### 3.33 $$\int \frac{1}{(c+d x)^2 (a+i a \tan (e+f x))^3} \, dx$$

Optimal. Leaf size=712 $-\frac{3 f \text{CosIntegral}\left (\frac{6 c f}{d}+6 f x\right ) \sin \left (6 e-\frac{6 c f}{d}\right )}{4 a^3 d^2}-\frac{3 f \text{CosIntegral}\left (\frac{4 c f}{d}+4 f x\right ) \sin \left (4 e-\frac{4 c f}{d}\right )}{2 a^3 d^2}-\frac{3 f \text{CosIntegral}\left (\frac{2 c f}{d}+2 f x\right ) \sin \left (2 e-\frac{2 c f}{d}\right )}{4 a^3 d^2}-\frac{3 i f \text{CosIntegral}\left (\frac{2 c f}{d}+2 f x\right ) \cos \left (2 e-\frac{2 c f}{d}\right )}{4 a^3 d^2}-\frac{3 i f \text{CosIntegral}\left (\frac{4 c f}{d}+4 f x\right ) \cos \left (4 e-\frac{4 c f}{d}\right )}{2 a^3 d^2}-\frac{3 i f \text{CosIntegral}\left (\frac{6 c f}{d}+6 f x\right ) \cos \left (6 e-\frac{6 c f}{d}\right )}{4 a^3 d^2}+\frac{3 i f \sin \left (2 e-\frac{2 c f}{d}\right ) \text{Si}\left (2 x f+\frac{2 c f}{d}\right )}{4 a^3 d^2}+\frac{3 i f \sin \left (4 e-\frac{4 c f}{d}\right ) \text{Si}\left (4 x f+\frac{4 c f}{d}\right )}{2 a^3 d^2}+\frac{3 i f \sin \left (6 e-\frac{6 c f}{d}\right ) \text{Si}\left (6 x f+\frac{6 c f}{d}\right )}{4 a^3 d^2}-\frac{3 f \cos \left (2 e-\frac{2 c f}{d}\right ) \text{Si}\left (2 x f+\frac{2 c f}{d}\right )}{4 a^3 d^2}-\frac{3 f \cos \left (4 e-\frac{4 c f}{d}\right ) \text{Si}\left (4 x f+\frac{4 c f}{d}\right )}{2 a^3 d^2}-\frac{3 f \cos \left (6 e-\frac{6 c f}{d}\right ) \text{Si}\left (6 x f+\frac{6 c f}{d}\right )}{4 a^3 d^2}-\frac{i \sin ^3(2 e+2 f x)}{8 a^3 d (c+d x)}+\frac{3 \sin ^2(2 e+2 f x)}{8 a^3 d (c+d x)}+\frac{15 i \sin (2 e+2 f x)}{32 a^3 d (c+d x)}+\frac{3 i \sin (4 e+4 f x)}{8 a^3 d (c+d x)}+\frac{3 i \sin (6 e+6 f x)}{32 a^3 d (c+d x)}-\frac{\cos ^3(2 e+2 f x)}{8 a^3 d (c+d x)}-\frac{3 \cos ^2(2 e+2 f x)}{8 a^3 d (c+d x)}-\frac{9 \cos (2 e+2 f x)}{32 a^3 d (c+d x)}-\frac{3 \cos (6 e+6 f x)}{32 a^3 d (c+d x)}-\frac{1}{8 a^3 d (c+d x)}$

[Out]

-1/(8*a^3*d*(c + d*x)) - (9*Cos[2*e + 2*f*x])/(32*a^3*d*(c + d*x)) - (3*Cos[2*e + 2*f*x]^2)/(8*a^3*d*(c + d*x)
) - Cos[2*e + 2*f*x]^3/(8*a^3*d*(c + d*x)) - (3*Cos[6*e + 6*f*x])/(32*a^3*d*(c + d*x)) - (((3*I)/4)*f*Cos[2*e
- (2*c*f)/d]*CosIntegral[(2*c*f)/d + 2*f*x])/(a^3*d^2) - (((3*I)/2)*f*Cos[4*e - (4*c*f)/d]*CosIntegral[(4*c*f)
/d + 4*f*x])/(a^3*d^2) - (((3*I)/4)*f*Cos[6*e - (6*c*f)/d]*CosIntegral[(6*c*f)/d + 6*f*x])/(a^3*d^2) - (3*f*Co
sIntegral[(6*c*f)/d + 6*f*x]*Sin[6*e - (6*c*f)/d])/(4*a^3*d^2) - (3*f*CosIntegral[(4*c*f)/d + 4*f*x]*Sin[4*e -
(4*c*f)/d])/(2*a^3*d^2) - (3*f*CosIntegral[(2*c*f)/d + 2*f*x]*Sin[2*e - (2*c*f)/d])/(4*a^3*d^2) + (((15*I)/32
)*Sin[2*e + 2*f*x])/(a^3*d*(c + d*x)) + (3*Sin[2*e + 2*f*x]^2)/(8*a^3*d*(c + d*x)) - ((I/8)*Sin[2*e + 2*f*x]^3
)/(a^3*d*(c + d*x)) + (((3*I)/8)*Sin[4*e + 4*f*x])/(a^3*d*(c + d*x)) + (((3*I)/32)*Sin[6*e + 6*f*x])/(a^3*d*(c
+ d*x)) - (3*f*Cos[2*e - (2*c*f)/d]*SinIntegral[(2*c*f)/d + 2*f*x])/(4*a^3*d^2) + (((3*I)/4)*f*Sin[2*e - (2*c
*f)/d]*SinIntegral[(2*c*f)/d + 2*f*x])/(a^3*d^2) - (3*f*Cos[4*e - (4*c*f)/d]*SinIntegral[(4*c*f)/d + 4*f*x])/(
2*a^3*d^2) + (((3*I)/2)*f*Sin[4*e - (4*c*f)/d]*SinIntegral[(4*c*f)/d + 4*f*x])/(a^3*d^2) - (3*f*Cos[6*e - (6*c
*f)/d]*SinIntegral[(6*c*f)/d + 6*f*x])/(4*a^3*d^2) + (((3*I)/4)*f*Sin[6*e - (6*c*f)/d]*SinIntegral[(6*c*f)/d +
6*f*x])/(a^3*d^2)

________________________________________________________________________________________

Rubi [A]  time = 1.73245, antiderivative size = 712, normalized size of antiderivative = 1., number of steps used = 60, number of rules used = 9, integrand size = 23, $$\frac{\text{number of rules}}{\text{integrand size}}$$ = 0.391, Rules used = {3728, 3297, 3303, 3299, 3302, 3313, 12, 4406, 4428} $-\frac{3 f \text{CosIntegral}\left (\frac{6 c f}{d}+6 f x\right ) \sin \left (6 e-\frac{6 c f}{d}\right )}{4 a^3 d^2}-\frac{3 f \text{CosIntegral}\left (\frac{4 c f}{d}+4 f x\right ) \sin \left (4 e-\frac{4 c f}{d}\right )}{2 a^3 d^2}-\frac{3 f \text{CosIntegral}\left (\frac{2 c f}{d}+2 f x\right ) \sin \left (2 e-\frac{2 c f}{d}\right )}{4 a^3 d^2}-\frac{3 i f \text{CosIntegral}\left (\frac{2 c f}{d}+2 f x\right ) \cos \left (2 e-\frac{2 c f}{d}\right )}{4 a^3 d^2}-\frac{3 i f \text{CosIntegral}\left (\frac{4 c f}{d}+4 f x\right ) \cos \left (4 e-\frac{4 c f}{d}\right )}{2 a^3 d^2}-\frac{3 i f \text{CosIntegral}\left (\frac{6 c f}{d}+6 f x\right ) \cos \left (6 e-\frac{6 c f}{d}\right )}{4 a^3 d^2}+\frac{3 i f \sin \left (2 e-\frac{2 c f}{d}\right ) \text{Si}\left (2 x f+\frac{2 c f}{d}\right )}{4 a^3 d^2}+\frac{3 i f \sin \left (4 e-\frac{4 c f}{d}\right ) \text{Si}\left (4 x f+\frac{4 c f}{d}\right )}{2 a^3 d^2}+\frac{3 i f \sin \left (6 e-\frac{6 c f}{d}\right ) \text{Si}\left (6 x f+\frac{6 c f}{d}\right )}{4 a^3 d^2}-\frac{3 f \cos \left (2 e-\frac{2 c f}{d}\right ) \text{Si}\left (2 x f+\frac{2 c f}{d}\right )}{4 a^3 d^2}-\frac{3 f \cos \left (4 e-\frac{4 c f}{d}\right ) \text{Si}\left (4 x f+\frac{4 c f}{d}\right )}{2 a^3 d^2}-\frac{3 f \cos \left (6 e-\frac{6 c f}{d}\right ) \text{Si}\left (6 x f+\frac{6 c f}{d}\right )}{4 a^3 d^2}-\frac{i \sin ^3(2 e+2 f x)}{8 a^3 d (c+d x)}+\frac{3 \sin ^2(2 e+2 f x)}{8 a^3 d (c+d x)}+\frac{15 i \sin (2 e+2 f x)}{32 a^3 d (c+d x)}+\frac{3 i \sin (4 e+4 f x)}{8 a^3 d (c+d x)}+\frac{3 i \sin (6 e+6 f x)}{32 a^3 d (c+d x)}-\frac{\cos ^3(2 e+2 f x)}{8 a^3 d (c+d x)}-\frac{3 \cos ^2(2 e+2 f x)}{8 a^3 d (c+d x)}-\frac{9 \cos (2 e+2 f x)}{32 a^3 d (c+d x)}-\frac{3 \cos (6 e+6 f x)}{32 a^3 d (c+d x)}-\frac{1}{8 a^3 d (c+d x)}$

Antiderivative was successfully veriﬁed.

[In]

Int[1/((c + d*x)^2*(a + I*a*Tan[e + f*x])^3),x]

[Out]

-1/(8*a^3*d*(c + d*x)) - (9*Cos[2*e + 2*f*x])/(32*a^3*d*(c + d*x)) - (3*Cos[2*e + 2*f*x]^2)/(8*a^3*d*(c + d*x)
) - Cos[2*e + 2*f*x]^3/(8*a^3*d*(c + d*x)) - (3*Cos[6*e + 6*f*x])/(32*a^3*d*(c + d*x)) - (((3*I)/4)*f*Cos[2*e
- (2*c*f)/d]*CosIntegral[(2*c*f)/d + 2*f*x])/(a^3*d^2) - (((3*I)/2)*f*Cos[4*e - (4*c*f)/d]*CosIntegral[(4*c*f)
/d + 4*f*x])/(a^3*d^2) - (((3*I)/4)*f*Cos[6*e - (6*c*f)/d]*CosIntegral[(6*c*f)/d + 6*f*x])/(a^3*d^2) - (3*f*Co
sIntegral[(6*c*f)/d + 6*f*x]*Sin[6*e - (6*c*f)/d])/(4*a^3*d^2) - (3*f*CosIntegral[(4*c*f)/d + 4*f*x]*Sin[4*e -
(4*c*f)/d])/(2*a^3*d^2) - (3*f*CosIntegral[(2*c*f)/d + 2*f*x]*Sin[2*e - (2*c*f)/d])/(4*a^3*d^2) + (((15*I)/32
)*Sin[2*e + 2*f*x])/(a^3*d*(c + d*x)) + (3*Sin[2*e + 2*f*x]^2)/(8*a^3*d*(c + d*x)) - ((I/8)*Sin[2*e + 2*f*x]^3
)/(a^3*d*(c + d*x)) + (((3*I)/8)*Sin[4*e + 4*f*x])/(a^3*d*(c + d*x)) + (((3*I)/32)*Sin[6*e + 6*f*x])/(a^3*d*(c
+ d*x)) - (3*f*Cos[2*e - (2*c*f)/d]*SinIntegral[(2*c*f)/d + 2*f*x])/(4*a^3*d^2) + (((3*I)/4)*f*Sin[2*e - (2*c
*f)/d]*SinIntegral[(2*c*f)/d + 2*f*x])/(a^3*d^2) - (3*f*Cos[4*e - (4*c*f)/d]*SinIntegral[(4*c*f)/d + 4*f*x])/(
2*a^3*d^2) + (((3*I)/2)*f*Sin[4*e - (4*c*f)/d]*SinIntegral[(4*c*f)/d + 4*f*x])/(a^3*d^2) - (3*f*Cos[6*e - (6*c
*f)/d]*SinIntegral[(6*c*f)/d + 6*f*x])/(4*a^3*d^2) + (((3*I)/4)*f*Sin[6*e - (6*c*f)/d]*SinIntegral[(6*c*f)/d +
6*f*x])/(a^3*d^2)

Rule 3728

Int[((c_.) + (d_.)*(x_))^(m_)*((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Int[ExpandIntegrand[(c
+ d*x)^m, (1/(2*a) + Cos[2*e + 2*f*x]/(2*a) + Sin[2*e + 2*f*x]/(2*b))^(-n), x], x] /; FreeQ[{a, b, c, d, e, f
}, x] && EqQ[a^2 + b^2, 0] && ILtQ[m, 0] && ILtQ[n, 0]

Rule 3297

Int[((c_.) + (d_.)*(x_))^(m_)*sin[(e_.) + (f_.)*(x_)], x_Symbol] :> Simp[((c + d*x)^(m + 1)*Sin[e + f*x])/(d*(
m + 1)), x] - Dist[f/(d*(m + 1)), Int[(c + d*x)^(m + 1)*Cos[e + f*x], x], x] /; FreeQ[{c, d, e, f}, x] && LtQ[
m, -1]

Rule 3303

Int[sin[(e_.) + (f_.)*(x_)]/((c_.) + (d_.)*(x_)), x_Symbol] :> Dist[Cos[(d*e - c*f)/d], Int[Sin[(c*f)/d + f*x]
/(c + d*x), x], x] + Dist[Sin[(d*e - c*f)/d], Int[Cos[(c*f)/d + f*x]/(c + d*x), x], x] /; FreeQ[{c, d, e, f},
x] && NeQ[d*e - c*f, 0]

Rule 3299

Int[sin[(e_.) + (f_.)*(x_)]/((c_.) + (d_.)*(x_)), x_Symbol] :> Simp[SinIntegral[e + f*x]/d, x] /; FreeQ[{c, d,
e, f}, x] && EqQ[d*e - c*f, 0]

Rule 3302

Int[sin[(e_.) + (f_.)*(x_)]/((c_.) + (d_.)*(x_)), x_Symbol] :> Simp[CosIntegral[e - Pi/2 + f*x]/d, x] /; FreeQ
[{c, d, e, f}, x] && EqQ[d*(e - Pi/2) - c*f, 0]

Rule 3313

Int[((c_.) + (d_.)*(x_))^(m_)*sin[(e_.) + (f_.)*(x_)]^(n_), x_Symbol] :> Simp[((c + d*x)^(m + 1)*Sin[e + f*x]^
n)/(d*(m + 1)), x] - Dist[(f*n)/(d*(m + 1)), Int[ExpandTrigReduce[(c + d*x)^(m + 1), Cos[e + f*x]*Sin[e + f*x]
^(n - 1), x], x], x] /; FreeQ[{c, d, e, f, m}, x] && IGtQ[n, 1] && GeQ[m, -2] && LtQ[m, -1]

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 4406

Int[Cos[(a_.) + (b_.)*(x_)]^(p_.)*((c_.) + (d_.)*(x_))^(m_.)*Sin[(a_.) + (b_.)*(x_)]^(n_.), x_Symbol] :> Int[E
xpandTrigReduce[(c + d*x)^m, Sin[a + b*x]^n*Cos[a + b*x]^p, x], x] /; FreeQ[{a, b, c, d, m}, x] && IGtQ[n, 0]
&& IGtQ[p, 0]

Rule 4428

Int[((e_.) + (f_.)*(x_))^(m_.)*Sin[(a_.) + (b_.)*(x_)]^(p_.)*Sin[(c_.) + (d_.)*(x_)]^(q_.), x_Symbol] :> Int[E
xpandTrigReduce[(e + f*x)^m, Sin[a + b*x]^p*Sin[c + d*x]^q, x], x] /; FreeQ[{a, b, c, d, e, f}, x] && IGtQ[p,
0] && IGtQ[q, 0] && IntegerQ[m]

Rubi steps

\begin{align*} \int \frac{1}{(c+d x)^2 (a+i a \tan (e+f x))^3} \, dx &=\int \left (\frac{1}{8 a^3 (c+d x)^2}+\frac{3 \cos (2 e+2 f x)}{8 a^3 (c+d x)^2}+\frac{3 \cos ^2(2 e+2 f x)}{8 a^3 (c+d x)^2}+\frac{\cos ^3(2 e+2 f x)}{8 a^3 (c+d x)^2}-\frac{3 i \sin (2 e+2 f x)}{8 a^3 (c+d x)^2}-\frac{3 i \cos ^2(2 e+2 f x) \sin (2 e+2 f x)}{8 a^3 (c+d x)^2}-\frac{3 \sin ^2(2 e+2 f x)}{8 a^3 (c+d x)^2}+\frac{i \sin ^3(2 e+2 f x)}{8 a^3 (c+d x)^2}-\frac{3 i \sin (4 e+4 f x)}{8 a^3 (c+d x)^2}-\frac{3 \sin (2 e+2 f x) \sin (4 e+4 f x)}{16 a^3 (c+d x)^2}\right ) \, dx\\ &=-\frac{1}{8 a^3 d (c+d x)}+\frac{i \int \frac{\sin ^3(2 e+2 f x)}{(c+d x)^2} \, dx}{8 a^3}-\frac{(3 i) \int \frac{\sin (2 e+2 f x)}{(c+d x)^2} \, dx}{8 a^3}-\frac{(3 i) \int \frac{\cos ^2(2 e+2 f x) \sin (2 e+2 f x)}{(c+d x)^2} \, dx}{8 a^3}-\frac{(3 i) \int \frac{\sin (4 e+4 f x)}{(c+d x)^2} \, dx}{8 a^3}+\frac{\int \frac{\cos ^3(2 e+2 f x)}{(c+d x)^2} \, dx}{8 a^3}-\frac{3 \int \frac{\sin (2 e+2 f x) \sin (4 e+4 f x)}{(c+d x)^2} \, dx}{16 a^3}+\frac{3 \int \frac{\cos (2 e+2 f x)}{(c+d x)^2} \, dx}{8 a^3}+\frac{3 \int \frac{\cos ^2(2 e+2 f x)}{(c+d x)^2} \, dx}{8 a^3}-\frac{3 \int \frac{\sin ^2(2 e+2 f x)}{(c+d x)^2} \, dx}{8 a^3}\\ &=-\frac{1}{8 a^3 d (c+d x)}-\frac{3 \cos (2 e+2 f x)}{8 a^3 d (c+d x)}-\frac{3 \cos ^2(2 e+2 f x)}{8 a^3 d (c+d x)}-\frac{\cos ^3(2 e+2 f x)}{8 a^3 d (c+d x)}+\frac{3 i \sin (2 e+2 f x)}{8 a^3 d (c+d x)}+\frac{3 \sin ^2(2 e+2 f x)}{8 a^3 d (c+d x)}-\frac{i \sin ^3(2 e+2 f x)}{8 a^3 d (c+d x)}+\frac{3 i \sin (4 e+4 f x)}{8 a^3 d (c+d x)}-\frac{(3 i) \int \left (\frac{\sin (2 e+2 f x)}{4 (c+d x)^2}+\frac{\sin (6 e+6 f x)}{4 (c+d x)^2}\right ) \, dx}{8 a^3}-\frac{3 \int \left (\frac{\cos (2 e+2 f x)}{2 (c+d x)^2}-\frac{\cos (6 e+6 f x)}{2 (c+d x)^2}\right ) \, dx}{16 a^3}-\frac{(3 i f) \int \frac{\cos (2 e+2 f x)}{c+d x} \, dx}{4 a^3 d}+\frac{(3 i f) \int \left (\frac{\cos (2 e+2 f x)}{4 (c+d x)}-\frac{\cos (6 e+6 f x)}{4 (c+d x)}\right ) \, dx}{4 a^3 d}-\frac{(3 i f) \int \frac{\cos (4 e+4 f x)}{c+d x} \, dx}{2 a^3 d}-\frac{(3 f) \int \frac{\sin (2 e+2 f x)}{c+d x} \, dx}{4 a^3 d}+\frac{(3 f) \int \left (-\frac{\sin (2 e+2 f x)}{4 (c+d x)}-\frac{\sin (6 e+6 f x)}{4 (c+d x)}\right ) \, dx}{4 a^3 d}+\frac{(3 f) \int -\frac{\sin (4 e+4 f x)}{2 (c+d x)} \, dx}{2 a^3 d}-\frac{(3 f) \int \frac{\sin (4 e+4 f x)}{2 (c+d x)} \, dx}{2 a^3 d}\\ &=-\frac{1}{8 a^3 d (c+d x)}-\frac{3 \cos (2 e+2 f x)}{8 a^3 d (c+d x)}-\frac{3 \cos ^2(2 e+2 f x)}{8 a^3 d (c+d x)}-\frac{\cos ^3(2 e+2 f x)}{8 a^3 d (c+d x)}+\frac{3 i \sin (2 e+2 f x)}{8 a^3 d (c+d x)}+\frac{3 \sin ^2(2 e+2 f x)}{8 a^3 d (c+d x)}-\frac{i \sin ^3(2 e+2 f x)}{8 a^3 d (c+d x)}+\frac{3 i \sin (4 e+4 f x)}{8 a^3 d (c+d x)}-\frac{(3 i) \int \frac{\sin (2 e+2 f x)}{(c+d x)^2} \, dx}{32 a^3}-\frac{(3 i) \int \frac{\sin (6 e+6 f x)}{(c+d x)^2} \, dx}{32 a^3}-\frac{3 \int \frac{\cos (2 e+2 f x)}{(c+d x)^2} \, dx}{32 a^3}+\frac{3 \int \frac{\cos (6 e+6 f x)}{(c+d x)^2} \, dx}{32 a^3}+\frac{(3 i f) \int \frac{\cos (2 e+2 f x)}{c+d x} \, dx}{16 a^3 d}-\frac{(3 i f) \int \frac{\cos (6 e+6 f x)}{c+d x} \, dx}{16 a^3 d}-\frac{(3 f) \int \frac{\sin (2 e+2 f x)}{c+d x} \, dx}{16 a^3 d}-\frac{(3 f) \int \frac{\sin (6 e+6 f x)}{c+d x} \, dx}{16 a^3 d}-2 \frac{(3 f) \int \frac{\sin (4 e+4 f x)}{c+d x} \, dx}{4 a^3 d}-\frac{\left (3 i f \cos \left (4 e-\frac{4 c f}{d}\right )\right ) \int \frac{\cos \left (\frac{4 c f}{d}+4 f x\right )}{c+d x} \, dx}{2 a^3 d}-\frac{\left (3 i f \cos \left (2 e-\frac{2 c f}{d}\right )\right ) \int \frac{\cos \left (\frac{2 c f}{d}+2 f x\right )}{c+d x} \, dx}{4 a^3 d}-\frac{\left (3 f \cos \left (2 e-\frac{2 c f}{d}\right )\right ) \int \frac{\sin \left (\frac{2 c f}{d}+2 f x\right )}{c+d x} \, dx}{4 a^3 d}+\frac{\left (3 i f \sin \left (4 e-\frac{4 c f}{d}\right )\right ) \int \frac{\sin \left (\frac{4 c f}{d}+4 f x\right )}{c+d x} \, dx}{2 a^3 d}+\frac{\left (3 i f \sin \left (2 e-\frac{2 c f}{d}\right )\right ) \int \frac{\sin \left (\frac{2 c f}{d}+2 f x\right )}{c+d x} \, dx}{4 a^3 d}-\frac{\left (3 f \sin \left (2 e-\frac{2 c f}{d}\right )\right ) \int \frac{\cos \left (\frac{2 c f}{d}+2 f x\right )}{c+d x} \, dx}{4 a^3 d}\\ &=-\frac{1}{8 a^3 d (c+d x)}-\frac{9 \cos (2 e+2 f x)}{32 a^3 d (c+d x)}-\frac{3 \cos ^2(2 e+2 f x)}{8 a^3 d (c+d x)}-\frac{\cos ^3(2 e+2 f x)}{8 a^3 d (c+d x)}-\frac{3 \cos (6 e+6 f x)}{32 a^3 d (c+d x)}-\frac{3 i f \cos \left (2 e-\frac{2 c f}{d}\right ) \text{Ci}\left (\frac{2 c f}{d}+2 f x\right )}{4 a^3 d^2}-\frac{3 i f \cos \left (4 e-\frac{4 c f}{d}\right ) \text{Ci}\left (\frac{4 c f}{d}+4 f x\right )}{2 a^3 d^2}-\frac{3 f \text{Ci}\left (\frac{2 c f}{d}+2 f x\right ) \sin \left (2 e-\frac{2 c f}{d}\right )}{4 a^3 d^2}+\frac{15 i \sin (2 e+2 f x)}{32 a^3 d (c+d x)}+\frac{3 \sin ^2(2 e+2 f x)}{8 a^3 d (c+d x)}-\frac{i \sin ^3(2 e+2 f x)}{8 a^3 d (c+d x)}+\frac{3 i \sin (4 e+4 f x)}{8 a^3 d (c+d x)}+\frac{3 i \sin (6 e+6 f x)}{32 a^3 d (c+d x)}-\frac{3 f \cos \left (2 e-\frac{2 c f}{d}\right ) \text{Si}\left (\frac{2 c f}{d}+2 f x\right )}{4 a^3 d^2}+\frac{3 i f \sin \left (2 e-\frac{2 c f}{d}\right ) \text{Si}\left (\frac{2 c f}{d}+2 f x\right )}{4 a^3 d^2}+\frac{3 i f \sin \left (4 e-\frac{4 c f}{d}\right ) \text{Si}\left (\frac{4 c f}{d}+4 f x\right )}{2 a^3 d^2}-\frac{(3 i f) \int \frac{\cos (2 e+2 f x)}{c+d x} \, dx}{16 a^3 d}-\frac{(9 i f) \int \frac{\cos (6 e+6 f x)}{c+d x} \, dx}{16 a^3 d}+\frac{(3 f) \int \frac{\sin (2 e+2 f x)}{c+d x} \, dx}{16 a^3 d}-\frac{(9 f) \int \frac{\sin (6 e+6 f x)}{c+d x} \, dx}{16 a^3 d}-\frac{\left (3 i f \cos \left (6 e-\frac{6 c f}{d}\right )\right ) \int \frac{\cos \left (\frac{6 c f}{d}+6 f x\right )}{c+d x} \, dx}{16 a^3 d}-\frac{\left (3 f \cos \left (6 e-\frac{6 c f}{d}\right )\right ) \int \frac{\sin \left (\frac{6 c f}{d}+6 f x\right )}{c+d x} \, dx}{16 a^3 d}+\frac{\left (3 i f \cos \left (2 e-\frac{2 c f}{d}\right )\right ) \int \frac{\cos \left (\frac{2 c f}{d}+2 f x\right )}{c+d x} \, dx}{16 a^3 d}-\frac{\left (3 f \cos \left (2 e-\frac{2 c f}{d}\right )\right ) \int \frac{\sin \left (\frac{2 c f}{d}+2 f x\right )}{c+d x} \, dx}{16 a^3 d}+\frac{\left (3 i f \sin \left (6 e-\frac{6 c f}{d}\right )\right ) \int \frac{\sin \left (\frac{6 c f}{d}+6 f x\right )}{c+d x} \, dx}{16 a^3 d}-\frac{\left (3 f \sin \left (6 e-\frac{6 c f}{d}\right )\right ) \int \frac{\cos \left (\frac{6 c f}{d}+6 f x\right )}{c+d x} \, dx}{16 a^3 d}-2 \left (\frac{\left (3 f \cos \left (4 e-\frac{4 c f}{d}\right )\right ) \int \frac{\sin \left (\frac{4 c f}{d}+4 f x\right )}{c+d x} \, dx}{4 a^3 d}+\frac{\left (3 f \sin \left (4 e-\frac{4 c f}{d}\right )\right ) \int \frac{\cos \left (\frac{4 c f}{d}+4 f x\right )}{c+d x} \, dx}{4 a^3 d}\right )-\frac{\left (3 i f \sin \left (2 e-\frac{2 c f}{d}\right )\right ) \int \frac{\sin \left (\frac{2 c f}{d}+2 f x\right )}{c+d x} \, dx}{16 a^3 d}-\frac{\left (3 f \sin \left (2 e-\frac{2 c f}{d}\right )\right ) \int \frac{\cos \left (\frac{2 c f}{d}+2 f x\right )}{c+d x} \, dx}{16 a^3 d}\\ &=-\frac{1}{8 a^3 d (c+d x)}-\frac{9 \cos (2 e+2 f x)}{32 a^3 d (c+d x)}-\frac{3 \cos ^2(2 e+2 f x)}{8 a^3 d (c+d x)}-\frac{\cos ^3(2 e+2 f x)}{8 a^3 d (c+d x)}-\frac{3 \cos (6 e+6 f x)}{32 a^3 d (c+d x)}-\frac{9 i f \cos \left (2 e-\frac{2 c f}{d}\right ) \text{Ci}\left (\frac{2 c f}{d}+2 f x\right )}{16 a^3 d^2}-\frac{3 i f \cos \left (4 e-\frac{4 c f}{d}\right ) \text{Ci}\left (\frac{4 c f}{d}+4 f x\right )}{2 a^3 d^2}-\frac{3 i f \cos \left (6 e-\frac{6 c f}{d}\right ) \text{Ci}\left (\frac{6 c f}{d}+6 f x\right )}{16 a^3 d^2}-\frac{3 f \text{Ci}\left (\frac{6 c f}{d}+6 f x\right ) \sin \left (6 e-\frac{6 c f}{d}\right )}{16 a^3 d^2}-\frac{15 f \text{Ci}\left (\frac{2 c f}{d}+2 f x\right ) \sin \left (2 e-\frac{2 c f}{d}\right )}{16 a^3 d^2}+\frac{15 i \sin (2 e+2 f x)}{32 a^3 d (c+d x)}+\frac{3 \sin ^2(2 e+2 f x)}{8 a^3 d (c+d x)}-\frac{i \sin ^3(2 e+2 f x)}{8 a^3 d (c+d x)}+\frac{3 i \sin (4 e+4 f x)}{8 a^3 d (c+d x)}+\frac{3 i \sin (6 e+6 f x)}{32 a^3 d (c+d x)}-\frac{15 f \cos \left (2 e-\frac{2 c f}{d}\right ) \text{Si}\left (\frac{2 c f}{d}+2 f x\right )}{16 a^3 d^2}+\frac{9 i f \sin \left (2 e-\frac{2 c f}{d}\right ) \text{Si}\left (\frac{2 c f}{d}+2 f x\right )}{16 a^3 d^2}+\frac{3 i f \sin \left (4 e-\frac{4 c f}{d}\right ) \text{Si}\left (\frac{4 c f}{d}+4 f x\right )}{2 a^3 d^2}-2 \left (\frac{3 f \text{Ci}\left (\frac{4 c f}{d}+4 f x\right ) \sin \left (4 e-\frac{4 c f}{d}\right )}{4 a^3 d^2}+\frac{3 f \cos \left (4 e-\frac{4 c f}{d}\right ) \text{Si}\left (\frac{4 c f}{d}+4 f x\right )}{4 a^3 d^2}\right )-\frac{3 f \cos \left (6 e-\frac{6 c f}{d}\right ) \text{Si}\left (\frac{6 c f}{d}+6 f x\right )}{16 a^3 d^2}+\frac{3 i f \sin \left (6 e-\frac{6 c f}{d}\right ) \text{Si}\left (\frac{6 c f}{d}+6 f x\right )}{16 a^3 d^2}-\frac{\left (9 i f \cos \left (6 e-\frac{6 c f}{d}\right )\right ) \int \frac{\cos \left (\frac{6 c f}{d}+6 f x\right )}{c+d x} \, dx}{16 a^3 d}-\frac{\left (9 f \cos \left (6 e-\frac{6 c f}{d}\right )\right ) \int \frac{\sin \left (\frac{6 c f}{d}+6 f x\right )}{c+d x} \, dx}{16 a^3 d}-\frac{\left (3 i f \cos \left (2 e-\frac{2 c f}{d}\right )\right ) \int \frac{\cos \left (\frac{2 c f}{d}+2 f x\right )}{c+d x} \, dx}{16 a^3 d}+\frac{\left (3 f \cos \left (2 e-\frac{2 c f}{d}\right )\right ) \int \frac{\sin \left (\frac{2 c f}{d}+2 f x\right )}{c+d x} \, dx}{16 a^3 d}+\frac{\left (9 i f \sin \left (6 e-\frac{6 c f}{d}\right )\right ) \int \frac{\sin \left (\frac{6 c f}{d}+6 f x\right )}{c+d x} \, dx}{16 a^3 d}-\frac{\left (9 f \sin \left (6 e-\frac{6 c f}{d}\right )\right ) \int \frac{\cos \left (\frac{6 c f}{d}+6 f x\right )}{c+d x} \, dx}{16 a^3 d}+\frac{\left (3 i f \sin \left (2 e-\frac{2 c f}{d}\right )\right ) \int \frac{\sin \left (\frac{2 c f}{d}+2 f x\right )}{c+d x} \, dx}{16 a^3 d}+\frac{\left (3 f \sin \left (2 e-\frac{2 c f}{d}\right )\right ) \int \frac{\cos \left (\frac{2 c f}{d}+2 f x\right )}{c+d x} \, dx}{16 a^3 d}\\ &=-\frac{1}{8 a^3 d (c+d x)}-\frac{9 \cos (2 e+2 f x)}{32 a^3 d (c+d x)}-\frac{3 \cos ^2(2 e+2 f x)}{8 a^3 d (c+d x)}-\frac{\cos ^3(2 e+2 f x)}{8 a^3 d (c+d x)}-\frac{3 \cos (6 e+6 f x)}{32 a^3 d (c+d x)}-\frac{3 i f \cos \left (2 e-\frac{2 c f}{d}\right ) \text{Ci}\left (\frac{2 c f}{d}+2 f x\right )}{4 a^3 d^2}-\frac{3 i f \cos \left (4 e-\frac{4 c f}{d}\right ) \text{Ci}\left (\frac{4 c f}{d}+4 f x\right )}{2 a^3 d^2}-\frac{3 i f \cos \left (6 e-\frac{6 c f}{d}\right ) \text{Ci}\left (\frac{6 c f}{d}+6 f x\right )}{4 a^3 d^2}-\frac{3 f \text{Ci}\left (\frac{6 c f}{d}+6 f x\right ) \sin \left (6 e-\frac{6 c f}{d}\right )}{4 a^3 d^2}-\frac{3 f \text{Ci}\left (\frac{2 c f}{d}+2 f x\right ) \sin \left (2 e-\frac{2 c f}{d}\right )}{4 a^3 d^2}+\frac{15 i \sin (2 e+2 f x)}{32 a^3 d (c+d x)}+\frac{3 \sin ^2(2 e+2 f x)}{8 a^3 d (c+d x)}-\frac{i \sin ^3(2 e+2 f x)}{8 a^3 d (c+d x)}+\frac{3 i \sin (4 e+4 f x)}{8 a^3 d (c+d x)}+\frac{3 i \sin (6 e+6 f x)}{32 a^3 d (c+d x)}-\frac{3 f \cos \left (2 e-\frac{2 c f}{d}\right ) \text{Si}\left (\frac{2 c f}{d}+2 f x\right )}{4 a^3 d^2}+\frac{3 i f \sin \left (2 e-\frac{2 c f}{d}\right ) \text{Si}\left (\frac{2 c f}{d}+2 f x\right )}{4 a^3 d^2}+\frac{3 i f \sin \left (4 e-\frac{4 c f}{d}\right ) \text{Si}\left (\frac{4 c f}{d}+4 f x\right )}{2 a^3 d^2}-2 \left (\frac{3 f \text{Ci}\left (\frac{4 c f}{d}+4 f x\right ) \sin \left (4 e-\frac{4 c f}{d}\right )}{4 a^3 d^2}+\frac{3 f \cos \left (4 e-\frac{4 c f}{d}\right ) \text{Si}\left (\frac{4 c f}{d}+4 f x\right )}{4 a^3 d^2}\right )-\frac{3 f \cos \left (6 e-\frac{6 c f}{d}\right ) \text{Si}\left (\frac{6 c f}{d}+6 f x\right )}{4 a^3 d^2}+\frac{3 i f \sin \left (6 e-\frac{6 c f}{d}\right ) \text{Si}\left (\frac{6 c f}{d}+6 f x\right )}{4 a^3 d^2}\\ \end{align*}

Mathematica [A]  time = 2.80523, size = 833, normalized size = 1.17 $\frac{\sec ^3(e+f x) \left (\sin \left (\frac{3 c f}{d}\right )-i \cos \left (\frac{3 c f}{d}\right )\right ) \left (3 d \cos \left (e+f \left (x-\frac{3 c}{d}\right )\right )+d \cos \left (3 \left (e+f \left (x-\frac{c}{d}\right )\right )\right )+d \cos \left (3 \left (e+f \left (\frac{c}{d}+x\right )\right )\right )+3 d \cos \left (e+f \left (\frac{3 c}{d}+x\right )\right )+6 i c f \cos \left (3 e-\frac{3 f (c+d x)}{d}\right ) \text{CosIntegral}\left (\frac{6 f (c+d x)}{d}\right )+6 i d f x \cos \left (3 e-\frac{3 f (c+d x)}{d}\right ) \text{CosIntegral}\left (\frac{6 f (c+d x)}{d}\right )+6 i f (c+d x) \text{CosIntegral}\left (\frac{2 f (c+d x)}{d}\right ) \left (\cos \left (e-\frac{c f}{d}+3 f x\right )+i \sin \left (e-\frac{c f}{d}+3 f x\right )\right )+3 i d \sin \left (e+f \left (x-\frac{3 c}{d}\right )\right )+i d \sin \left (3 \left (e+f \left (x-\frac{c}{d}\right )\right )\right )-i d \sin \left (3 \left (e+f \left (\frac{c}{d}+x\right )\right )\right )-3 i d \sin \left (e+f \left (\frac{3 c}{d}+x\right )\right )+6 c f \text{CosIntegral}\left (\frac{6 f (c+d x)}{d}\right ) \sin \left (3 e-\frac{3 f (c+d x)}{d}\right )+6 d f x \text{CosIntegral}\left (\frac{6 f (c+d x)}{d}\right ) \sin \left (3 e-\frac{3 f (c+d x)}{d}\right )+12 f (c+d x) \text{CosIntegral}\left (\frac{4 f (c+d x)}{d}\right ) \left (i \cos \left (e-\frac{f (c+3 d x)}{d}\right )+\sin \left (e-\frac{f (c+3 d x)}{d}\right )\right )+6 c f \cos \left (e-\frac{c f}{d}+3 f x\right ) \text{Si}\left (\frac{2 f (c+d x)}{d}\right )+6 d f x \cos \left (e-\frac{c f}{d}+3 f x\right ) \text{Si}\left (\frac{2 f (c+d x)}{d}\right )+6 i c f \sin \left (e-\frac{c f}{d}+3 f x\right ) \text{Si}\left (\frac{2 f (c+d x)}{d}\right )+6 i d f x \sin \left (e-\frac{c f}{d}+3 f x\right ) \text{Si}\left (\frac{2 f (c+d x)}{d}\right )+12 c f \cos \left (e-\frac{f (c+3 d x)}{d}\right ) \text{Si}\left (\frac{4 f (c+d x)}{d}\right )+12 d f x \cos \left (e-\frac{f (c+3 d x)}{d}\right ) \text{Si}\left (\frac{4 f (c+d x)}{d}\right )-12 i c f \sin \left (e-\frac{f (c+3 d x)}{d}\right ) \text{Si}\left (\frac{4 f (c+d x)}{d}\right )-12 i d f x \sin \left (e-\frac{f (c+3 d x)}{d}\right ) \text{Si}\left (\frac{4 f (c+d x)}{d}\right )+6 c f \cos \left (3 e-\frac{3 f (c+d x)}{d}\right ) \text{Si}\left (\frac{6 f (c+d x)}{d}\right )+6 d f x \cos \left (3 e-\frac{3 f (c+d x)}{d}\right ) \text{Si}\left (\frac{6 f (c+d x)}{d}\right )-6 i c f \sin \left (3 e-\frac{3 f (c+d x)}{d}\right ) \text{Si}\left (\frac{6 f (c+d x)}{d}\right )-6 i d f x \sin \left (3 e-\frac{3 f (c+d x)}{d}\right ) \text{Si}\left (\frac{6 f (c+d x)}{d}\right )\right )}{8 a^3 d^2 (c+d x) (\tan (e+f x)-i)^3}$

Warning: Unable to verify antiderivative.

[In]

Integrate[1/((c + d*x)^2*(a + I*a*Tan[e + f*x])^3),x]

[Out]

(Sec[e + f*x]^3*((-I)*Cos[(3*c*f)/d] + Sin[(3*c*f)/d])*(3*d*Cos[e + f*((-3*c)/d + x)] + d*Cos[3*(e + f*(-(c/d)
+ x))] + d*Cos[3*(e + f*(c/d + x))] + 3*d*Cos[e + f*((3*c)/d + x)] + (6*I)*c*f*Cos[3*e - (3*f*(c + d*x))/d]*C
osIntegral[(6*f*(c + d*x))/d] + (6*I)*d*f*x*Cos[3*e - (3*f*(c + d*x))/d]*CosIntegral[(6*f*(c + d*x))/d] + (6*I
)*f*(c + d*x)*CosIntegral[(2*f*(c + d*x))/d]*(Cos[e - (c*f)/d + 3*f*x] + I*Sin[e - (c*f)/d + 3*f*x]) + (3*I)*d
*Sin[e + f*((-3*c)/d + x)] + I*d*Sin[3*(e + f*(-(c/d) + x))] - I*d*Sin[3*(e + f*(c/d + x))] - (3*I)*d*Sin[e +
f*((3*c)/d + x)] + 6*c*f*CosIntegral[(6*f*(c + d*x))/d]*Sin[3*e - (3*f*(c + d*x))/d] + 6*d*f*x*CosIntegral[(6*
f*(c + d*x))/d]*Sin[3*e - (3*f*(c + d*x))/d] + 12*f*(c + d*x)*CosIntegral[(4*f*(c + d*x))/d]*(I*Cos[e - (f*(c
+ 3*d*x))/d] + Sin[e - (f*(c + 3*d*x))/d]) + 6*c*f*Cos[e - (c*f)/d + 3*f*x]*SinIntegral[(2*f*(c + d*x))/d] + 6
*d*f*x*Cos[e - (c*f)/d + 3*f*x]*SinIntegral[(2*f*(c + d*x))/d] + (6*I)*c*f*Sin[e - (c*f)/d + 3*f*x]*SinIntegra
l[(2*f*(c + d*x))/d] + (6*I)*d*f*x*Sin[e - (c*f)/d + 3*f*x]*SinIntegral[(2*f*(c + d*x))/d] + 12*c*f*Cos[e - (f
*(c + 3*d*x))/d]*SinIntegral[(4*f*(c + d*x))/d] + 12*d*f*x*Cos[e - (f*(c + 3*d*x))/d]*SinIntegral[(4*f*(c + d*
x))/d] - (12*I)*c*f*Sin[e - (f*(c + 3*d*x))/d]*SinIntegral[(4*f*(c + d*x))/d] - (12*I)*d*f*x*Sin[e - (f*(c + 3
*d*x))/d]*SinIntegral[(4*f*(c + d*x))/d] + 6*c*f*Cos[3*e - (3*f*(c + d*x))/d]*SinIntegral[(6*f*(c + d*x))/d] +
6*d*f*x*Cos[3*e - (3*f*(c + d*x))/d]*SinIntegral[(6*f*(c + d*x))/d] - (6*I)*c*f*Sin[3*e - (3*f*(c + d*x))/d]*
SinIntegral[(6*f*(c + d*x))/d] - (6*I)*d*f*x*Sin[3*e - (3*f*(c + d*x))/d]*SinIntegral[(6*f*(c + d*x))/d]))/(8*
a^3*d^2*(c + d*x)*(-I + Tan[e + f*x])^3)

________________________________________________________________________________________

Maple [A]  time = 0.142, size = 787, normalized size = 1.1 \begin{align*} \text{result too large to display} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

int(1/(d*x+c)^2/(a+I*a*tan(f*x+e))^3,x)

[Out]

1/a^3/f*(-1/48*I*f^2*(-6*sin(6*f*x+6*e)/((f*x+e)*d+c*f-d*e)/d+6*(6*Si(6*f*x+6*e+6*(c*f-d*e)/d)*sin(6*(c*f-d*e)
/d)/d+6*Ci(6*f*x+6*e+6*(c*f-d*e)/d)*cos(6*(c*f-d*e)/d)/d)/d)-3/32*I*f^2*(-4*sin(4*f*x+4*e)/((f*x+e)*d+c*f-d*e)
/d+4*(4*Si(4*f*x+4*e+4*(c*f-d*e)/d)*sin(4*(c*f-d*e)/d)/d+4*Ci(4*f*x+4*e+4*(c*f-d*e)/d)*cos(4*(c*f-d*e)/d)/d)/d
)-3/16*I*f^2*(-2*sin(2*f*x+2*e)/((f*x+e)*d+c*f-d*e)/d+2*(2*Si(2*f*x+2*e+2*(c*f-d*e)/d)*sin(2*(c*f-d*e)/d)/d+2*
Ci(2*f*x+2*e+2*(c*f-d*e)/d)*cos(2*(c*f-d*e)/d)/d)/d)+1/48*f^2*(-6*cos(6*f*x+6*e)/((f*x+e)*d+c*f-d*e)/d-6*(6*Si
(6*f*x+6*e+6*(c*f-d*e)/d)*cos(6*(c*f-d*e)/d)/d-6*Ci(6*f*x+6*e+6*(c*f-d*e)/d)*sin(6*(c*f-d*e)/d)/d)/d)+3/32*f^2
*(-4*cos(4*f*x+4*e)/((f*x+e)*d+c*f-d*e)/d-4*(4*Si(4*f*x+4*e+4*(c*f-d*e)/d)*cos(4*(c*f-d*e)/d)/d-4*Ci(4*f*x+4*e
+4*(c*f-d*e)/d)*sin(4*(c*f-d*e)/d)/d)/d)+3/16*f^2*(-2*cos(2*f*x+2*e)/((f*x+e)*d+c*f-d*e)/d-2*(2*Si(2*f*x+2*e+2
*(c*f-d*e)/d)*cos(2*(c*f-d*e)/d)/d-2*Ci(2*f*x+2*e+2*(c*f-d*e)/d)*sin(2*(c*f-d*e)/d)/d)/d)-1/8*f^2/((f*x+e)*d+c
*f-d*e)/d)

________________________________________________________________________________________

Maxima [A]  time = 1.78887, size = 397, normalized size = 0.56 \begin{align*} -\frac{8192 \, f^{2} \cos \left (-\frac{6 \,{\left (d e - c f\right )}}{d}\right ) E_{2}\left (\frac{6 i \,{\left (f x + e\right )} d - 6 i \, d e + 6 i \, c f}{d}\right ) + 24576 \, f^{2} \cos \left (-\frac{4 \,{\left (d e - c f\right )}}{d}\right ) E_{2}\left (\frac{4 i \,{\left (f x + e\right )} d - 4 i \, d e + 4 i \, c f}{d}\right ) + 24576 \, f^{2} \cos \left (-\frac{2 \,{\left (d e - c f\right )}}{d}\right ) E_{2}\left (\frac{2 i \,{\left (f x + e\right )} d - 2 i \, d e + 2 i \, c f}{d}\right ) + 24576 i \, f^{2} E_{2}\left (\frac{2 i \,{\left (f x + e\right )} d - 2 i \, d e + 2 i \, c f}{d}\right ) \sin \left (-\frac{2 \,{\left (d e - c f\right )}}{d}\right ) + 24576 i \, f^{2} E_{2}\left (\frac{4 i \,{\left (f x + e\right )} d - 4 i \, d e + 4 i \, c f}{d}\right ) \sin \left (-\frac{4 \,{\left (d e - c f\right )}}{d}\right ) + 8192 i \, f^{2} E_{2}\left (\frac{6 i \,{\left (f x + e\right )} d - 6 i \, d e + 6 i \, c f}{d}\right ) \sin \left (-\frac{6 \,{\left (d e - c f\right )}}{d}\right ) + 8192 \, f^{2}}{65536 \,{\left ({\left (f x + e\right )} a^{3} d^{2} - a^{3} d^{2} e + a^{3} c d f\right )} f} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(d*x+c)^2/(a+I*a*tan(f*x+e))^3,x, algorithm="maxima")

[Out]

-1/65536*(8192*f^2*cos(-6*(d*e - c*f)/d)*exp_integral_e(2, (6*I*(f*x + e)*d - 6*I*d*e + 6*I*c*f)/d) + 24576*f^
2*cos(-4*(d*e - c*f)/d)*exp_integral_e(2, (4*I*(f*x + e)*d - 4*I*d*e + 4*I*c*f)/d) + 24576*f^2*cos(-2*(d*e - c
*f)/d)*exp_integral_e(2, (2*I*(f*x + e)*d - 2*I*d*e + 2*I*c*f)/d) + 24576*I*f^2*exp_integral_e(2, (2*I*(f*x +
e)*d - 2*I*d*e + 2*I*c*f)/d)*sin(-2*(d*e - c*f)/d) + 24576*I*f^2*exp_integral_e(2, (4*I*(f*x + e)*d - 4*I*d*e
+ 4*I*c*f)/d)*sin(-4*(d*e - c*f)/d) + 8192*I*f^2*exp_integral_e(2, (6*I*(f*x + e)*d - 6*I*d*e + 6*I*c*f)/d)*si
n(-6*(d*e - c*f)/d) + 8192*f^2)/(((f*x + e)*a^3*d^2 - a^3*d^2*e + a^3*c*d*f)*f)

________________________________________________________________________________________

Fricas [A]  time = 1.62105, size = 509, normalized size = 0.71 \begin{align*} \frac{{\left ({\left ({\left (-6 i \, d f x - 6 i \, c f\right )}{\rm Ei}\left (\frac{-2 i \, d f x - 2 i \, c f}{d}\right ) e^{\left (\frac{-2 i \, d e + 2 i \, c f}{d}\right )} +{\left (-12 i \, d f x - 12 i \, c f\right )}{\rm Ei}\left (\frac{-4 i \, d f x - 4 i \, c f}{d}\right ) e^{\left (\frac{-4 i \, d e + 4 i \, c f}{d}\right )} +{\left (-6 i \, d f x - 6 i \, c f\right )}{\rm Ei}\left (\frac{-6 i \, d f x - 6 i \, c f}{d}\right ) e^{\left (\frac{-6 i \, d e + 6 i \, c f}{d}\right )} - d\right )} e^{\left (6 i \, f x + 6 i \, e\right )} - 3 \, d e^{\left (4 i \, f x + 4 i \, e\right )} - 3 \, d e^{\left (2 i \, f x + 2 i \, e\right )} - d\right )} e^{\left (-6 i \, f x - 6 i \, e\right )}}{8 \,{\left (a^{3} d^{3} x + a^{3} c d^{2}\right )}} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(d*x+c)^2/(a+I*a*tan(f*x+e))^3,x, algorithm="fricas")

[Out]

1/8*(((-6*I*d*f*x - 6*I*c*f)*Ei((-2*I*d*f*x - 2*I*c*f)/d)*e^((-2*I*d*e + 2*I*c*f)/d) + (-12*I*d*f*x - 12*I*c*f
)*Ei((-4*I*d*f*x - 4*I*c*f)/d)*e^((-4*I*d*e + 4*I*c*f)/d) + (-6*I*d*f*x - 6*I*c*f)*Ei((-6*I*d*f*x - 6*I*c*f)/d
)*e^((-6*I*d*e + 6*I*c*f)/d) - d)*e^(6*I*f*x + 6*I*e) - 3*d*e^(4*I*f*x + 4*I*e) - 3*d*e^(2*I*f*x + 2*I*e) - d)
*e^(-6*I*f*x - 6*I*e)/(a^3*d^3*x + a^3*c*d^2)

________________________________________________________________________________________

Sympy [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: AttributeError} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(d*x+c)**2/(a+I*a*tan(f*x+e))**3,x)

[Out]

Exception raised: AttributeError

________________________________________________________________________________________

Giac [B]  time = 2.35632, size = 2302, normalized size = 3.23 \begin{align*} \text{result too large to display} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(d*x+c)^2/(a+I*a*tan(f*x+e))^3,x, algorithm="giac")

[Out]

1/8*(-6*I*d*f*x*cos(2*c*f/d)*cos(2*e)*cos_integral(-2*(d*f*x + c*f)/d) - 12*I*d*f*x*cos(4*c*f/d)*cos(4*e)*cos_
integral(-4*(d*f*x + c*f)/d) - 6*I*d*f*x*cos(6*c*f/d)*cos(6*e)*cos_integral(-6*(d*f*x + c*f)/d) + 6*d*f*x*cos(
6*e)*cos_integral(-6*(d*f*x + c*f)/d)*sin(6*c*f/d) + 12*d*f*x*cos(4*e)*cos_integral(-4*(d*f*x + c*f)/d)*sin(4*
c*f/d) + 6*d*f*x*cos(2*e)*cos_integral(-2*(d*f*x + c*f)/d)*sin(2*c*f/d) - 6*d*f*x*cos(6*c*f/d)*cos_integral(-6
*(d*f*x + c*f)/d)*sin(6*e) - 6*I*d*f*x*cos_integral(-6*(d*f*x + c*f)/d)*sin(6*c*f/d)*sin(6*e) - 12*d*f*x*cos(4
*c*f/d)*cos_integral(-4*(d*f*x + c*f)/d)*sin(4*e) - 12*I*d*f*x*cos_integral(-4*(d*f*x + c*f)/d)*sin(4*c*f/d)*s
in(4*e) - 6*d*f*x*cos(2*c*f/d)*cos_integral(-2*(d*f*x + c*f)/d)*sin(2*e) - 6*I*d*f*x*cos_integral(-2*(d*f*x +
c*f)/d)*sin(2*c*f/d)*sin(2*e) - 6*d*f*x*cos(6*c*f/d)*cos(6*e)*sin_integral(6*(d*f*x + c*f)/d) - 6*I*d*f*x*cos(
6*e)*sin(6*c*f/d)*sin_integral(6*(d*f*x + c*f)/d) + 6*I*d*f*x*cos(6*c*f/d)*sin(6*e)*sin_integral(6*(d*f*x + c*
f)/d) - 6*d*f*x*sin(6*c*f/d)*sin(6*e)*sin_integral(6*(d*f*x + c*f)/d) - 12*d*f*x*cos(4*c*f/d)*cos(4*e)*sin_int
egral(4*(d*f*x + c*f)/d) - 12*I*d*f*x*cos(4*e)*sin(4*c*f/d)*sin_integral(4*(d*f*x + c*f)/d) + 12*I*d*f*x*cos(4
*c*f/d)*sin(4*e)*sin_integral(4*(d*f*x + c*f)/d) - 12*d*f*x*sin(4*c*f/d)*sin(4*e)*sin_integral(4*(d*f*x + c*f)
/d) - 6*d*f*x*cos(2*c*f/d)*cos(2*e)*sin_integral(2*(d*f*x + c*f)/d) - 6*I*d*f*x*cos(2*e)*sin(2*c*f/d)*sin_inte
gral(2*(d*f*x + c*f)/d) + 6*I*d*f*x*cos(2*c*f/d)*sin(2*e)*sin_integral(2*(d*f*x + c*f)/d) - 6*d*f*x*sin(2*c*f/
d)*sin(2*e)*sin_integral(2*(d*f*x + c*f)/d) - 6*I*c*f*cos(2*c*f/d)*cos(2*e)*cos_integral(-2*(d*f*x + c*f)/d) -
12*I*c*f*cos(4*c*f/d)*cos(4*e)*cos_integral(-4*(d*f*x + c*f)/d) - 6*I*c*f*cos(6*c*f/d)*cos(6*e)*cos_integral(
-6*(d*f*x + c*f)/d) + 6*c*f*cos(6*e)*cos_integral(-6*(d*f*x + c*f)/d)*sin(6*c*f/d) + 12*c*f*cos(4*e)*cos_integ
ral(-4*(d*f*x + c*f)/d)*sin(4*c*f/d) + 6*c*f*cos(2*e)*cos_integral(-2*(d*f*x + c*f)/d)*sin(2*c*f/d) - 6*c*f*co
s(6*c*f/d)*cos_integral(-6*(d*f*x + c*f)/d)*sin(6*e) - 6*I*c*f*cos_integral(-6*(d*f*x + c*f)/d)*sin(6*c*f/d)*s
in(6*e) - 12*c*f*cos(4*c*f/d)*cos_integral(-4*(d*f*x + c*f)/d)*sin(4*e) - 12*I*c*f*cos_integral(-4*(d*f*x + c*
f)/d)*sin(4*c*f/d)*sin(4*e) - 6*c*f*cos(2*c*f/d)*cos_integral(-2*(d*f*x + c*f)/d)*sin(2*e) - 6*I*c*f*cos_integ
ral(-2*(d*f*x + c*f)/d)*sin(2*c*f/d)*sin(2*e) - 6*c*f*cos(6*c*f/d)*cos(6*e)*sin_integral(6*(d*f*x + c*f)/d) -
6*I*c*f*cos(6*e)*sin(6*c*f/d)*sin_integral(6*(d*f*x + c*f)/d) + 6*I*c*f*cos(6*c*f/d)*sin(6*e)*sin_integral(6*(
d*f*x + c*f)/d) - 6*c*f*sin(6*c*f/d)*sin(6*e)*sin_integral(6*(d*f*x + c*f)/d) - 12*c*f*cos(4*c*f/d)*cos(4*e)*s
in_integral(4*(d*f*x + c*f)/d) - 12*I*c*f*cos(4*e)*sin(4*c*f/d)*sin_integral(4*(d*f*x + c*f)/d) + 12*I*c*f*cos
(4*c*f/d)*sin(4*e)*sin_integral(4*(d*f*x + c*f)/d) - 12*c*f*sin(4*c*f/d)*sin(4*e)*sin_integral(4*(d*f*x + c*f)
/d) - 6*c*f*cos(2*c*f/d)*cos(2*e)*sin_integral(2*(d*f*x + c*f)/d) - 6*I*c*f*cos(2*e)*sin(2*c*f/d)*sin_integral
(2*(d*f*x + c*f)/d) + 6*I*c*f*cos(2*c*f/d)*sin(2*e)*sin_integral(2*(d*f*x + c*f)/d) - 6*c*f*sin(2*c*f/d)*sin(2
*e)*sin_integral(2*(d*f*x + c*f)/d) - d*cos(6*f*x)*cos(6*e) - 3*d*cos(4*f*x)*cos(4*e) - 3*d*cos(2*f*x)*cos(2*e
) + I*d*cos(6*e)*sin(6*f*x) + 3*I*d*cos(4*e)*sin(4*f*x) + 3*I*d*cos(2*e)*sin(2*f*x) + I*d*cos(6*f*x)*sin(6*e)
+ d*sin(6*f*x)*sin(6*e) + 3*I*d*cos(4*f*x)*sin(4*e) + 3*d*sin(4*f*x)*sin(4*e) + 3*I*d*cos(2*f*x)*sin(2*e) + 3*
d*sin(2*f*x)*sin(2*e))/(a^3*d^3*x + a^3*c*d^2) - 1/8/((d*x + c)*a^3*d)