### 3.15 $$\int \frac{\cos ^2(x)}{a+b \cos (x)+c \cos ^2(x)} \, dx$$

Optimal. Leaf size=255 $-\frac{2 \left (b-\frac{b^2-2 a c}{\sqrt{b^2-4 a c}}\right ) \tan ^{-1}\left (\frac{\tan \left (\frac{x}{2}\right ) \sqrt{-\sqrt{b^2-4 a c}+b-2 c}}{\sqrt{-\sqrt{b^2-4 a c}+b+2 c}}\right )}{c \sqrt{-\sqrt{b^2-4 a c}+b-2 c} \sqrt{-\sqrt{b^2-4 a c}+b+2 c}}-\frac{2 \left (\frac{b^2-2 a c}{\sqrt{b^2-4 a c}}+b\right ) \tan ^{-1}\left (\frac{\tan \left (\frac{x}{2}\right ) \sqrt{\sqrt{b^2-4 a c}+b-2 c}}{\sqrt{\sqrt{b^2-4 a c}+b+2 c}}\right )}{c \sqrt{\sqrt{b^2-4 a c}+b-2 c} \sqrt{\sqrt{b^2-4 a c}+b+2 c}}+\frac{x}{c}$

[Out]

x/c - (2*(b - (b^2 - 2*a*c)/Sqrt[b^2 - 4*a*c])*ArcTan[(Sqrt[b - 2*c - Sqrt[b^2 - 4*a*c]]*Tan[x/2])/Sqrt[b + 2*
c - Sqrt[b^2 - 4*a*c]]])/(c*Sqrt[b - 2*c - Sqrt[b^2 - 4*a*c]]*Sqrt[b + 2*c - Sqrt[b^2 - 4*a*c]]) - (2*(b + (b^
2 - 2*a*c)/Sqrt[b^2 - 4*a*c])*ArcTan[(Sqrt[b - 2*c + Sqrt[b^2 - 4*a*c]]*Tan[x/2])/Sqrt[b + 2*c + Sqrt[b^2 - 4*
a*c]]])/(c*Sqrt[b - 2*c + Sqrt[b^2 - 4*a*c]]*Sqrt[b + 2*c + Sqrt[b^2 - 4*a*c]])

________________________________________________________________________________________

Rubi [A]  time = 1.26232, antiderivative size = 255, normalized size of antiderivative = 1., number of steps used = 7, number of rules used = 4, integrand size = 19, $$\frac{\text{number of rules}}{\text{integrand size}}$$ = 0.21, Rules used = {3257, 3293, 2659, 205} $-\frac{2 \left (b-\frac{b^2-2 a c}{\sqrt{b^2-4 a c}}\right ) \tan ^{-1}\left (\frac{\tan \left (\frac{x}{2}\right ) \sqrt{-\sqrt{b^2-4 a c}+b-2 c}}{\sqrt{-\sqrt{b^2-4 a c}+b+2 c}}\right )}{c \sqrt{-\sqrt{b^2-4 a c}+b-2 c} \sqrt{-\sqrt{b^2-4 a c}+b+2 c}}-\frac{2 \left (\frac{b^2-2 a c}{\sqrt{b^2-4 a c}}+b\right ) \tan ^{-1}\left (\frac{\tan \left (\frac{x}{2}\right ) \sqrt{\sqrt{b^2-4 a c}+b-2 c}}{\sqrt{\sqrt{b^2-4 a c}+b+2 c}}\right )}{c \sqrt{\sqrt{b^2-4 a c}+b-2 c} \sqrt{\sqrt{b^2-4 a c}+b+2 c}}+\frac{x}{c}$

Antiderivative was successfully veriﬁed.

[In]

Int[Cos[x]^2/(a + b*Cos[x] + c*Cos[x]^2),x]

[Out]

x/c - (2*(b - (b^2 - 2*a*c)/Sqrt[b^2 - 4*a*c])*ArcTan[(Sqrt[b - 2*c - Sqrt[b^2 - 4*a*c]]*Tan[x/2])/Sqrt[b + 2*
c - Sqrt[b^2 - 4*a*c]]])/(c*Sqrt[b - 2*c - Sqrt[b^2 - 4*a*c]]*Sqrt[b + 2*c - Sqrt[b^2 - 4*a*c]]) - (2*(b + (b^
2 - 2*a*c)/Sqrt[b^2 - 4*a*c])*ArcTan[(Sqrt[b - 2*c + Sqrt[b^2 - 4*a*c]]*Tan[x/2])/Sqrt[b + 2*c + Sqrt[b^2 - 4*
a*c]]])/(c*Sqrt[b - 2*c + Sqrt[b^2 - 4*a*c]]*Sqrt[b + 2*c + Sqrt[b^2 - 4*a*c]])

Rule 3257

Int[cos[(d_.) + (e_.)*(x_)]^(m_.)*((a_.) + cos[(d_.) + (e_.)*(x_)]^(n_.)*(b_.) + cos[(d_.) + (e_.)*(x_)]^(n2_.
)*(c_.))^(p_), x_Symbol] :> Int[ExpandTrig[cos[d + e*x]^m*(a + b*cos[d + e*x]^n + c*cos[d + e*x]^(2*n))^p, x],
x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[n2, 2*n] && NeQ[b^2 - 4*a*c, 0] && IntegersQ[m, n, p]

Rule 3293

Int[(cos[(d_.) + (e_.)*(x_)]*(B_.) + (A_))/((a_.) + cos[(d_.) + (e_.)*(x_)]*(b_.) + cos[(d_.) + (e_.)*(x_)]^2*
(c_.)), x_Symbol] :> Module[{q = Rt[b^2 - 4*a*c, 2]}, Dist[B + (b*B - 2*A*c)/q, Int[1/(b + q + 2*c*Cos[d + e*x
]), x], x] + Dist[B - (b*B - 2*A*c)/q, Int[1/(b - q + 2*c*Cos[d + e*x]), x], x]] /; FreeQ[{a, b, c, d, e, A, B
}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 2659

Int[((a_) + (b_.)*sin[Pi/2 + (c_.) + (d_.)*(x_)])^(-1), x_Symbol] :> With[{e = FreeFactors[Tan[(c + d*x)/2], x
]}, Dist[(2*e)/d, Subst[Int[1/(a + b + (a - b)*e^2*x^2), x], x, Tan[(c + d*x)/2]/e], x]] /; FreeQ[{a, b, c, d}
, x] && NeQ[a^2 - b^2, 0]

Rule 205

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]*ArcTan[x/Rt[a/b, 2]])/a, x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rubi steps

\begin{align*} \int \frac{\cos ^2(x)}{a+b \cos (x)+c \cos ^2(x)} \, dx &=\int \left (\frac{1}{c}+\frac{-a-b \cos (x)}{c \left (a+b \cos (x)+c \cos ^2(x)\right )}\right ) \, dx\\ &=\frac{x}{c}+\frac{\int \frac{-a-b \cos (x)}{a+b \cos (x)+c \cos ^2(x)} \, dx}{c}\\ &=\frac{x}{c}-\frac{\left (b-\frac{b^2-2 a c}{\sqrt{b^2-4 a c}}\right ) \int \frac{1}{b-\sqrt{b^2-4 a c}+2 c \cos (x)} \, dx}{c}-\frac{\left (b+\frac{b^2-2 a c}{\sqrt{b^2-4 a c}}\right ) \int \frac{1}{b+\sqrt{b^2-4 a c}+2 c \cos (x)} \, dx}{c}\\ &=\frac{x}{c}-\frac{\left (2 \left (b-\frac{b^2-2 a c}{\sqrt{b^2-4 a c}}\right )\right ) \operatorname{Subst}\left (\int \frac{1}{b+2 c-\sqrt{b^2-4 a c}+\left (b-2 c-\sqrt{b^2-4 a c}\right ) x^2} \, dx,x,\tan \left (\frac{x}{2}\right )\right )}{c}-\frac{\left (2 \left (b+\frac{b^2-2 a c}{\sqrt{b^2-4 a c}}\right )\right ) \operatorname{Subst}\left (\int \frac{1}{b+2 c+\sqrt{b^2-4 a c}+\left (b-2 c+\sqrt{b^2-4 a c}\right ) x^2} \, dx,x,\tan \left (\frac{x}{2}\right )\right )}{c}\\ &=\frac{x}{c}-\frac{2 \left (b-\frac{b^2-2 a c}{\sqrt{b^2-4 a c}}\right ) \tan ^{-1}\left (\frac{\sqrt{b-2 c-\sqrt{b^2-4 a c}} \tan \left (\frac{x}{2}\right )}{\sqrt{b+2 c-\sqrt{b^2-4 a c}}}\right )}{c \sqrt{b-2 c-\sqrt{b^2-4 a c}} \sqrt{b+2 c-\sqrt{b^2-4 a c}}}-\frac{2 \left (b+\frac{b^2-2 a c}{\sqrt{b^2-4 a c}}\right ) \tan ^{-1}\left (\frac{\sqrt{b-2 c+\sqrt{b^2-4 a c}} \tan \left (\frac{x}{2}\right )}{\sqrt{b+2 c+\sqrt{b^2-4 a c}}}\right )}{c \sqrt{b-2 c+\sqrt{b^2-4 a c}} \sqrt{b+2 c+\sqrt{b^2-4 a c}}}\\ \end{align*}

Mathematica [A]  time = 0.546507, size = 264, normalized size = 1.04 $\frac{\frac{\sqrt{2} \left (b \sqrt{b^2-4 a c}-2 a c+b^2\right ) \tanh ^{-1}\left (\frac{\tan \left (\frac{x}{2}\right ) \left (\sqrt{b^2-4 a c}+b-2 c\right )}{\sqrt{-2 b \sqrt{b^2-4 a c}+4 c (a+c)-2 b^2}}\right )}{\sqrt{b^2-4 a c} \sqrt{-b \sqrt{b^2-4 a c}+2 c (a+c)-b^2}}-\frac{\sqrt{2} \left (b \sqrt{b^2-4 a c}+2 a c-b^2\right ) \tanh ^{-1}\left (\frac{\tan \left (\frac{x}{2}\right ) \left (\sqrt{b^2-4 a c}-b+2 c\right )}{\sqrt{2 b \sqrt{b^2-4 a c}+4 c (a+c)-2 b^2}}\right )}{\sqrt{b^2-4 a c} \sqrt{b \sqrt{b^2-4 a c}+2 c (a+c)-b^2}}+x}{c}$

Antiderivative was successfully veriﬁed.

[In]

Integrate[Cos[x]^2/(a + b*Cos[x] + c*Cos[x]^2),x]

[Out]

(x + (Sqrt[2]*(b^2 - 2*a*c + b*Sqrt[b^2 - 4*a*c])*ArcTanh[((b - 2*c + Sqrt[b^2 - 4*a*c])*Tan[x/2])/Sqrt[-2*b^2
+ 4*c*(a + c) - 2*b*Sqrt[b^2 - 4*a*c]]])/(Sqrt[b^2 - 4*a*c]*Sqrt[-b^2 + 2*c*(a + c) - b*Sqrt[b^2 - 4*a*c]]) -
(Sqrt[2]*(-b^2 + 2*a*c + b*Sqrt[b^2 - 4*a*c])*ArcTanh[((-b + 2*c + Sqrt[b^2 - 4*a*c])*Tan[x/2])/Sqrt[-2*b^2 +
4*c*(a + c) + 2*b*Sqrt[b^2 - 4*a*c]]])/(Sqrt[b^2 - 4*a*c]*Sqrt[-b^2 + 2*c*(a + c) + b*Sqrt[b^2 - 4*a*c]]))/c

________________________________________________________________________________________

Maple [B]  time = 0.049, size = 1948, normalized size = 7.6 \begin{align*} \text{result too large to display} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

int(cos(x)^2/(a+b*cos(x)+c*cos(x)^2),x)

[Out]

2/c*arctan(tan(1/2*x))+1/c/(-4*a*c+b^2)^(1/2)/(a-b+c)/(((-4*a*c+b^2)^(1/2)+a-c)*(a-b+c))^(1/2)*arctan((a-b+c)*
tan(1/2*x)/(((-4*a*c+b^2)^(1/2)+a-c)*(a-b+c))^(1/2))*b^3-1/c/(-4*a*c+b^2)^(1/2)/(a-b+c)/(((-4*a*c+b^2)^(1/2)-a
+c)*(a-b+c))^(1/2)*arctanh((-a+b-c)*tan(1/2*x)/(((-4*a*c+b^2)^(1/2)-a+c)*(a-b+c))^(1/2))*b^3-1/(-4*a*c+b^2)^(1
/2)/(a-b+c)/(((-4*a*c+b^2)^(1/2)+a-c)*(a-b+c))^(1/2)*arctan((a-b+c)*tan(1/2*x)/(((-4*a*c+b^2)^(1/2)+a-c)*(a-b+
c))^(1/2))*a*b+1/(-4*a*c+b^2)^(1/2)/(a-b+c)/(((-4*a*c+b^2)^(1/2)-a+c)*(a-b+c))^(1/2)*arctanh((-a+b-c)*tan(1/2*
x)/(((-4*a*c+b^2)^(1/2)-a+c)*(a-b+c))^(1/2))*a*b-1/c/(a-b+c)/(((-4*a*c+b^2)^(1/2)-a+c)*(a-b+c))^(1/2)*arctanh(
(-a+b-c)*tan(1/2*x)/(((-4*a*c+b^2)^(1/2)-a+c)*(a-b+c))^(1/2))*a^2-2/(-4*a*c+b^2)^(1/2)/(a-b+c)/(((-4*a*c+b^2)^
(1/2)-a+c)*(a-b+c))^(1/2)*arctanh((-a+b-c)*tan(1/2*x)/(((-4*a*c+b^2)^(1/2)-a+c)*(a-b+c))^(1/2))*a^2+2/(-4*a*c+
b^2)^(1/2)/(a-b+c)/(((-4*a*c+b^2)^(1/2)+a-c)*(a-b+c))^(1/2)*arctan((a-b+c)*tan(1/2*x)/(((-4*a*c+b^2)^(1/2)+a-c
)*(a-b+c))^(1/2))*a^2-1/(-4*a*c+b^2)^(1/2)/(a-b+c)/(((-4*a*c+b^2)^(1/2)+a-c)*(a-b+c))^(1/2)*arctan((a-b+c)*tan
(1/2*x)/(((-4*a*c+b^2)^(1/2)+a-c)*(a-b+c))^(1/2))*b^2+1/(-4*a*c+b^2)^(1/2)/(a-b+c)/(((-4*a*c+b^2)^(1/2)-a+c)*(
a-b+c))^(1/2)*arctanh((-a+b-c)*tan(1/2*x)/(((-4*a*c+b^2)^(1/2)-a+c)*(a-b+c))^(1/2))*b^2-1/c/(a-b+c)/(((-4*a*c+
b^2)^(1/2)+a-c)*(a-b+c))^(1/2)*arctan((a-b+c)*tan(1/2*x)/(((-4*a*c+b^2)^(1/2)+a-c)*(a-b+c))^(1/2))*a^2-1/c/(a-
b+c)/(((-4*a*c+b^2)^(1/2)+a-c)*(a-b+c))^(1/2)*arctan((a-b+c)*tan(1/2*x)/(((-4*a*c+b^2)^(1/2)+a-c)*(a-b+c))^(1/
2))*b^2-1/c/(a-b+c)/(((-4*a*c+b^2)^(1/2)-a+c)*(a-b+c))^(1/2)*arctanh((-a+b-c)*tan(1/2*x)/(((-4*a*c+b^2)^(1/2)-
a+c)*(a-b+c))^(1/2))*b^2-1/(a-b+c)/(((-4*a*c+b^2)^(1/2)+a-c)*(a-b+c))^(1/2)*arctan((a-b+c)*tan(1/2*x)/(((-4*a*
c+b^2)^(1/2)+a-c)*(a-b+c))^(1/2))*a-1/(a-b+c)/(((-4*a*c+b^2)^(1/2)-a+c)*(a-b+c))^(1/2)*arctanh((-a+b-c)*tan(1/
2*x)/(((-4*a*c+b^2)^(1/2)-a+c)*(a-b+c))^(1/2))*a+1/(a-b+c)/(((-4*a*c+b^2)^(1/2)+a-c)*(a-b+c))^(1/2)*arctan((a-
b+c)*tan(1/2*x)/(((-4*a*c+b^2)^(1/2)+a-c)*(a-b+c))^(1/2))*b+1/(a-b+c)/(((-4*a*c+b^2)^(1/2)-a+c)*(a-b+c))^(1/2)
*arctanh((-a+b-c)*tan(1/2*x)/(((-4*a*c+b^2)^(1/2)-a+c)*(a-b+c))^(1/2))*b+2/c/(a-b+c)/(((-4*a*c+b^2)^(1/2)+a-c)
*(a-b+c))^(1/2)*arctan((a-b+c)*tan(1/2*x)/(((-4*a*c+b^2)^(1/2)+a-c)*(a-b+c))^(1/2))*a*b+2/c/(a-b+c)/(((-4*a*c+
b^2)^(1/2)-a+c)*(a-b+c))^(1/2)*arctanh((-a+b-c)*tan(1/2*x)/(((-4*a*c+b^2)^(1/2)-a+c)*(a-b+c))^(1/2))*a*b+2/(-4
*a*c+b^2)^(1/2)/(a-b+c)/(((-4*a*c+b^2)^(1/2)+a-c)*(a-b+c))^(1/2)*arctan((a-b+c)*tan(1/2*x)/(((-4*a*c+b^2)^(1/2
)+a-c)*(a-b+c))^(1/2))*a*c-2/(-4*a*c+b^2)^(1/2)/(a-b+c)/(((-4*a*c+b^2)^(1/2)-a+c)*(a-b+c))^(1/2)*arctanh((-a+b
-c)*tan(1/2*x)/(((-4*a*c+b^2)^(1/2)-a+c)*(a-b+c))^(1/2))*a*c-2/c/(-4*a*c+b^2)^(1/2)/(a-b+c)/(((-4*a*c+b^2)^(1/
2)+a-c)*(a-b+c))^(1/2)*arctan((a-b+c)*tan(1/2*x)/(((-4*a*c+b^2)^(1/2)+a-c)*(a-b+c))^(1/2))*a*b^2+1/c*b/(-4*a*c
+b^2)^(1/2)/(a-b+c)/(((-4*a*c+b^2)^(1/2)+a-c)*(a-b+c))^(1/2)*arctan((a-b+c)*tan(1/2*x)/(((-4*a*c+b^2)^(1/2)+a-
c)*(a-b+c))^(1/2))*a^2+2/c/(-4*a*c+b^2)^(1/2)/(a-b+c)/(((-4*a*c+b^2)^(1/2)-a+c)*(a-b+c))^(1/2)*arctanh((-a+b-c
)*tan(1/2*x)/(((-4*a*c+b^2)^(1/2)-a+c)*(a-b+c))^(1/2))*a*b^2-1/c*b/(-4*a*c+b^2)^(1/2)/(a-b+c)/(((-4*a*c+b^2)^(
1/2)-a+c)*(a-b+c))^(1/2)*arctanh((-a+b-c)*tan(1/2*x)/(((-4*a*c+b^2)^(1/2)-a+c)*(a-b+c))^(1/2))*a^2

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{result too large to display} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(x)^2/(a+b*cos(x)+c*cos(x)^2),x, algorithm="maxima")

[Out]

-(c*integrate(2*(2*b^2*cos(3*x)^2 + 2*b^2*cos(x)^2 + 2*b^2*sin(3*x)^2 + 2*b^2*sin(x)^2 + 4*(2*a^2 + a*c)*cos(2
*x)^2 + b*c*cos(x) + 4*(2*a^2 + a*c)*sin(2*x)^2 + 2*(4*a*b + b*c)*sin(2*x)*sin(x) + (b*c*cos(3*x) + 2*a*c*cos(
2*x) + b*c*cos(x))*cos(4*x) + (4*b^2*cos(x) + b*c + 2*(4*a*b + b*c)*cos(2*x))*cos(3*x) + 2*(a*c + (4*a*b + b*c
)*cos(x))*cos(2*x) + (b*c*sin(3*x) + 2*a*c*sin(2*x) + b*c*sin(x))*sin(4*x) + 2*(2*b^2*sin(x) + (4*a*b + b*c)*s
in(2*x))*sin(3*x))/(c^3*cos(4*x)^2 + 4*b^2*c*cos(3*x)^2 + 4*b^2*c*cos(x)^2 + c^3*sin(4*x)^2 + 4*b^2*c*sin(3*x)
^2 + 4*b^2*c*sin(x)^2 + 4*b*c^2*cos(x) + c^3 + 4*(4*a^2*c + 4*a*c^2 + c^3)*cos(2*x)^2 + 4*(4*a^2*c + 4*a*c^2 +
c^3)*sin(2*x)^2 + 8*(2*a*b*c + b*c^2)*sin(2*x)*sin(x) + 2*(2*b*c^2*cos(3*x) + 2*b*c^2*cos(x) + c^3 + 2*(2*a*c
^2 + c^3)*cos(2*x))*cos(4*x) + 4*(2*b^2*c*cos(x) + b*c^2 + 2*(2*a*b*c + b*c^2)*cos(2*x))*cos(3*x) + 4*(2*a*c^2
+ c^3 + 2*(2*a*b*c + b*c^2)*cos(x))*cos(2*x) + 4*(b*c^2*sin(3*x) + b*c^2*sin(x) + (2*a*c^2 + c^3)*sin(2*x))*s
in(4*x) + 8*(b^2*c*sin(x) + (2*a*b*c + b*c^2)*sin(2*x))*sin(3*x)), x) - x)/c

________________________________________________________________________________________

Fricas [B]  time = 6.4256, size = 9790, normalized size = 38.39 \begin{align*} \text{result too large to display} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(x)^2/(a+b*cos(x)+c*cos(x)^2),x, algorithm="fricas")

[Out]

-1/4*(sqrt(2)*c*sqrt((a^2*b^2 - b^4 - 2*a^2*c^2 - 2*(a^3 - 2*a*b^2)*c - (4*a*c^5 + (8*a^2 - b^2)*c^4 + 2*(2*a^
3 - 3*a*b^2)*c^3 - (a^2*b^2 - b^4)*c^2)*sqrt(-(a^4*b^2 - 2*a^2*b^4 + b^6 + 4*a^2*b^2*c^2 + 4*(a^3*b^2 - a*b^4)
*c)/(4*a*c^9 + (16*a^2 - b^2)*c^8 + 12*(2*a^3 - a*b^2)*c^7 + 2*(8*a^4 - 11*a^2*b^2 + b^4)*c^6 + 4*(a^5 - 3*a^3
*b^2 + 2*a*b^4)*c^5 - (a^4*b^2 - 2*a^2*b^4 + b^6)*c^4)))/(4*a*c^5 + (8*a^2 - b^2)*c^4 + 2*(2*a^3 - 3*a*b^2)*c^
3 - (a^2*b^2 - b^4)*c^2))*log(4*a^3*b*c^2 - (4*a^3*c^5 + (8*a^4 - a^2*b^2)*c^4 + 2*(2*a^5 - 3*a^3*b^2)*c^3 - (
a^4*b^2 - a^2*b^4)*c^2)*sqrt(-(a^4*b^2 - 2*a^2*b^4 + b^6 + 4*a^2*b^2*c^2 + 4*(a^3*b^2 - a*b^4)*c)/(4*a*c^9 + (
16*a^2 - b^2)*c^8 + 12*(2*a^3 - a*b^2)*c^7 + 2*(8*a^4 - 11*a^2*b^2 + b^4)*c^6 + 4*(a^5 - 3*a^3*b^2 + 2*a*b^4)*
c^5 - (a^4*b^2 - 2*a^2*b^4 + b^6)*c^4))*cos(x) + 2*(a^4*b - a^2*b^3)*c + 1/2*sqrt(2)*((8*a^2*c^7 + 6*(4*a^3 -
a*b^2)*c^6 + (24*a^4 - 22*a^2*b^2 + b^4)*c^5 + 2*(4*a^5 - 9*a^3*b^2 + 4*a*b^4)*c^4 - (2*a^4*b^2 - 3*a^2*b^4 +
b^6)*c^3)*sqrt(-(a^4*b^2 - 2*a^2*b^4 + b^6 + 4*a^2*b^2*c^2 + 4*(a^3*b^2 - a*b^4)*c)/(4*a*c^9 + (16*a^2 - b^2)*
c^8 + 12*(2*a^3 - a*b^2)*c^7 + 2*(8*a^4 - 11*a^2*b^2 + b^4)*c^6 + 4*(a^5 - 3*a^3*b^2 + 2*a*b^4)*c^5 - (a^4*b^2
- 2*a^2*b^4 + b^6)*c^4))*sin(x) + (8*a^2*b^2*c^3 + 2*(2*a^3*b^2 - 3*a*b^4)*c^2 - (a^2*b^4 - b^6)*c)*sin(x))*s
qrt((a^2*b^2 - b^4 - 2*a^2*c^2 - 2*(a^3 - 2*a*b^2)*c - (4*a*c^5 + (8*a^2 - b^2)*c^4 + 2*(2*a^3 - 3*a*b^2)*c^3
- (a^2*b^2 - b^4)*c^2)*sqrt(-(a^4*b^2 - 2*a^2*b^4 + b^6 + 4*a^2*b^2*c^2 + 4*(a^3*b^2 - a*b^4)*c)/(4*a*c^9 + (1
6*a^2 - b^2)*c^8 + 12*(2*a^3 - a*b^2)*c^7 + 2*(8*a^4 - 11*a^2*b^2 + b^4)*c^6 + 4*(a^5 - 3*a^3*b^2 + 2*a*b^4)*c
^5 - (a^4*b^2 - 2*a^2*b^4 + b^6)*c^4)))/(4*a*c^5 + (8*a^2 - b^2)*c^4 + 2*(2*a^3 - 3*a*b^2)*c^3 - (a^2*b^2 - b^
4)*c^2)) + (a^4*b^2 - a^2*b^4 + 2*a^3*b^2*c)*cos(x)) - sqrt(2)*c*sqrt((a^2*b^2 - b^4 - 2*a^2*c^2 - 2*(a^3 - 2*
a*b^2)*c - (4*a*c^5 + (8*a^2 - b^2)*c^4 + 2*(2*a^3 - 3*a*b^2)*c^3 - (a^2*b^2 - b^4)*c^2)*sqrt(-(a^4*b^2 - 2*a^
2*b^4 + b^6 + 4*a^2*b^2*c^2 + 4*(a^3*b^2 - a*b^4)*c)/(4*a*c^9 + (16*a^2 - b^2)*c^8 + 12*(2*a^3 - a*b^2)*c^7 +
2*(8*a^4 - 11*a^2*b^2 + b^4)*c^6 + 4*(a^5 - 3*a^3*b^2 + 2*a*b^4)*c^5 - (a^4*b^2 - 2*a^2*b^4 + b^6)*c^4)))/(4*a
*c^5 + (8*a^2 - b^2)*c^4 + 2*(2*a^3 - 3*a*b^2)*c^3 - (a^2*b^2 - b^4)*c^2))*log(4*a^3*b*c^2 - (4*a^3*c^5 + (8*a
^4 - a^2*b^2)*c^4 + 2*(2*a^5 - 3*a^3*b^2)*c^3 - (a^4*b^2 - a^2*b^4)*c^2)*sqrt(-(a^4*b^2 - 2*a^2*b^4 + b^6 + 4*
a^2*b^2*c^2 + 4*(a^3*b^2 - a*b^4)*c)/(4*a*c^9 + (16*a^2 - b^2)*c^8 + 12*(2*a^3 - a*b^2)*c^7 + 2*(8*a^4 - 11*a^
2*b^2 + b^4)*c^6 + 4*(a^5 - 3*a^3*b^2 + 2*a*b^4)*c^5 - (a^4*b^2 - 2*a^2*b^4 + b^6)*c^4))*cos(x) + 2*(a^4*b - a
^2*b^3)*c - 1/2*sqrt(2)*((8*a^2*c^7 + 6*(4*a^3 - a*b^2)*c^6 + (24*a^4 - 22*a^2*b^2 + b^4)*c^5 + 2*(4*a^5 - 9*a
^3*b^2 + 4*a*b^4)*c^4 - (2*a^4*b^2 - 3*a^2*b^4 + b^6)*c^3)*sqrt(-(a^4*b^2 - 2*a^2*b^4 + b^6 + 4*a^2*b^2*c^2 +
4*(a^3*b^2 - a*b^4)*c)/(4*a*c^9 + (16*a^2 - b^2)*c^8 + 12*(2*a^3 - a*b^2)*c^7 + 2*(8*a^4 - 11*a^2*b^2 + b^4)*c
^6 + 4*(a^5 - 3*a^3*b^2 + 2*a*b^4)*c^5 - (a^4*b^2 - 2*a^2*b^4 + b^6)*c^4))*sin(x) + (8*a^2*b^2*c^3 + 2*(2*a^3*
b^2 - 3*a*b^4)*c^2 - (a^2*b^4 - b^6)*c)*sin(x))*sqrt((a^2*b^2 - b^4 - 2*a^2*c^2 - 2*(a^3 - 2*a*b^2)*c - (4*a*c
^5 + (8*a^2 - b^2)*c^4 + 2*(2*a^3 - 3*a*b^2)*c^3 - (a^2*b^2 - b^4)*c^2)*sqrt(-(a^4*b^2 - 2*a^2*b^4 + b^6 + 4*a
^2*b^2*c^2 + 4*(a^3*b^2 - a*b^4)*c)/(4*a*c^9 + (16*a^2 - b^2)*c^8 + 12*(2*a^3 - a*b^2)*c^7 + 2*(8*a^4 - 11*a^2
*b^2 + b^4)*c^6 + 4*(a^5 - 3*a^3*b^2 + 2*a*b^4)*c^5 - (a^4*b^2 - 2*a^2*b^4 + b^6)*c^4)))/(4*a*c^5 + (8*a^2 - b
^2)*c^4 + 2*(2*a^3 - 3*a*b^2)*c^3 - (a^2*b^2 - b^4)*c^2)) + (a^4*b^2 - a^2*b^4 + 2*a^3*b^2*c)*cos(x)) + sqrt(2
)*c*sqrt((a^2*b^2 - b^4 - 2*a^2*c^2 - 2*(a^3 - 2*a*b^2)*c + (4*a*c^5 + (8*a^2 - b^2)*c^4 + 2*(2*a^3 - 3*a*b^2)
*c^3 - (a^2*b^2 - b^4)*c^2)*sqrt(-(a^4*b^2 - 2*a^2*b^4 + b^6 + 4*a^2*b^2*c^2 + 4*(a^3*b^2 - a*b^4)*c)/(4*a*c^9
+ (16*a^2 - b^2)*c^8 + 12*(2*a^3 - a*b^2)*c^7 + 2*(8*a^4 - 11*a^2*b^2 + b^4)*c^6 + 4*(a^5 - 3*a^3*b^2 + 2*a*b
^4)*c^5 - (a^4*b^2 - 2*a^2*b^4 + b^6)*c^4)))/(4*a*c^5 + (8*a^2 - b^2)*c^4 + 2*(2*a^3 - 3*a*b^2)*c^3 - (a^2*b^2
- b^4)*c^2))*log(-4*a^3*b*c^2 - (4*a^3*c^5 + (8*a^4 - a^2*b^2)*c^4 + 2*(2*a^5 - 3*a^3*b^2)*c^3 - (a^4*b^2 - a
^2*b^4)*c^2)*sqrt(-(a^4*b^2 - 2*a^2*b^4 + b^6 + 4*a^2*b^2*c^2 + 4*(a^3*b^2 - a*b^4)*c)/(4*a*c^9 + (16*a^2 - b^
2)*c^8 + 12*(2*a^3 - a*b^2)*c^7 + 2*(8*a^4 - 11*a^2*b^2 + b^4)*c^6 + 4*(a^5 - 3*a^3*b^2 + 2*a*b^4)*c^5 - (a^4*
b^2 - 2*a^2*b^4 + b^6)*c^4))*cos(x) - 2*(a^4*b - a^2*b^3)*c + 1/2*sqrt(2)*((8*a^2*c^7 + 6*(4*a^3 - a*b^2)*c^6
+ (24*a^4 - 22*a^2*b^2 + b^4)*c^5 + 2*(4*a^5 - 9*a^3*b^2 + 4*a*b^4)*c^4 - (2*a^4*b^2 - 3*a^2*b^4 + b^6)*c^3)*s
qrt(-(a^4*b^2 - 2*a^2*b^4 + b^6 + 4*a^2*b^2*c^2 + 4*(a^3*b^2 - a*b^4)*c)/(4*a*c^9 + (16*a^2 - b^2)*c^8 + 12*(2
*a^3 - a*b^2)*c^7 + 2*(8*a^4 - 11*a^2*b^2 + b^4)*c^6 + 4*(a^5 - 3*a^3*b^2 + 2*a*b^4)*c^5 - (a^4*b^2 - 2*a^2*b^
4 + b^6)*c^4))*sin(x) - (8*a^2*b^2*c^3 + 2*(2*a^3*b^2 - 3*a*b^4)*c^2 - (a^2*b^4 - b^6)*c)*sin(x))*sqrt((a^2*b^
2 - b^4 - 2*a^2*c^2 - 2*(a^3 - 2*a*b^2)*c + (4*a*c^5 + (8*a^2 - b^2)*c^4 + 2*(2*a^3 - 3*a*b^2)*c^3 - (a^2*b^2
- b^4)*c^2)*sqrt(-(a^4*b^2 - 2*a^2*b^4 + b^6 + 4*a^2*b^2*c^2 + 4*(a^3*b^2 - a*b^4)*c)/(4*a*c^9 + (16*a^2 - b^2
)*c^8 + 12*(2*a^3 - a*b^2)*c^7 + 2*(8*a^4 - 11*a^2*b^2 + b^4)*c^6 + 4*(a^5 - 3*a^3*b^2 + 2*a*b^4)*c^5 - (a^4*b
^2 - 2*a^2*b^4 + b^6)*c^4)))/(4*a*c^5 + (8*a^2 - b^2)*c^4 + 2*(2*a^3 - 3*a*b^2)*c^3 - (a^2*b^2 - b^4)*c^2)) -
(a^4*b^2 - a^2*b^4 + 2*a^3*b^2*c)*cos(x)) - sqrt(2)*c*sqrt((a^2*b^2 - b^4 - 2*a^2*c^2 - 2*(a^3 - 2*a*b^2)*c +
(4*a*c^5 + (8*a^2 - b^2)*c^4 + 2*(2*a^3 - 3*a*b^2)*c^3 - (a^2*b^2 - b^4)*c^2)*sqrt(-(a^4*b^2 - 2*a^2*b^4 + b^6
+ 4*a^2*b^2*c^2 + 4*(a^3*b^2 - a*b^4)*c)/(4*a*c^9 + (16*a^2 - b^2)*c^8 + 12*(2*a^3 - a*b^2)*c^7 + 2*(8*a^4 -
11*a^2*b^2 + b^4)*c^6 + 4*(a^5 - 3*a^3*b^2 + 2*a*b^4)*c^5 - (a^4*b^2 - 2*a^2*b^4 + b^6)*c^4)))/(4*a*c^5 + (8*a
^2 - b^2)*c^4 + 2*(2*a^3 - 3*a*b^2)*c^3 - (a^2*b^2 - b^4)*c^2))*log(-4*a^3*b*c^2 - (4*a^3*c^5 + (8*a^4 - a^2*b
^2)*c^4 + 2*(2*a^5 - 3*a^3*b^2)*c^3 - (a^4*b^2 - a^2*b^4)*c^2)*sqrt(-(a^4*b^2 - 2*a^2*b^4 + b^6 + 4*a^2*b^2*c^
2 + 4*(a^3*b^2 - a*b^4)*c)/(4*a*c^9 + (16*a^2 - b^2)*c^8 + 12*(2*a^3 - a*b^2)*c^7 + 2*(8*a^4 - 11*a^2*b^2 + b^
4)*c^6 + 4*(a^5 - 3*a^3*b^2 + 2*a*b^4)*c^5 - (a^4*b^2 - 2*a^2*b^4 + b^6)*c^4))*cos(x) - 2*(a^4*b - a^2*b^3)*c
- 1/2*sqrt(2)*((8*a^2*c^7 + 6*(4*a^3 - a*b^2)*c^6 + (24*a^4 - 22*a^2*b^2 + b^4)*c^5 + 2*(4*a^5 - 9*a^3*b^2 + 4
*a*b^4)*c^4 - (2*a^4*b^2 - 3*a^2*b^4 + b^6)*c^3)*sqrt(-(a^4*b^2 - 2*a^2*b^4 + b^6 + 4*a^2*b^2*c^2 + 4*(a^3*b^2
- a*b^4)*c)/(4*a*c^9 + (16*a^2 - b^2)*c^8 + 12*(2*a^3 - a*b^2)*c^7 + 2*(8*a^4 - 11*a^2*b^2 + b^4)*c^6 + 4*(a^
5 - 3*a^3*b^2 + 2*a*b^4)*c^5 - (a^4*b^2 - 2*a^2*b^4 + b^6)*c^4))*sin(x) - (8*a^2*b^2*c^3 + 2*(2*a^3*b^2 - 3*a*
b^4)*c^2 - (a^2*b^4 - b^6)*c)*sin(x))*sqrt((a^2*b^2 - b^4 - 2*a^2*c^2 - 2*(a^3 - 2*a*b^2)*c + (4*a*c^5 + (8*a^
2 - b^2)*c^4 + 2*(2*a^3 - 3*a*b^2)*c^3 - (a^2*b^2 - b^4)*c^2)*sqrt(-(a^4*b^2 - 2*a^2*b^4 + b^6 + 4*a^2*b^2*c^2
+ 4*(a^3*b^2 - a*b^4)*c)/(4*a*c^9 + (16*a^2 - b^2)*c^8 + 12*(2*a^3 - a*b^2)*c^7 + 2*(8*a^4 - 11*a^2*b^2 + b^4
)*c^6 + 4*(a^5 - 3*a^3*b^2 + 2*a*b^4)*c^5 - (a^4*b^2 - 2*a^2*b^4 + b^6)*c^4)))/(4*a*c^5 + (8*a^2 - b^2)*c^4 +
2*(2*a^3 - 3*a*b^2)*c^3 - (a^2*b^2 - b^4)*c^2)) - (a^4*b^2 - a^2*b^4 + 2*a^3*b^2*c)*cos(x)) - 4*x)/c

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(x)**2/(a+b*cos(x)+c*cos(x)**2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(x)^2/(a+b*cos(x)+c*cos(x)^2),x, algorithm="giac")

[Out]

Timed out