### 3.17 $$\int \frac{1}{a+b \cos (x)+c \cos ^2(x)} \, dx$$

Optimal. Leaf size=223 $\frac{4 c \tan ^{-1}\left (\frac{\tan \left (\frac{x}{2}\right ) \sqrt{-\sqrt{b^2-4 a c}+b-2 c}}{\sqrt{-\sqrt{b^2-4 a c}+b+2 c}}\right )}{\sqrt{b^2-4 a c} \sqrt{-\sqrt{b^2-4 a c}+b-2 c} \sqrt{-\sqrt{b^2-4 a c}+b+2 c}}-\frac{4 c \tan ^{-1}\left (\frac{\tan \left (\frac{x}{2}\right ) \sqrt{\sqrt{b^2-4 a c}+b-2 c}}{\sqrt{\sqrt{b^2-4 a c}+b+2 c}}\right )}{\sqrt{b^2-4 a c} \sqrt{\sqrt{b^2-4 a c}+b-2 c} \sqrt{\sqrt{b^2-4 a c}+b+2 c}}$

[Out]

(4*c*ArcTan[(Sqrt[b - 2*c - Sqrt[b^2 - 4*a*c]]*Tan[x/2])/Sqrt[b + 2*c - Sqrt[b^2 - 4*a*c]]])/(Sqrt[b^2 - 4*a*c
]*Sqrt[b - 2*c - Sqrt[b^2 - 4*a*c]]*Sqrt[b + 2*c - Sqrt[b^2 - 4*a*c]]) - (4*c*ArcTan[(Sqrt[b - 2*c + Sqrt[b^2
- 4*a*c]]*Tan[x/2])/Sqrt[b + 2*c + Sqrt[b^2 - 4*a*c]]])/(Sqrt[b^2 - 4*a*c]*Sqrt[b - 2*c + Sqrt[b^2 - 4*a*c]]*S
qrt[b + 2*c + Sqrt[b^2 - 4*a*c]])

________________________________________________________________________________________

Rubi [A]  time = 0.3503, antiderivative size = 223, normalized size of antiderivative = 1., number of steps used = 5, number of rules used = 3, integrand size = 14, $$\frac{\text{number of rules}}{\text{integrand size}}$$ = 0.214, Rules used = {3249, 2659, 205} $\frac{4 c \tan ^{-1}\left (\frac{\tan \left (\frac{x}{2}\right ) \sqrt{-\sqrt{b^2-4 a c}+b-2 c}}{\sqrt{-\sqrt{b^2-4 a c}+b+2 c}}\right )}{\sqrt{b^2-4 a c} \sqrt{-\sqrt{b^2-4 a c}+b-2 c} \sqrt{-\sqrt{b^2-4 a c}+b+2 c}}-\frac{4 c \tan ^{-1}\left (\frac{\tan \left (\frac{x}{2}\right ) \sqrt{\sqrt{b^2-4 a c}+b-2 c}}{\sqrt{\sqrt{b^2-4 a c}+b+2 c}}\right )}{\sqrt{b^2-4 a c} \sqrt{\sqrt{b^2-4 a c}+b-2 c} \sqrt{\sqrt{b^2-4 a c}+b+2 c}}$

Antiderivative was successfully veriﬁed.

[In]

Int[(a + b*Cos[x] + c*Cos[x]^2)^(-1),x]

[Out]

(4*c*ArcTan[(Sqrt[b - 2*c - Sqrt[b^2 - 4*a*c]]*Tan[x/2])/Sqrt[b + 2*c - Sqrt[b^2 - 4*a*c]]])/(Sqrt[b^2 - 4*a*c
]*Sqrt[b - 2*c - Sqrt[b^2 - 4*a*c]]*Sqrt[b + 2*c - Sqrt[b^2 - 4*a*c]]) - (4*c*ArcTan[(Sqrt[b - 2*c + Sqrt[b^2
- 4*a*c]]*Tan[x/2])/Sqrt[b + 2*c + Sqrt[b^2 - 4*a*c]]])/(Sqrt[b^2 - 4*a*c]*Sqrt[b - 2*c + Sqrt[b^2 - 4*a*c]]*S
qrt[b + 2*c + Sqrt[b^2 - 4*a*c]])

Rule 3249

Int[((a_.) + cos[(d_.) + (e_.)*(x_)]^(n_.)*(b_.) + cos[(d_.) + (e_.)*(x_)]^(n2_.)*(c_.))^(-1), x_Symbol] :> Mo
dule[{q = Rt[b^2 - 4*a*c, 2]}, Dist[(2*c)/q, Int[1/(b - q + 2*c*Cos[d + e*x]^n), x], x] - Dist[(2*c)/q, Int[1/
(b + q + 2*c*Cos[d + e*x]^n), x], x]] /; FreeQ[{a, b, c, d, e, n}, x] && EqQ[n2, 2*n] && NeQ[b^2 - 4*a*c, 0]

Rule 2659

Int[((a_) + (b_.)*sin[Pi/2 + (c_.) + (d_.)*(x_)])^(-1), x_Symbol] :> With[{e = FreeFactors[Tan[(c + d*x)/2], x
]}, Dist[(2*e)/d, Subst[Int[1/(a + b + (a - b)*e^2*x^2), x], x, Tan[(c + d*x)/2]/e], x]] /; FreeQ[{a, b, c, d}
, x] && NeQ[a^2 - b^2, 0]

Rule 205

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]*ArcTan[x/Rt[a/b, 2]])/a, x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rubi steps

\begin{align*} \int \frac{1}{a+b \cos (x)+c \cos ^2(x)} \, dx &=\frac{(2 c) \int \frac{1}{b-\sqrt{b^2-4 a c}+2 c \cos (x)} \, dx}{\sqrt{b^2-4 a c}}-\frac{(2 c) \int \frac{1}{b+\sqrt{b^2-4 a c}+2 c \cos (x)} \, dx}{\sqrt{b^2-4 a c}}\\ &=\frac{(4 c) \operatorname{Subst}\left (\int \frac{1}{b+2 c-\sqrt{b^2-4 a c}+\left (b-2 c-\sqrt{b^2-4 a c}\right ) x^2} \, dx,x,\tan \left (\frac{x}{2}\right )\right )}{\sqrt{b^2-4 a c}}-\frac{(4 c) \operatorname{Subst}\left (\int \frac{1}{b+2 c+\sqrt{b^2-4 a c}+\left (b-2 c+\sqrt{b^2-4 a c}\right ) x^2} \, dx,x,\tan \left (\frac{x}{2}\right )\right )}{\sqrt{b^2-4 a c}}\\ &=\frac{4 c \tan ^{-1}\left (\frac{\sqrt{b-2 c-\sqrt{b^2-4 a c}} \tan \left (\frac{x}{2}\right )}{\sqrt{b+2 c-\sqrt{b^2-4 a c}}}\right )}{\sqrt{b^2-4 a c} \sqrt{b-2 c-\sqrt{b^2-4 a c}} \sqrt{b+2 c-\sqrt{b^2-4 a c}}}-\frac{4 c \tan ^{-1}\left (\frac{\sqrt{b-2 c+\sqrt{b^2-4 a c}} \tan \left (\frac{x}{2}\right )}{\sqrt{b+2 c+\sqrt{b^2-4 a c}}}\right )}{\sqrt{b^2-4 a c} \sqrt{b-2 c+\sqrt{b^2-4 a c}} \sqrt{b+2 c+\sqrt{b^2-4 a c}}}\\ \end{align*}

Mathematica [A]  time = 0.397887, size = 198, normalized size = 0.89 $\frac{2 \sqrt{2} c \left (\frac{\tanh ^{-1}\left (\frac{\tan \left (\frac{x}{2}\right ) \left (\sqrt{b^2-4 a c}+b-2 c\right )}{\sqrt{-2 b \sqrt{b^2-4 a c}+4 c (a+c)-2 b^2}}\right )}{\sqrt{-b \sqrt{b^2-4 a c}+2 c (a+c)-b^2}}+\frac{\tanh ^{-1}\left (\frac{\tan \left (\frac{x}{2}\right ) \left (\sqrt{b^2-4 a c}-b+2 c\right )}{\sqrt{2 b \sqrt{b^2-4 a c}+4 c (a+c)-2 b^2}}\right )}{\sqrt{b \sqrt{b^2-4 a c}+2 c (a+c)-b^2}}\right )}{\sqrt{b^2-4 a c}}$

Antiderivative was successfully veriﬁed.

[In]

Integrate[(a + b*Cos[x] + c*Cos[x]^2)^(-1),x]

[Out]

(2*Sqrt[2]*c*(ArcTanh[((b - 2*c + Sqrt[b^2 - 4*a*c])*Tan[x/2])/Sqrt[-2*b^2 + 4*c*(a + c) - 2*b*Sqrt[b^2 - 4*a*
c]]]/Sqrt[-b^2 + 2*c*(a + c) - b*Sqrt[b^2 - 4*a*c]] + ArcTanh[((-b + 2*c + Sqrt[b^2 - 4*a*c])*Tan[x/2])/Sqrt[-
2*b^2 + 4*c*(a + c) + 2*b*Sqrt[b^2 - 4*a*c]]]/Sqrt[-b^2 + 2*c*(a + c) + b*Sqrt[b^2 - 4*a*c]]))/Sqrt[b^2 - 4*a*
c]

________________________________________________________________________________________

Maple [B]  time = 0.035, size = 1262, normalized size = 5.7 \begin{align*} \text{result too large to display} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

int(1/(a+b*cos(x)+c*cos(x)^2),x)

[Out]

1/(-4*a*c+b^2)^(1/2)/(a-b+c)/(((-4*a*c+b^2)^(1/2)+a-c)*(a-b+c))^(1/2)*arctan((a-b+c)*tan(1/2*x)/(((-4*a*c+b^2)
^(1/2)+a-c)*(a-b+c))^(1/2))*a*b-2/(-4*a*c+b^2)^(1/2)/(a-b+c)/(((-4*a*c+b^2)^(1/2)+a-c)*(a-b+c))^(1/2)*arctan((
a-b+c)*tan(1/2*x)/(((-4*a*c+b^2)^(1/2)+a-c)*(a-b+c))^(1/2))*a*c+1/(a-b+c)/(((-4*a*c+b^2)^(1/2)+a-c)*(a-b+c))^(
1/2)*arctan((a-b+c)*tan(1/2*x)/(((-4*a*c+b^2)^(1/2)+a-c)*(a-b+c))^(1/2))*a+1/(a-b+c)/(((-4*a*c+b^2)^(1/2)-a+c)
*(a-b+c))^(1/2)*arctanh((-a+b-c)*tan(1/2*x)/(((-4*a*c+b^2)^(1/2)-a+c)*(a-b+c))^(1/2))*a+2/(-4*a*c+b^2)^(1/2)/(
a-b+c)/(((-4*a*c+b^2)^(1/2)-a+c)*(a-b+c))^(1/2)*arctanh((-a+b-c)*tan(1/2*x)/(((-4*a*c+b^2)^(1/2)-a+c)*(a-b+c))
^(1/2))*a*c-1/(-4*a*c+b^2)^(1/2)/(a-b+c)/(((-4*a*c+b^2)^(1/2)-a+c)*(a-b+c))^(1/2)*arctanh((-a+b-c)*tan(1/2*x)/
(((-4*a*c+b^2)^(1/2)-a+c)*(a-b+c))^(1/2))*a*b-1/(-4*a*c+b^2)^(1/2)/(a-b+c)/(((-4*a*c+b^2)^(1/2)+a-c)*(a-b+c))^
(1/2)*arctan((a-b+c)*tan(1/2*x)/(((-4*a*c+b^2)^(1/2)+a-c)*(a-b+c))^(1/2))*b^2+3*c/(-4*a*c+b^2)^(1/2)/(a-b+c)/(
((-4*a*c+b^2)^(1/2)+a-c)*(a-b+c))^(1/2)*arctan((a-b+c)*tan(1/2*x)/(((-4*a*c+b^2)^(1/2)+a-c)*(a-b+c))^(1/2))*b-
1/(a-b+c)/(((-4*a*c+b^2)^(1/2)+a-c)*(a-b+c))^(1/2)*arctan((a-b+c)*tan(1/2*x)/(((-4*a*c+b^2)^(1/2)+a-c)*(a-b+c)
)^(1/2))*b-1/(a-b+c)/(((-4*a*c+b^2)^(1/2)-a+c)*(a-b+c))^(1/2)*arctanh((-a+b-c)*tan(1/2*x)/(((-4*a*c+b^2)^(1/2)
-a+c)*(a-b+c))^(1/2))*b-3*c/(-4*a*c+b^2)^(1/2)/(a-b+c)/(((-4*a*c+b^2)^(1/2)-a+c)*(a-b+c))^(1/2)*arctanh((-a+b-
c)*tan(1/2*x)/(((-4*a*c+b^2)^(1/2)-a+c)*(a-b+c))^(1/2))*b+1/(-4*a*c+b^2)^(1/2)/(a-b+c)/(((-4*a*c+b^2)^(1/2)-a+
c)*(a-b+c))^(1/2)*arctanh((-a+b-c)*tan(1/2*x)/(((-4*a*c+b^2)^(1/2)-a+c)*(a-b+c))^(1/2))*b^2-2/(-4*a*c+b^2)^(1/
2)/(a-b+c)/(((-4*a*c+b^2)^(1/2)+a-c)*(a-b+c))^(1/2)*arctan((a-b+c)*tan(1/2*x)/(((-4*a*c+b^2)^(1/2)+a-c)*(a-b+c
))^(1/2))*c^2+c/(a-b+c)/(((-4*a*c+b^2)^(1/2)+a-c)*(a-b+c))^(1/2)*arctan((a-b+c)*tan(1/2*x)/(((-4*a*c+b^2)^(1/2
)+a-c)*(a-b+c))^(1/2))+c/(a-b+c)/(((-4*a*c+b^2)^(1/2)-a+c)*(a-b+c))^(1/2)*arctanh((-a+b-c)*tan(1/2*x)/(((-4*a*
c+b^2)^(1/2)-a+c)*(a-b+c))^(1/2))+2/(-4*a*c+b^2)^(1/2)/(a-b+c)/(((-4*a*c+b^2)^(1/2)-a+c)*(a-b+c))^(1/2)*arctan
h((-a+b-c)*tan(1/2*x)/(((-4*a*c+b^2)^(1/2)-a+c)*(a-b+c))^(1/2))*c^2

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{c \cos \left (x\right )^{2} + b \cos \left (x\right ) + a}\,{d x} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+b*cos(x)+c*cos(x)^2),x, algorithm="maxima")

[Out]

integrate(1/(c*cos(x)^2 + b*cos(x) + a), x)

________________________________________________________________________________________

Fricas [B]  time = 3.52047, size = 7070, normalized size = 31.7 \begin{align*} \text{result too large to display} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+b*cos(x)+c*cos(x)^2),x, algorithm="fricas")

[Out]

1/4*sqrt(2)*sqrt(-(b^2 - 2*a*c - 2*c^2 - (a^2*b^2 - b^4 - 4*a*c^3 - (8*a^2 - b^2)*c^2 - 2*(2*a^3 - 3*a*b^2)*c)
*sqrt(b^2/(a^4*b^2 - 2*a^2*b^4 + b^6 - 4*a*c^5 - (16*a^2 - b^2)*c^4 - 12*(2*a^3 - a*b^2)*c^3 - 2*(8*a^4 - 11*a
^2*b^2 + b^4)*c^2 - 4*(a^5 - 3*a^3*b^2 + 2*a*b^4)*c)))/(a^2*b^2 - b^4 - 4*a*c^3 - (8*a^2 - b^2)*c^2 - 2*(2*a^3
- 3*a*b^2)*c))*log(b^2*c*cos(x) + 2*b*c^2 - (4*a*c^4 + (8*a^2 - b^2)*c^3 + 2*(2*a^3 - 3*a*b^2)*c^2 - (a^2*b^2
- b^4)*c)*sqrt(b^2/(a^4*b^2 - 2*a^2*b^4 + b^6 - 4*a*c^5 - (16*a^2 - b^2)*c^4 - 12*(2*a^3 - a*b^2)*c^3 - 2*(8*
a^4 - 11*a^2*b^2 + b^4)*c^2 - 4*(a^5 - 3*a^3*b^2 + 2*a*b^4)*c))*cos(x) + 1/2*sqrt(2)*((a^2*b^4 - b^6 + 8*a*c^5
+ 2*(12*a^2 - b^2)*c^4 + 6*(4*a^3 - 3*a*b^2)*c^3 + (8*a^4 - 22*a^2*b^2 + 3*b^4)*c^2 - 2*(3*a^3*b^2 - 4*a*b^4)
*c)*sqrt(b^2/(a^4*b^2 - 2*a^2*b^4 + b^6 - 4*a*c^5 - (16*a^2 - b^2)*c^4 - 12*(2*a^3 - a*b^2)*c^3 - 2*(8*a^4 - 1
1*a^2*b^2 + b^4)*c^2 - 4*(a^5 - 3*a^3*b^2 + 2*a*b^4)*c))*sin(x) + (b^4 - 4*a*b^2*c)*sin(x))*sqrt(-(b^2 - 2*a*c
- 2*c^2 - (a^2*b^2 - b^4 - 4*a*c^3 - (8*a^2 - b^2)*c^2 - 2*(2*a^3 - 3*a*b^2)*c)*sqrt(b^2/(a^4*b^2 - 2*a^2*b^4
+ b^6 - 4*a*c^5 - (16*a^2 - b^2)*c^4 - 12*(2*a^3 - a*b^2)*c^3 - 2*(8*a^4 - 11*a^2*b^2 + b^4)*c^2 - 4*(a^5 - 3
*a^3*b^2 + 2*a*b^4)*c)))/(a^2*b^2 - b^4 - 4*a*c^3 - (8*a^2 - b^2)*c^2 - 2*(2*a^3 - 3*a*b^2)*c))) - 1/4*sqrt(2)
*sqrt(-(b^2 - 2*a*c - 2*c^2 - (a^2*b^2 - b^4 - 4*a*c^3 - (8*a^2 - b^2)*c^2 - 2*(2*a^3 - 3*a*b^2)*c)*sqrt(b^2/(
a^4*b^2 - 2*a^2*b^4 + b^6 - 4*a*c^5 - (16*a^2 - b^2)*c^4 - 12*(2*a^3 - a*b^2)*c^3 - 2*(8*a^4 - 11*a^2*b^2 + b^
4)*c^2 - 4*(a^5 - 3*a^3*b^2 + 2*a*b^4)*c)))/(a^2*b^2 - b^4 - 4*a*c^3 - (8*a^2 - b^2)*c^2 - 2*(2*a^3 - 3*a*b^2)
*c))*log(b^2*c*cos(x) + 2*b*c^2 - (4*a*c^4 + (8*a^2 - b^2)*c^3 + 2*(2*a^3 - 3*a*b^2)*c^2 - (a^2*b^2 - b^4)*c)*
sqrt(b^2/(a^4*b^2 - 2*a^2*b^4 + b^6 - 4*a*c^5 - (16*a^2 - b^2)*c^4 - 12*(2*a^3 - a*b^2)*c^3 - 2*(8*a^4 - 11*a^
2*b^2 + b^4)*c^2 - 4*(a^5 - 3*a^3*b^2 + 2*a*b^4)*c))*cos(x) - 1/2*sqrt(2)*((a^2*b^4 - b^6 + 8*a*c^5 + 2*(12*a^
2 - b^2)*c^4 + 6*(4*a^3 - 3*a*b^2)*c^3 + (8*a^4 - 22*a^2*b^2 + 3*b^4)*c^2 - 2*(3*a^3*b^2 - 4*a*b^4)*c)*sqrt(b^
2/(a^4*b^2 - 2*a^2*b^4 + b^6 - 4*a*c^5 - (16*a^2 - b^2)*c^4 - 12*(2*a^3 - a*b^2)*c^3 - 2*(8*a^4 - 11*a^2*b^2 +
b^4)*c^2 - 4*(a^5 - 3*a^3*b^2 + 2*a*b^4)*c))*sin(x) + (b^4 - 4*a*b^2*c)*sin(x))*sqrt(-(b^2 - 2*a*c - 2*c^2 -
(a^2*b^2 - b^4 - 4*a*c^3 - (8*a^2 - b^2)*c^2 - 2*(2*a^3 - 3*a*b^2)*c)*sqrt(b^2/(a^4*b^2 - 2*a^2*b^4 + b^6 - 4*
a*c^5 - (16*a^2 - b^2)*c^4 - 12*(2*a^3 - a*b^2)*c^3 - 2*(8*a^4 - 11*a^2*b^2 + b^4)*c^2 - 4*(a^5 - 3*a^3*b^2 +
2*a*b^4)*c)))/(a^2*b^2 - b^4 - 4*a*c^3 - (8*a^2 - b^2)*c^2 - 2*(2*a^3 - 3*a*b^2)*c))) + 1/4*sqrt(2)*sqrt(-(b^2
- 2*a*c - 2*c^2 + (a^2*b^2 - b^4 - 4*a*c^3 - (8*a^2 - b^2)*c^2 - 2*(2*a^3 - 3*a*b^2)*c)*sqrt(b^2/(a^4*b^2 - 2
*a^2*b^4 + b^6 - 4*a*c^5 - (16*a^2 - b^2)*c^4 - 12*(2*a^3 - a*b^2)*c^3 - 2*(8*a^4 - 11*a^2*b^2 + b^4)*c^2 - 4*
(a^5 - 3*a^3*b^2 + 2*a*b^4)*c)))/(a^2*b^2 - b^4 - 4*a*c^3 - (8*a^2 - b^2)*c^2 - 2*(2*a^3 - 3*a*b^2)*c))*log(-b
^2*c*cos(x) - 2*b*c^2 - (4*a*c^4 + (8*a^2 - b^2)*c^3 + 2*(2*a^3 - 3*a*b^2)*c^2 - (a^2*b^2 - b^4)*c)*sqrt(b^2/(
a^4*b^2 - 2*a^2*b^4 + b^6 - 4*a*c^5 - (16*a^2 - b^2)*c^4 - 12*(2*a^3 - a*b^2)*c^3 - 2*(8*a^4 - 11*a^2*b^2 + b^
4)*c^2 - 4*(a^5 - 3*a^3*b^2 + 2*a*b^4)*c))*cos(x) + 1/2*sqrt(2)*((a^2*b^4 - b^6 + 8*a*c^5 + 2*(12*a^2 - b^2)*c
^4 + 6*(4*a^3 - 3*a*b^2)*c^3 + (8*a^4 - 22*a^2*b^2 + 3*b^4)*c^2 - 2*(3*a^3*b^2 - 4*a*b^4)*c)*sqrt(b^2/(a^4*b^2
- 2*a^2*b^4 + b^6 - 4*a*c^5 - (16*a^2 - b^2)*c^4 - 12*(2*a^3 - a*b^2)*c^3 - 2*(8*a^4 - 11*a^2*b^2 + b^4)*c^2
- 4*(a^5 - 3*a^3*b^2 + 2*a*b^4)*c))*sin(x) - (b^4 - 4*a*b^2*c)*sin(x))*sqrt(-(b^2 - 2*a*c - 2*c^2 + (a^2*b^2 -
b^4 - 4*a*c^3 - (8*a^2 - b^2)*c^2 - 2*(2*a^3 - 3*a*b^2)*c)*sqrt(b^2/(a^4*b^2 - 2*a^2*b^4 + b^6 - 4*a*c^5 - (1
6*a^2 - b^2)*c^4 - 12*(2*a^3 - a*b^2)*c^3 - 2*(8*a^4 - 11*a^2*b^2 + b^4)*c^2 - 4*(a^5 - 3*a^3*b^2 + 2*a*b^4)*c
)))/(a^2*b^2 - b^4 - 4*a*c^3 - (8*a^2 - b^2)*c^2 - 2*(2*a^3 - 3*a*b^2)*c))) - 1/4*sqrt(2)*sqrt(-(b^2 - 2*a*c -
2*c^2 + (a^2*b^2 - b^4 - 4*a*c^3 - (8*a^2 - b^2)*c^2 - 2*(2*a^3 - 3*a*b^2)*c)*sqrt(b^2/(a^4*b^2 - 2*a^2*b^4 +
b^6 - 4*a*c^5 - (16*a^2 - b^2)*c^4 - 12*(2*a^3 - a*b^2)*c^3 - 2*(8*a^4 - 11*a^2*b^2 + b^4)*c^2 - 4*(a^5 - 3*a
^3*b^2 + 2*a*b^4)*c)))/(a^2*b^2 - b^4 - 4*a*c^3 - (8*a^2 - b^2)*c^2 - 2*(2*a^3 - 3*a*b^2)*c))*log(-b^2*c*cos(x
) - 2*b*c^2 - (4*a*c^4 + (8*a^2 - b^2)*c^3 + 2*(2*a^3 - 3*a*b^2)*c^2 - (a^2*b^2 - b^4)*c)*sqrt(b^2/(a^4*b^2 -
2*a^2*b^4 + b^6 - 4*a*c^5 - (16*a^2 - b^2)*c^4 - 12*(2*a^3 - a*b^2)*c^3 - 2*(8*a^4 - 11*a^2*b^2 + b^4)*c^2 - 4
*(a^5 - 3*a^3*b^2 + 2*a*b^4)*c))*cos(x) - 1/2*sqrt(2)*((a^2*b^4 - b^6 + 8*a*c^5 + 2*(12*a^2 - b^2)*c^4 + 6*(4*
a^3 - 3*a*b^2)*c^3 + (8*a^4 - 22*a^2*b^2 + 3*b^4)*c^2 - 2*(3*a^3*b^2 - 4*a*b^4)*c)*sqrt(b^2/(a^4*b^2 - 2*a^2*b
^4 + b^6 - 4*a*c^5 - (16*a^2 - b^2)*c^4 - 12*(2*a^3 - a*b^2)*c^3 - 2*(8*a^4 - 11*a^2*b^2 + b^4)*c^2 - 4*(a^5 -
3*a^3*b^2 + 2*a*b^4)*c))*sin(x) - (b^4 - 4*a*b^2*c)*sin(x))*sqrt(-(b^2 - 2*a*c - 2*c^2 + (a^2*b^2 - b^4 - 4*a
*c^3 - (8*a^2 - b^2)*c^2 - 2*(2*a^3 - 3*a*b^2)*c)*sqrt(b^2/(a^4*b^2 - 2*a^2*b^4 + b^6 - 4*a*c^5 - (16*a^2 - b^
2)*c^4 - 12*(2*a^3 - a*b^2)*c^3 - 2*(8*a^4 - 11*a^2*b^2 + b^4)*c^2 - 4*(a^5 - 3*a^3*b^2 + 2*a*b^4)*c)))/(a^2*b
^2 - b^4 - 4*a*c^3 - (8*a^2 - b^2)*c^2 - 2*(2*a^3 - 3*a*b^2)*c)))

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+b*cos(x)+c*cos(x)**2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+b*cos(x)+c*cos(x)^2),x, algorithm="giac")

[Out]

Timed out