \left (dx+c\right )\tanh \left ( dx+c \right ) }{16\,d}}+{\frac{5\,{b}^{3}\arctan \left ({{\rm e}^{dx+c}} \right ) }{8\,d}} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

int(sech(d*x+c)*(a+b*tanh(d*x+c)^2)^3,x)

[Out]

2/d*a^3*arctan(exp(d*x+c))-3/d*a^2*b*sinh(d*x+c)/cosh(d*x+c)^2+3/2*a^2*b*sech(d*x+c)*tanh(d*x+c)/d+3/d*a^2*b*a
rctan(exp(d*x+c))-3/d*a*b^2*sinh(d*x+c)^3/cosh(d*x+c)^4-3/d*a*b^2*sinh(d*x+c)/cosh(d*x+c)^4+3/4/d*a*b^2*tanh(d
*x+c)*sech(d*x+c)^3+9/8/d*a*b^2*sech(d*x+c)*tanh(d*x+c)+9/4/d*a*b^2*arctan(exp(d*x+c))-1/d*b^3*sinh(d*x+c)^5/c
osh(d*x+c)^6-5/3/d*b^3*sinh(d*x+c)^3/cosh(d*x+c)^6-1/d*b^3*sinh(d*x+c)/cosh(d*x+c)^6+1/6/d*b^3*tanh(d*x+c)*sec
h(d*x+c)^5+5/24*b^3*sech(d*x+c)^3*tanh(d*x+c)/d+5/16*b^3*sech(d*x+c)*tanh(d*x+c)/d+5/8/d*b^3*arctan(exp(d*x+c)
)

________________________________________________________________________________________

Maxima [B]  time = 1.68702, size = 489, normalized size = 3.28 \begin{align*} -\frac{1}{24} \, b^{3}{\left (\frac{15 \, \arctan \left (e^{\left (-d x - c\right )}\right )}{d} + \frac{33 \, e^{\left (-d x - c\right )} - 5 \, e^{\left (-3 \, d x - 3 \, c\right )} + 90 \, e^{\left (-5 \, d x - 5 \, c\right )} - 90 \, e^{\left (-7 \, d x - 7 \, c\right )} + 5 \, e^{\left (-9 \, d x - 9 \, c\right )} - 33 \, e^{\left (-11 \, d x - 11 \, c\right )}}{d{\left (6 \, e^{\left (-2 \, d x - 2 \, c\right )} + 15 \, e^{\left (-4 \, d x - 4 \, c\right )} + 20 \, e^{\left (-6 \, d x - 6 \, c\right )} + 15 \, e^{\left (-8 \, d x - 8 \, c\right )} + 6 \, e^{\left (-10 \, d x - 10 \, c\right )} + e^{\left (-12 \, d x - 12 \, c\right )} + 1\right )}}\right )} - \frac{3}{4} \, a b^{2}{\left (\frac{3 \, \arctan \left (e^{\left (-d x - c\right )}\right )}{d} + \frac{5 \, e^{\left (-d x - c\right )} - 3 \, e^{\left (-3 \, d x - 3 \, c\right )} + 3 \, e^{\left (-5 \, d x - 5 \, c\right )} - 5 \, e^{\left (-7 \, d x - 7 \, c\right )}}{d{\left (4 \, e^{\left (-2 \, d x - 2 \, c\right )} + 6 \, e^{\left (-4 \, d x - 4 \, c\right )} + 4 \, e^{\left (-6 \, d x - 6 \, c\right )} + e^{\left (-8 \, d x - 8 \, c\right )} + 1\right )}}\right )} - 3 \, a^{2} b{\left (\frac{\arctan \left (e^{\left (-d x - c\right )}\right )}{d} + \frac{e^{\left (-d x - c\right )} - e^{\left (-3 \, d x - 3 \, c\right )}}{d{\left (2 \, e^{\left (-2 \, d x - 2 \, c\right )} + e^{\left (-4 \, d x - 4 \, c\right )} + 1\right )}}\right )} + \frac{a^{3} \arctan \left (\sinh \left (d x + c\right )\right )}{d} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(sech(d*x+c)*(a+b*tanh(d*x+c)^2)^3,x, algorithm="maxima")

[Out]

-1/24*b^3*(15*arctan(e^(-d*x - c))/d + (33*e^(-d*x - c) - 5*e^(-3*d*x - 3*c) + 90*e^(-5*d*x - 5*c) - 90*e^(-7*
d*x - 7*c) + 5*e^(-9*d*x - 9*c) - 33*e^(-11*d*x - 11*c))/(d*(6*e^(-2*d*x - 2*c) + 15*e^(-4*d*x - 4*c) + 20*e^(
-6*d*x - 6*c) + 15*e^(-8*d*x - 8*c) + 6*e^(-10*d*x - 10*c) + e^(-12*d*x - 12*c) + 1))) - 3/4*a*b^2*(3*arctan(e
^(-d*x - c))/d + (5*e^(-d*x - c) - 3*e^(-3*d*x - 3*c) + 3*e^(-5*d*x - 5*c) - 5*e^(-7*d*x - 7*c))/(d*(4*e^(-2*d
*x - 2*c) + 6*e^(-4*d*x - 4*c) + 4*e^(-6*d*x - 6*c) + e^(-8*d*x - 8*c) + 1))) - 3*a^2*b*(arctan(e^(-d*x - c))/
d + (e^(-d*x - c) - e^(-3*d*x - 3*c))/(d*(2*e^(-2*d*x - 2*c) + e^(-4*d*x - 4*c) + 1))) + a^3*arctan(sinh(d*x +
c))/d

________________________________________________________________________________________

Fricas [B]  time = 2.32246, size = 8768, normalized size = 58.85 \begin{align*} \text{result too large to display} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(sech(d*x+c)*(a+b*tanh(d*x+c)^2)^3,x, algorithm="fricas")

[Out]

-1/24*(3*(24*a^2*b + 30*a*b^2 + 11*b^3)*cosh(d*x + c)^11 + 33*(24*a^2*b + 30*a*b^2 + 11*b^3)*cosh(d*x + c)*sin
h(d*x + c)^10 + 3*(24*a^2*b + 30*a*b^2 + 11*b^3)*sinh(d*x + c)^11 + (216*a^2*b + 126*a*b^2 - 5*b^3)*cosh(d*x +
c)^9 + (216*a^2*b + 126*a*b^2 - 5*b^3 + 165*(24*a^2*b + 30*a*b^2 + 11*b^3)*cosh(d*x + c)^2)*sinh(d*x + c)^9 +
9*(55*(24*a^2*b + 30*a*b^2 + 11*b^3)*cosh(d*x + c)^3 + (216*a^2*b + 126*a*b^2 - 5*b^3)*cosh(d*x + c))*sinh(d*
x + c)^8 + 18*(8*a^2*b + 2*a*b^2 + 5*b^3)*cosh(d*x + c)^7 + 18*(55*(24*a^2*b + 30*a*b^2 + 11*b^3)*cosh(d*x + c
)^4 + 8*a^2*b + 2*a*b^2 + 5*b^3 + 2*(216*a^2*b + 126*a*b^2 - 5*b^3)*cosh(d*x + c)^2)*sinh(d*x + c)^7 + 42*(33*
(24*a^2*b + 30*a*b^2 + 11*b^3)*cosh(d*x + c)^5 + 2*(216*a^2*b + 126*a*b^2 - 5*b^3)*cosh(d*x + c)^3 + 3*(8*a^2*
b + 2*a*b^2 + 5*b^3)*cosh(d*x + c))*sinh(d*x + c)^6 - 18*(8*a^2*b + 2*a*b^2 + 5*b^3)*cosh(d*x + c)^5 + 18*(77*
(24*a^2*b + 30*a*b^2 + 11*b^3)*cosh(d*x + c)^6 + 7*(216*a^2*b + 126*a*b^2 - 5*b^3)*cosh(d*x + c)^4 - 8*a^2*b -
2*a*b^2 - 5*b^3 + 21*(8*a^2*b + 2*a*b^2 + 5*b^3)*cosh(d*x + c)^2)*sinh(d*x + c)^5 + 18*(55*(24*a^2*b + 30*a*b
^2 + 11*b^3)*cosh(d*x + c)^7 + 7*(216*a^2*b + 126*a*b^2 - 5*b^3)*cosh(d*x + c)^5 + 35*(8*a^2*b + 2*a*b^2 + 5*b
^3)*cosh(d*x + c)^3 - 5*(8*a^2*b + 2*a*b^2 + 5*b^3)*cosh(d*x + c))*sinh(d*x + c)^4 - (216*a^2*b + 126*a*b^2 -
5*b^3)*cosh(d*x + c)^3 + (495*(24*a^2*b + 30*a*b^2 + 11*b^3)*cosh(d*x + c)^8 + 84*(216*a^2*b + 126*a*b^2 - 5*b
^3)*cosh(d*x + c)^6 + 630*(8*a^2*b + 2*a*b^2 + 5*b^3)*cosh(d*x + c)^4 - 216*a^2*b - 126*a*b^2 + 5*b^3 - 180*(8
*a^2*b + 2*a*b^2 + 5*b^3)*cosh(d*x + c)^2)*sinh(d*x + c)^3 + 3*(55*(24*a^2*b + 30*a*b^2 + 11*b^3)*cosh(d*x + c
)^9 + 12*(216*a^2*b + 126*a*b^2 - 5*b^3)*cosh(d*x + c)^7 + 126*(8*a^2*b + 2*a*b^2 + 5*b^3)*cosh(d*x + c)^5 - 6
0*(8*a^2*b + 2*a*b^2 + 5*b^3)*cosh(d*x + c)^3 - (216*a^2*b + 126*a*b^2 - 5*b^3)*cosh(d*x + c))*sinh(d*x + c)^2
- 3*((16*a^3 + 24*a^2*b + 18*a*b^2 + 5*b^3)*cosh(d*x + c)^12 + 12*(16*a^3 + 24*a^2*b + 18*a*b^2 + 5*b^3)*cosh
(d*x + c)*sinh(d*x + c)^11 + (16*a^3 + 24*a^2*b + 18*a*b^2 + 5*b^3)*sinh(d*x + c)^12 + 6*(16*a^3 + 24*a^2*b +
18*a*b^2 + 5*b^3)*cosh(d*x + c)^10 + 6*(16*a^3 + 24*a^2*b + 18*a*b^2 + 5*b^3 + 11*(16*a^3 + 24*a^2*b + 18*a*b^
2 + 5*b^3)*cosh(d*x + c)^2)*sinh(d*x + c)^10 + 20*(11*(16*a^3 + 24*a^2*b + 18*a*b^2 + 5*b^3)*cosh(d*x + c)^3 +
3*(16*a^3 + 24*a^2*b + 18*a*b^2 + 5*b^3)*cosh(d*x + c))*sinh(d*x + c)^9 + 15*(16*a^3 + 24*a^2*b + 18*a*b^2 +
5*b^3)*cosh(d*x + c)^8 + 15*(33*(16*a^3 + 24*a^2*b + 18*a*b^2 + 5*b^3)*cosh(d*x + c)^4 + 16*a^3 + 24*a^2*b + 1
8*a*b^2 + 5*b^3 + 18*(16*a^3 + 24*a^2*b + 18*a*b^2 + 5*b^3)*cosh(d*x + c)^2)*sinh(d*x + c)^8 + 24*(33*(16*a^3
+ 24*a^2*b + 18*a*b^2 + 5*b^3)*cosh(d*x + c)^5 + 30*(16*a^3 + 24*a^2*b + 18*a*b^2 + 5*b^3)*cosh(d*x + c)^3 + 5
*(16*a^3 + 24*a^2*b + 18*a*b^2 + 5*b^3)*cosh(d*x + c))*sinh(d*x + c)^7 + 20*(16*a^3 + 24*a^2*b + 18*a*b^2 + 5*
b^3)*cosh(d*x + c)^6 + 4*(231*(16*a^3 + 24*a^2*b + 18*a*b^2 + 5*b^3)*cosh(d*x + c)^6 + 315*(16*a^3 + 24*a^2*b
+ 18*a*b^2 + 5*b^3)*cosh(d*x + c)^4 + 80*a^3 + 120*a^2*b + 90*a*b^2 + 25*b^3 + 105*(16*a^3 + 24*a^2*b + 18*a*b
^2 + 5*b^3)*cosh(d*x + c)^2)*sinh(d*x + c)^6 + 24*(33*(16*a^3 + 24*a^2*b + 18*a*b^2 + 5*b^3)*cosh(d*x + c)^7 +
63*(16*a^3 + 24*a^2*b + 18*a*b^2 + 5*b^3)*cosh(d*x + c)^5 + 35*(16*a^3 + 24*a^2*b + 18*a*b^2 + 5*b^3)*cosh(d*
x + c)^3 + 5*(16*a^3 + 24*a^2*b + 18*a*b^2 + 5*b^3)*cosh(d*x + c))*sinh(d*x + c)^5 + 15*(16*a^3 + 24*a^2*b + 1
8*a*b^2 + 5*b^3)*cosh(d*x + c)^4 + 15*(33*(16*a^3 + 24*a^2*b + 18*a*b^2 + 5*b^3)*cosh(d*x + c)^8 + 84*(16*a^3
+ 24*a^2*b + 18*a*b^2 + 5*b^3)*cosh(d*x + c)^6 + 70*(16*a^3 + 24*a^2*b + 18*a*b^2 + 5*b^3)*cosh(d*x + c)^4 + 1
6*a^3 + 24*a^2*b + 18*a*b^2 + 5*b^3 + 20*(16*a^3 + 24*a^2*b + 18*a*b^2 + 5*b^3)*cosh(d*x + c)^2)*sinh(d*x + c)
^4 + 20*(11*(16*a^3 + 24*a^2*b + 18*a*b^2 + 5*b^3)*cosh(d*x + c)^9 + 36*(16*a^3 + 24*a^2*b + 18*a*b^2 + 5*b^3)
*cosh(d*x + c)^7 + 42*(16*a^3 + 24*a^2*b + 18*a*b^2 + 5*b^3)*cosh(d*x + c)^5 + 20*(16*a^3 + 24*a^2*b + 18*a*b^
2 + 5*b^3)*cosh(d*x + c)^3 + 3*(16*a^3 + 24*a^2*b + 18*a*b^2 + 5*b^3)*cosh(d*x + c))*sinh(d*x + c)^3 + 16*a^3
+ 24*a^2*b + 18*a*b^2 + 5*b^3 + 6*(16*a^3 + 24*a^2*b + 18*a*b^2 + 5*b^3)*cosh(d*x + c)^2 + 6*(11*(16*a^3 + 24*
a^2*b + 18*a*b^2 + 5*b^3)*cosh(d*x + c)^10 + 45*(16*a^3 + 24*a^2*b + 18*a*b^2 + 5*b^3)*cosh(d*x + c)^8 + 70*(1
6*a^3 + 24*a^2*b + 18*a*b^2 + 5*b^3)*cosh(d*x + c)^6 + 50*(16*a^3 + 24*a^2*b + 18*a*b^2 + 5*b^3)*cosh(d*x + c)
^4 + 16*a^3 + 24*a^2*b + 18*a*b^2 + 5*b^3 + 15*(16*a^3 + 24*a^2*b + 18*a*b^2 + 5*b^3)*cosh(d*x + c)^2)*sinh(d*
x + c)^2 + 12*((16*a^3 + 24*a^2*b + 18*a*b^2 + 5*b^3)*cosh(d*x + c)^11 + 5*(16*a^3 + 24*a^2*b + 18*a*b^2 + 5*b
^3)*cosh(d*x + c)^9 + 10*(16*a^3 + 24*a^2*b + 18*a*b^2 + 5*b^3)*cosh(d*x + c)^7 + 10*(16*a^3 + 24*a^2*b + 18*a
*b^2 + 5*b^3)*cosh(d*x + c)^5 + 5*(16*a^3 + 24*a^2*b + 18*a*b^2 + 5*b^3)*cosh(d*x + c)^3 + (16*a^3 + 24*a^2*b
+ 18*a*b^2 + 5*b^3)*cosh(d*x + c))*sinh(d*x + c))*arctan(cosh(d*x + c) + sinh(d*x + c)) - 3*(24*a^2*b + 30*a*b
^2 + 11*b^3)*cosh(d*x + c) + 3*(11*(24*a^2*b + 30*a*b^2 + 11*b^3)*cosh(d*x + c)^10 + 3*(216*a^2*b + 126*a*b^2
- 5*b^3)*cosh(d*x + c)^8 + 42*(8*a^2*b + 2*a*b^2 + 5*b^3)*cosh(d*x + c)^6 - 30*(8*a^2*b + 2*a*b^2 + 5*b^3)*cos
h(d*x + c)^4 - 24*a^2*b - 30*a*b^2 - 11*b^3 - (216*a^2*b + 126*a*b^2 - 5*b^3)*cosh(d*x + c)^2)*sinh(d*x + c))/
(d*cosh(d*x + c)^12 + 12*d*cosh(d*x + c)*sinh(d*x + c)^11 + d*sinh(d*x + c)^12 + 6*d*cosh(d*x + c)^10 + 6*(11*
d*cosh(d*x + c)^2 + d)*sinh(d*x + c)^10 + 20*(11*d*cosh(d*x + c)^3 + 3*d*cosh(d*x + c))*sinh(d*x + c)^9 + 15*d
*cosh(d*x + c)^8 + 15*(33*d*cosh(d*x + c)^4 + 18*d*cosh(d*x + c)^2 + d)*sinh(d*x + c)^8 + 24*(33*d*cosh(d*x +
c)^5 + 30*d*cosh(d*x + c)^3 + 5*d*cosh(d*x + c))*sinh(d*x + c)^7 + 20*d*cosh(d*x + c)^6 + 4*(231*d*cosh(d*x +
c)^6 + 315*d*cosh(d*x + c)^4 + 105*d*cosh(d*x + c)^2 + 5*d)*sinh(d*x + c)^6 + 24*(33*d*cosh(d*x + c)^7 + 63*d*
cosh(d*x + c)^5 + 35*d*cosh(d*x + c)^3 + 5*d*cosh(d*x + c))*sinh(d*x + c)^5 + 15*d*cosh(d*x + c)^4 + 15*(33*d*
cosh(d*x + c)^8 + 84*d*cosh(d*x + c)^6 + 70*d*cosh(d*x + c)^4 + 20*d*cosh(d*x + c)^2 + d)*sinh(d*x + c)^4 + 20
*(11*d*cosh(d*x + c)^9 + 36*d*cosh(d*x + c)^7 + 42*d*cosh(d*x + c)^5 + 20*d*cosh(d*x + c)^3 + 3*d*cosh(d*x + c
))*sinh(d*x + c)^3 + 6*d*cosh(d*x + c)^2 + 6*(11*d*cosh(d*x + c)^10 + 45*d*cosh(d*x + c)^8 + 70*d*cosh(d*x + c
)^6 + 50*d*cosh(d*x + c)^4 + 15*d*cosh(d*x + c)^2 + d)*sinh(d*x + c)^2 + 12*(d*cosh(d*x + c)^11 + 5*d*cosh(d*x
+ c)^9 + 10*d*cosh(d*x + c)^7 + 10*d*cosh(d*x + c)^5 + 5*d*cosh(d*x + c)^3 + d*cosh(d*x + c))*sinh(d*x + c) +
d)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \left (a + b \tanh ^{2}{\left (c + d x \right )}\right )^{3} \operatorname{sech}{\left (c + d x \right )}\, dx \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(sech(d*x+c)*(a+b*tanh(d*x+c)**2)**3,x)

[Out]

Integral((a + b*tanh(c + d*x)**2)**3*sech(c + d*x), x)

________________________________________________________________________________________

Giac [B]  time = 1.58934, size = 433, normalized size = 2.91 \begin{align*} \frac{3 \,{\left (16 \, a^{3} e^{c} + 24 \, a^{2} b e^{c} + 18 \, a b^{2} e^{c} + 5 \, b^{3} e^{c}\right )} \arctan \left (e^{\left (d x + c\right )}\right ) e^{\left (-c\right )} - \frac{72 \, a^{2} b e^{\left (11 \, d x + 11 \, c\right )} + 90 \, a b^{2} e^{\left (11 \, d x + 11 \, c\right )} + 33 \, b^{3} e^{\left (11 \, d x + 11 \, c\right )} + 216 \, a^{2} b e^{\left (9 \, d x + 9 \, c\right )} + 126 \, a b^{2} e^{\left (9 \, d x + 9 \, c\right )} - 5 \, b^{3} e^{\left (9 \, d x + 9 \, c\right )} + 144 \, a^{2} b e^{\left (7 \, d x + 7 \, c\right )} + 36 \, a b^{2} e^{\left (7 \, d x + 7 \, c\right )} + 90 \, b^{3} e^{\left (7 \, d x + 7 \, c\right )} - 144 \, a^{2} b e^{\left (5 \, d x + 5 \, c\right )} - 36 \, a b^{2} e^{\left (5 \, d x + 5 \, c\right )} - 90 \, b^{3} e^{\left (5 \, d x + 5 \, c\right )} - 216 \, a^{2} b e^{\left (3 \, d x + 3 \, c\right )} - 126 \, a b^{2} e^{\left (3 \, d x + 3 \, c\right )} + 5 \, b^{3} e^{\left (3 \, d x + 3 \, c\right )} - 72 \, a^{2} b e^{\left (d x + c\right )} - 90 \, a b^{2} e^{\left (d x + c\right )} - 33 \, b^{3} e^{\left (d x + c\right )}}{{\left (e^{\left (2 \, d x + 2 \, c\right )} + 1\right )}^{6}}}{24 \, d} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(sech(d*x+c)*(a+b*tanh(d*x+c)^2)^3,x, algorithm="giac")

[Out]

1/24*(3*(16*a^3*e^c + 24*a^2*b*e^c + 18*a*b^2*e^c + 5*b^3*e^c)*arctan(e^(d*x + c))*e^(-c) - (72*a^2*b*e^(11*d*
x + 11*c) + 90*a*b^2*e^(11*d*x + 11*c) + 33*b^3*e^(11*d*x + 11*c) + 216*a^2*b*e^(9*d*x + 9*c) + 126*a*b^2*e^(9
*d*x + 9*c) - 5*b^3*e^(9*d*x + 9*c) + 144*a^2*b*e^(7*d*x + 7*c) + 36*a*b^2*e^(7*d*x + 7*c) + 90*b^3*e^(7*d*x +
7*c) - 144*a^2*b*e^(5*d*x + 5*c) - 36*a*b^2*e^(5*d*x + 5*c) - 90*b^3*e^(5*d*x + 5*c) - 216*a^2*b*e^(3*d*x + 3
*c) - 126*a*b^2*e^(3*d*x + 3*c) + 5*b^3*e^(3*d*x + 3*c) - 72*a^2*b*e^(d*x + c) - 90*a*b^2*e^(d*x + c) - 33*b^3
*e^(d*x + c))/(e^(2*d*x + 2*c) + 1)^6)/d