### 3.27 $$\int \frac{\cosh ^2(\frac{1}{4}+x+x^2)}{x} \, dx$$

Optimal. Leaf size=30 $\frac{1}{2} \text{Unintegrable}\left (\frac{\cosh \left (2 x^2+2 x+\frac{1}{2}\right )}{x},x\right )+\frac{\log (x)}{2}$

[Out]

Log[x]/2 + Unintegrable[Cosh[1/2 + 2*x + 2*x^2]/x, x]/2

________________________________________________________________________________________

Rubi [A]  time = 0.0319165, antiderivative size = 0, normalized size of antiderivative = 0., number of steps used = 0, number of rules used = 0, integrand size = 0, $$\frac{\text{number of rules}}{\text{integrand size}}$$ = 0., Rules used = {} $\int \frac{\cosh ^2\left (\frac{1}{4}+x+x^2\right )}{x} \, dx$

Veriﬁcation is Not applicable to the result.

[In]

Int[Cosh[1/4 + x + x^2]^2/x,x]

[Out]

Log[x]/2 + Defer[Int][Cosh[1/2 + 2*x + 2*x^2]/x, x]/2

Rubi steps

\begin{align*} \int \frac{\cosh ^2\left (\frac{1}{4}+x+x^2\right )}{x} \, dx &=\int \left (\frac{1}{2 x}+\frac{\cosh \left (\frac{1}{2}+2 x+2 x^2\right )}{2 x}\right ) \, dx\\ &=\frac{\log (x)}{2}+\frac{1}{2} \int \frac{\cosh \left (\frac{1}{2}+2 x+2 x^2\right )}{x} \, dx\\ \end{align*}

Mathematica [A]  time = 10.6999, size = 0, normalized size = 0. $\int \frac{\cosh ^2\left (\frac{1}{4}+x+x^2\right )}{x} \, dx$

Veriﬁcation is Not applicable to the result.

[In]

Integrate[Cosh[1/4 + x + x^2]^2/x,x]

[Out]

Integrate[Cosh[1/4 + x + x^2]^2/x, x]

________________________________________________________________________________________

Maple [A]  time = 0.054, size = 0, normalized size = 0. \begin{align*} \int{\frac{1}{x} \left ( \cosh \left ({\frac{1}{4}}+x+{x}^{2} \right ) \right ) ^{2}}\, dx \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

int(cosh(1/4+x+x^2)^2/x,x)

[Out]

int(cosh(1/4+x+x^2)^2/x,x)

________________________________________________________________________________________

Maxima [A]  time = 0., size = 0, normalized size = 0. \begin{align*} \frac{1}{4} \, \int \frac{e^{\left (2 \, x^{2} + 2 \, x + \frac{1}{2}\right )}}{x}\,{d x} + \frac{1}{4} \, \int \frac{e^{\left (-2 \, x^{2} - 2 \, x - \frac{1}{2}\right )}}{x}\,{d x} + \frac{1}{2} \, \log \left (x\right ) \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(cosh(1/4+x+x^2)^2/x,x, algorithm="maxima")

[Out]

1/4*integrate(e^(2*x^2 + 2*x + 1/2)/x, x) + 1/4*integrate(e^(-2*x^2 - 2*x - 1/2)/x, x) + 1/2*log(x)

________________________________________________________________________________________

Fricas [A]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{\cosh \left (x^{2} + x + \frac{1}{4}\right )^{2}}{x}, x\right ) \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(cosh(1/4+x+x^2)^2/x,x, algorithm="fricas")

[Out]

integral(cosh(x^2 + x + 1/4)^2/x, x)

________________________________________________________________________________________

Sympy [A]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\cosh ^{2}{\left (x^{2} + x + \frac{1}{4} \right )}}{x}\, dx \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(cosh(1/4+x+x**2)**2/x,x)

[Out]

Integral(cosh(x**2 + x + 1/4)**2/x, x)

________________________________________________________________________________________

Giac [A]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\cosh \left (x^{2} + x + \frac{1}{4}\right )^{2}}{x}\,{d x} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(cosh(1/4+x+x^2)^2/x,x, algorithm="giac")

[Out]

integrate(cosh(x^2 + x + 1/4)^2/x, x)