### 3.14 $$\int \frac{\cos ^3(x)}{a+b \cos (x)+c \cos ^2(x)} \, dx$$

Optimal. Leaf size=299 $\frac{2 \left (-\frac{b^3}{\sqrt{b^2-4 a c}}+\frac{3 a b c}{\sqrt{b^2-4 a c}}-a c+b^2\right ) \tan ^{-1}\left (\frac{\tan \left (\frac{x}{2}\right ) \sqrt{-\sqrt{b^2-4 a c}+b-2 c}}{\sqrt{-\sqrt{b^2-4 a c}+b+2 c}}\right )}{c^2 \sqrt{-\sqrt{b^2-4 a c}+b-2 c} \sqrt{-\sqrt{b^2-4 a c}+b+2 c}}+\frac{2 \left (\frac{b^3}{\sqrt{b^2-4 a c}}-\frac{3 a b c}{\sqrt{b^2-4 a c}}-a c+b^2\right ) \tan ^{-1}\left (\frac{\tan \left (\frac{x}{2}\right ) \sqrt{\sqrt{b^2-4 a c}+b-2 c}}{\sqrt{\sqrt{b^2-4 a c}+b+2 c}}\right )}{c^2 \sqrt{\sqrt{b^2-4 a c}+b-2 c} \sqrt{\sqrt{b^2-4 a c}+b+2 c}}-\frac{b x}{c^2}+\frac{\sin (x)}{c}$

[Out]

-((b*x)/c^2) + (2*(b^2 - a*c - b^3/Sqrt[b^2 - 4*a*c] + (3*a*b*c)/Sqrt[b^2 - 4*a*c])*ArcTan[(Sqrt[b - 2*c - Sqr
t[b^2 - 4*a*c]]*Tan[x/2])/Sqrt[b + 2*c - Sqrt[b^2 - 4*a*c]]])/(c^2*Sqrt[b - 2*c - Sqrt[b^2 - 4*a*c]]*Sqrt[b +
2*c - Sqrt[b^2 - 4*a*c]]) + (2*(b^2 - a*c + b^3/Sqrt[b^2 - 4*a*c] - (3*a*b*c)/Sqrt[b^2 - 4*a*c])*ArcTan[(Sqrt[
b - 2*c + Sqrt[b^2 - 4*a*c]]*Tan[x/2])/Sqrt[b + 2*c + Sqrt[b^2 - 4*a*c]]])/(c^2*Sqrt[b - 2*c + Sqrt[b^2 - 4*a*
c]]*Sqrt[b + 2*c + Sqrt[b^2 - 4*a*c]]) + Sin[x]/c

________________________________________________________________________________________

Rubi [A]  time = 6.7579, antiderivative size = 299, normalized size of antiderivative = 1., number of steps used = 8, number of rules used = 5, integrand size = 19, $$\frac{\text{number of rules}}{\text{integrand size}}$$ = 0.263, Rules used = {3257, 2637, 3293, 2659, 205} $\frac{2 \left (-\frac{b^3}{\sqrt{b^2-4 a c}}+\frac{3 a b c}{\sqrt{b^2-4 a c}}-a c+b^2\right ) \tan ^{-1}\left (\frac{\tan \left (\frac{x}{2}\right ) \sqrt{-\sqrt{b^2-4 a c}+b-2 c}}{\sqrt{-\sqrt{b^2-4 a c}+b+2 c}}\right )}{c^2 \sqrt{-\sqrt{b^2-4 a c}+b-2 c} \sqrt{-\sqrt{b^2-4 a c}+b+2 c}}+\frac{2 \left (\frac{b^3}{\sqrt{b^2-4 a c}}-\frac{3 a b c}{\sqrt{b^2-4 a c}}-a c+b^2\right ) \tan ^{-1}\left (\frac{\tan \left (\frac{x}{2}\right ) \sqrt{\sqrt{b^2-4 a c}+b-2 c}}{\sqrt{\sqrt{b^2-4 a c}+b+2 c}}\right )}{c^2 \sqrt{\sqrt{b^2-4 a c}+b-2 c} \sqrt{\sqrt{b^2-4 a c}+b+2 c}}-\frac{b x}{c^2}+\frac{\sin (x)}{c}$

Antiderivative was successfully veriﬁed.

[In]

Int[Cos[x]^3/(a + b*Cos[x] + c*Cos[x]^2),x]

[Out]

-((b*x)/c^2) + (2*(b^2 - a*c - b^3/Sqrt[b^2 - 4*a*c] + (3*a*b*c)/Sqrt[b^2 - 4*a*c])*ArcTan[(Sqrt[b - 2*c - Sqr
t[b^2 - 4*a*c]]*Tan[x/2])/Sqrt[b + 2*c - Sqrt[b^2 - 4*a*c]]])/(c^2*Sqrt[b - 2*c - Sqrt[b^2 - 4*a*c]]*Sqrt[b +
2*c - Sqrt[b^2 - 4*a*c]]) + (2*(b^2 - a*c + b^3/Sqrt[b^2 - 4*a*c] - (3*a*b*c)/Sqrt[b^2 - 4*a*c])*ArcTan[(Sqrt[
b - 2*c + Sqrt[b^2 - 4*a*c]]*Tan[x/2])/Sqrt[b + 2*c + Sqrt[b^2 - 4*a*c]]])/(c^2*Sqrt[b - 2*c + Sqrt[b^2 - 4*a*
c]]*Sqrt[b + 2*c + Sqrt[b^2 - 4*a*c]]) + Sin[x]/c

Rule 3257

Int[cos[(d_.) + (e_.)*(x_)]^(m_.)*((a_.) + cos[(d_.) + (e_.)*(x_)]^(n_.)*(b_.) + cos[(d_.) + (e_.)*(x_)]^(n2_.
)*(c_.))^(p_), x_Symbol] :> Int[ExpandTrig[cos[d + e*x]^m*(a + b*cos[d + e*x]^n + c*cos[d + e*x]^(2*n))^p, x],
x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[n2, 2*n] && NeQ[b^2 - 4*a*c, 0] && IntegersQ[m, n, p]

Rule 2637

Int[sin[Pi/2 + (c_.) + (d_.)*(x_)], x_Symbol] :> Simp[Sin[c + d*x]/d, x] /; FreeQ[{c, d}, x]

Rule 3293

Int[(cos[(d_.) + (e_.)*(x_)]*(B_.) + (A_))/((a_.) + cos[(d_.) + (e_.)*(x_)]*(b_.) + cos[(d_.) + (e_.)*(x_)]^2*
(c_.)), x_Symbol] :> Module[{q = Rt[b^2 - 4*a*c, 2]}, Dist[B + (b*B - 2*A*c)/q, Int[1/(b + q + 2*c*Cos[d + e*x
]), x], x] + Dist[B - (b*B - 2*A*c)/q, Int[1/(b - q + 2*c*Cos[d + e*x]), x], x]] /; FreeQ[{a, b, c, d, e, A, B
}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 2659

Int[((a_) + (b_.)*sin[Pi/2 + (c_.) + (d_.)*(x_)])^(-1), x_Symbol] :> With[{e = FreeFactors[Tan[(c + d*x)/2], x
]}, Dist[(2*e)/d, Subst[Int[1/(a + b + (a - b)*e^2*x^2), x], x, Tan[(c + d*x)/2]/e], x]] /; FreeQ[{a, b, c, d}
, x] && NeQ[a^2 - b^2, 0]

Rule 205

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]*ArcTan[x/Rt[a/b, 2]])/a, x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rubi steps

\begin{align*} \int \frac{\cos ^3(x)}{a+b \cos (x)+c \cos ^2(x)} \, dx &=\int \left (-\frac{b}{c^2}+\frac{\cos (x)}{c}+\frac{a b+b^2 \left (1-\frac{a c}{b^2}\right ) \cos (x)}{c^2 \left (a+b \cos (x)+c \cos ^2(x)\right )}\right ) \, dx\\ &=-\frac{b x}{c^2}+\frac{\int \frac{a b+b^2 \left (1-\frac{a c}{b^2}\right ) \cos (x)}{a+b \cos (x)+c \cos ^2(x)} \, dx}{c^2}+\frac{\int \cos (x) \, dx}{c}\\ &=-\frac{b x}{c^2}+\frac{\sin (x)}{c}+\frac{\left (b^2-a c+\frac{b^3}{\sqrt{b^2-4 a c}}-\frac{3 a b c}{\sqrt{b^2-4 a c}}\right ) \int \frac{1}{b+\sqrt{b^2-4 a c}+2 c \cos (x)} \, dx}{c^2}+\frac{\left (b^2-a c-\frac{b^3}{\sqrt{b^2-4 a c}}+\frac{3 a b c}{\sqrt{b^2-4 a c}}\right ) \int \frac{1}{b-\sqrt{b^2-4 a c}+2 c \cos (x)} \, dx}{c^2}\\ &=-\frac{b x}{c^2}+\frac{\sin (x)}{c}+\frac{\left (2 \left (b^2-a c+\frac{b^3}{\sqrt{b^2-4 a c}}-\frac{3 a b c}{\sqrt{b^2-4 a c}}\right )\right ) \operatorname{Subst}\left (\int \frac{1}{b+2 c+\sqrt{b^2-4 a c}+\left (b-2 c+\sqrt{b^2-4 a c}\right ) x^2} \, dx,x,\tan \left (\frac{x}{2}\right )\right )}{c^2}+\frac{\left (2 \left (b^2-a c-\frac{b^3}{\sqrt{b^2-4 a c}}+\frac{3 a b c}{\sqrt{b^2-4 a c}}\right )\right ) \operatorname{Subst}\left (\int \frac{1}{b+2 c-\sqrt{b^2-4 a c}+\left (b-2 c-\sqrt{b^2-4 a c}\right ) x^2} \, dx,x,\tan \left (\frac{x}{2}\right )\right )}{c^2}\\ &=-\frac{b x}{c^2}+\frac{2 \left (b^2-a c-\frac{b^3}{\sqrt{b^2-4 a c}}+\frac{3 a b c}{\sqrt{b^2-4 a c}}\right ) \tan ^{-1}\left (\frac{\sqrt{b-2 c-\sqrt{b^2-4 a c}} \tan \left (\frac{x}{2}\right )}{\sqrt{b+2 c-\sqrt{b^2-4 a c}}}\right )}{c^2 \sqrt{b-2 c-\sqrt{b^2-4 a c}} \sqrt{b+2 c-\sqrt{b^2-4 a c}}}+\frac{2 \left (b^2-a c+\frac{b^3}{\sqrt{b^2-4 a c}}-\frac{3 a b c}{\sqrt{b^2-4 a c}}\right ) \tan ^{-1}\left (\frac{\sqrt{b-2 c+\sqrt{b^2-4 a c}} \tan \left (\frac{x}{2}\right )}{\sqrt{b+2 c+\sqrt{b^2-4 a c}}}\right )}{c^2 \sqrt{b-2 c+\sqrt{b^2-4 a c}} \sqrt{b+2 c+\sqrt{b^2-4 a c}}}+\frac{\sin (x)}{c}\\ \end{align*}

Mathematica [A]  time = 0.826732, size = 309, normalized size = 1.03 $\frac{-\frac{\sqrt{2} \left (b^2 \sqrt{b^2-4 a c}-a c \sqrt{b^2-4 a c}-3 a b c+b^3\right ) \tanh ^{-1}\left (\frac{\tan \left (\frac{x}{2}\right ) \left (\sqrt{b^2-4 a c}+b-2 c\right )}{\sqrt{-2 b \sqrt{b^2-4 a c}+4 c (a+c)-2 b^2}}\right )}{\sqrt{b^2-4 a c} \sqrt{-b \sqrt{b^2-4 a c}+2 c (a+c)-b^2}}+\frac{\sqrt{2} \left (b^2 \sqrt{b^2-4 a c}-a c \sqrt{b^2-4 a c}+3 a b c-b^3\right ) \tanh ^{-1}\left (\frac{\tan \left (\frac{x}{2}\right ) \left (\sqrt{b^2-4 a c}-b+2 c\right )}{\sqrt{2 b \sqrt{b^2-4 a c}+4 c (a+c)-2 b^2}}\right )}{\sqrt{b^2-4 a c} \sqrt{b \sqrt{b^2-4 a c}+2 c (a+c)-b^2}}-b x+c \sin (x)}{c^2}$

Antiderivative was successfully veriﬁed.

[In]

Integrate[Cos[x]^3/(a + b*Cos[x] + c*Cos[x]^2),x]

[Out]

(-(b*x) - (Sqrt[2]*(b^3 - 3*a*b*c + b^2*Sqrt[b^2 - 4*a*c] - a*c*Sqrt[b^2 - 4*a*c])*ArcTanh[((b - 2*c + Sqrt[b^
2 - 4*a*c])*Tan[x/2])/Sqrt[-2*b^2 + 4*c*(a + c) - 2*b*Sqrt[b^2 - 4*a*c]]])/(Sqrt[b^2 - 4*a*c]*Sqrt[-b^2 + 2*c*
(a + c) - b*Sqrt[b^2 - 4*a*c]]) + (Sqrt[2]*(-b^3 + 3*a*b*c + b^2*Sqrt[b^2 - 4*a*c] - a*c*Sqrt[b^2 - 4*a*c])*Ar
cTanh[((-b + 2*c + Sqrt[b^2 - 4*a*c])*Tan[x/2])/Sqrt[-2*b^2 + 4*c*(a + c) + 2*b*Sqrt[b^2 - 4*a*c]]])/(Sqrt[b^2
- 4*a*c]*Sqrt[-b^2 + 2*c*(a + c) + b*Sqrt[b^2 - 4*a*c]]) + c*Sin[x])/c^2

________________________________________________________________________________________

Maple [B]  time = 0.05, size = 2503, normalized size = 8.4 \begin{align*} \text{result too large to display} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

int(cos(x)^3/(a+b*cos(x)+c*cos(x)^2),x)

[Out]

1/c^2/(-4*a*c+b^2)^(1/2)/(a-b+c)/(((-4*a*c+b^2)^(1/2)-a+c)*(a-b+c))^(1/2)*arctanh((-a+b-c)*tan(1/2*x)/(((-4*a*
c+b^2)^(1/2)-a+c)*(a-b+c))^(1/2))*b^4+1/c^2/(a-b+c)/(((-4*a*c+b^2)^(1/2)+a-c)*(a-b+c))^(1/2)*arctan((a-b+c)*ta
n(1/2*x)/(((-4*a*c+b^2)^(1/2)+a-c)*(a-b+c))^(1/2))*a^2*b+2/c/(-4*a*c+b^2)^(1/2)/(a-b+c)/(((-4*a*c+b^2)^(1/2)+a
-c)*(a-b+c))^(1/2)*arctan((a-b+c)*tan(1/2*x)/(((-4*a*c+b^2)^(1/2)+a-c)*(a-b+c))^(1/2))*a^3+1/c^2/(a-b+c)/(((-4
*a*c+b^2)^(1/2)-a+c)*(a-b+c))^(1/2)*arctanh((-a+b-c)*tan(1/2*x)/(((-4*a*c+b^2)^(1/2)-a+c)*(a-b+c))^(1/2))*a^2*
b-2/c/(-4*a*c+b^2)^(1/2)/(a-b+c)/(((-4*a*c+b^2)^(1/2)-a+c)*(a-b+c))^(1/2)*arctanh((-a+b-c)*tan(1/2*x)/(((-4*a*
c+b^2)^(1/2)-a+c)*(a-b+c))^(1/2))*a^3+1/c/(-4*a*c+b^2)^(1/2)/(a-b+c)/(((-4*a*c+b^2)^(1/2)+a-c)*(a-b+c))^(1/2)*
arctan((a-b+c)*tan(1/2*x)/(((-4*a*c+b^2)^(1/2)+a-c)*(a-b+c))^(1/2))*b^3-1/c/(-4*a*c+b^2)^(1/2)/(a-b+c)/(((-4*a
*c+b^2)^(1/2)-a+c)*(a-b+c))^(1/2)*arctanh((-a+b-c)*tan(1/2*x)/(((-4*a*c+b^2)^(1/2)-a+c)*(a-b+c))^(1/2))*b^3-3/
(-4*a*c+b^2)^(1/2)/(a-b+c)/(((-4*a*c+b^2)^(1/2)+a-c)*(a-b+c))^(1/2)*arctan((a-b+c)*tan(1/2*x)/(((-4*a*c+b^2)^(
1/2)+a-c)*(a-b+c))^(1/2))*a*b+3/(-4*a*c+b^2)^(1/2)/(a-b+c)/(((-4*a*c+b^2)^(1/2)-a+c)*(a-b+c))^(1/2)*arctanh((-
a+b-c)*tan(1/2*x)/(((-4*a*c+b^2)^(1/2)-a+c)*(a-b+c))^(1/2))*a*b+1/c/(a-b+c)/(((-4*a*c+b^2)^(1/2)-a+c)*(a-b+c))
^(1/2)*arctanh((-a+b-c)*tan(1/2*x)/(((-4*a*c+b^2)^(1/2)-a+c)*(a-b+c))^(1/2))*a^2+1/c^2/(a-b+c)/(((-4*a*c+b^2)^
(1/2)-a+c)*(a-b+c))^(1/2)*arctanh((-a+b-c)*tan(1/2*x)/(((-4*a*c+b^2)^(1/2)-a+c)*(a-b+c))^(1/2))*b^3-2/(-4*a*c+
b^2)^(1/2)/(a-b+c)/(((-4*a*c+b^2)^(1/2)-a+c)*(a-b+c))^(1/2)*arctanh((-a+b-c)*tan(1/2*x)/(((-4*a*c+b^2)^(1/2)-a
+c)*(a-b+c))^(1/2))*a^2+2/(-4*a*c+b^2)^(1/2)/(a-b+c)/(((-4*a*c+b^2)^(1/2)+a-c)*(a-b+c))^(1/2)*arctan((a-b+c)*t
an(1/2*x)/(((-4*a*c+b^2)^(1/2)+a-c)*(a-b+c))^(1/2))*a^2+1/c/(a-b+c)/(((-4*a*c+b^2)^(1/2)+a-c)*(a-b+c))^(1/2)*a
rctan((a-b+c)*tan(1/2*x)/(((-4*a*c+b^2)^(1/2)+a-c)*(a-b+c))^(1/2))*a^2+1/c^2/(a-b+c)/(((-4*a*c+b^2)^(1/2)+a-c)
*(a-b+c))^(1/2)*arctan((a-b+c)*tan(1/2*x)/(((-4*a*c+b^2)^(1/2)+a-c)*(a-b+c))^(1/2))*b^3-1/c/(a-b+c)/(((-4*a*c+
b^2)^(1/2)+a-c)*(a-b+c))^(1/2)*arctan((a-b+c)*tan(1/2*x)/(((-4*a*c+b^2)^(1/2)+a-c)*(a-b+c))^(1/2))*b^2-1/c/(a-
b+c)/(((-4*a*c+b^2)^(1/2)-a+c)*(a-b+c))^(1/2)*arctanh((-a+b-c)*tan(1/2*x)/(((-4*a*c+b^2)^(1/2)-a+c)*(a-b+c))^(
1/2))*b^2+2/c*tan(1/2*x)/(tan(1/2*x)^2+1)-2/c^2*b*arctan(tan(1/2*x))+1/(a-b+c)/(((-4*a*c+b^2)^(1/2)+a-c)*(a-b+
c))^(1/2)*arctan((a-b+c)*tan(1/2*x)/(((-4*a*c+b^2)^(1/2)+a-c)*(a-b+c))^(1/2))*a+1/(a-b+c)/(((-4*a*c+b^2)^(1/2)
-a+c)*(a-b+c))^(1/2)*arctanh((-a+b-c)*tan(1/2*x)/(((-4*a*c+b^2)^(1/2)-a+c)*(a-b+c))^(1/2))*a-2/c^2/(a-b+c)/(((
-4*a*c+b^2)^(1/2)+a-c)*(a-b+c))^(1/2)*arctan((a-b+c)*tan(1/2*x)/(((-4*a*c+b^2)^(1/2)+a-c)*(a-b+c))^(1/2))*a*b^
2-2/c^2/(a-b+c)/(((-4*a*c+b^2)^(1/2)-a+c)*(a-b+c))^(1/2)*arctanh((-a+b-c)*tan(1/2*x)/(((-4*a*c+b^2)^(1/2)-a+c)
*(a-b+c))^(1/2))*a*b^2-1/c^2/(-4*a*c+b^2)^(1/2)/(a-b+c)/(((-4*a*c+b^2)^(1/2)+a-c)*(a-b+c))^(1/2)*arctan((a-b+c
)*tan(1/2*x)/(((-4*a*c+b^2)^(1/2)+a-c)*(a-b+c))^(1/2))*b^4+2/c/(-4*a*c+b^2)^(1/2)/(a-b+c)/(((-4*a*c+b^2)^(1/2)
+a-c)*(a-b+c))^(1/2)*arctan((a-b+c)*tan(1/2*x)/(((-4*a*c+b^2)^(1/2)+a-c)*(a-b+c))^(1/2))*a*b^2+1/c^2/(-4*a*c+b
^2)^(1/2)/(a-b+c)/(((-4*a*c+b^2)^(1/2)-a+c)*(a-b+c))^(1/2)*arctanh((-a+b-c)*tan(1/2*x)/(((-4*a*c+b^2)^(1/2)-a+
c)*(a-b+c))^(1/2))*a^2*b^2-5/c*b/(-4*a*c+b^2)^(1/2)/(a-b+c)/(((-4*a*c+b^2)^(1/2)+a-c)*(a-b+c))^(1/2)*arctan((a
-b+c)*tan(1/2*x)/(((-4*a*c+b^2)^(1/2)+a-c)*(a-b+c))^(1/2))*a^2+2/c^2/(-4*a*c+b^2)^(1/2)/(a-b+c)/(((-4*a*c+b^2)
^(1/2)+a-c)*(a-b+c))^(1/2)*arctan((a-b+c)*tan(1/2*x)/(((-4*a*c+b^2)^(1/2)+a-c)*(a-b+c))^(1/2))*a*b^3-2/c/(-4*a
*c+b^2)^(1/2)/(a-b+c)/(((-4*a*c+b^2)^(1/2)-a+c)*(a-b+c))^(1/2)*arctanh((-a+b-c)*tan(1/2*x)/(((-4*a*c+b^2)^(1/2
)-a+c)*(a-b+c))^(1/2))*a*b^2+5/c*b/(-4*a*c+b^2)^(1/2)/(a-b+c)/(((-4*a*c+b^2)^(1/2)-a+c)*(a-b+c))^(1/2)*arctanh
((-a+b-c)*tan(1/2*x)/(((-4*a*c+b^2)^(1/2)-a+c)*(a-b+c))^(1/2))*a^2-2/c^2/(-4*a*c+b^2)^(1/2)/(a-b+c)/(((-4*a*c+
b^2)^(1/2)-a+c)*(a-b+c))^(1/2)*arctanh((-a+b-c)*tan(1/2*x)/(((-4*a*c+b^2)^(1/2)-a+c)*(a-b+c))^(1/2))*a*b^3-1/c
^2/(-4*a*c+b^2)^(1/2)/(a-b+c)/(((-4*a*c+b^2)^(1/2)+a-c)*(a-b+c))^(1/2)*arctan((a-b+c)*tan(1/2*x)/(((-4*a*c+b^2
)^(1/2)+a-c)*(a-b+c))^(1/2))*a^2*b^2

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{result too large to display} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(x)^3/(a+b*cos(x)+c*cos(x)^2),x, algorithm="maxima")

[Out]

-(c^2*integrate(-2*(2*(b^3 - a*b*c)*cos(3*x)^2 + 4*(2*a^2*b + a*b*c)*cos(2*x)^2 + 2*(b^3 - a*b*c)*cos(x)^2 + 2
*(b^3 - a*b*c)*sin(3*x)^2 + 4*(2*a^2*b + a*b*c)*sin(2*x)^2 + 2*(4*a*b^2 - a*c^2 - (2*a^2 - b^2)*c)*sin(2*x)*si
n(x) + 2*(b^3 - a*b*c)*sin(x)^2 + (2*a*b*c*cos(2*x) + (b^2*c - a*c^2)*cos(3*x) + (b^2*c - a*c^2)*cos(x))*cos(4
*x) + (b^2*c - a*c^2 + 2*(4*a*b^2 - a*c^2 - (2*a^2 - b^2)*c)*cos(2*x) + 4*(b^3 - a*b*c)*cos(x))*cos(3*x) + 2*(
a*b*c + (4*a*b^2 - a*c^2 - (2*a^2 - b^2)*c)*cos(x))*cos(2*x) + (b^2*c - a*c^2)*cos(x) + (2*a*b*c*sin(2*x) + (b
^2*c - a*c^2)*sin(3*x) + (b^2*c - a*c^2)*sin(x))*sin(4*x) + 2*((4*a*b^2 - a*c^2 - (2*a^2 - b^2)*c)*sin(2*x) +
2*(b^3 - a*b*c)*sin(x))*sin(3*x))/(c^4*cos(4*x)^2 + 4*b^2*c^2*cos(3*x)^2 + 4*b^2*c^2*cos(x)^2 + c^4*sin(4*x)^2
+ 4*b^2*c^2*sin(3*x)^2 + 4*b^2*c^2*sin(x)^2 + 4*b*c^3*cos(x) + c^4 + 4*(4*a^2*c^2 + 4*a*c^3 + c^4)*cos(2*x)^2
+ 4*(4*a^2*c^2 + 4*a*c^3 + c^4)*sin(2*x)^2 + 8*(2*a*b*c^2 + b*c^3)*sin(2*x)*sin(x) + 2*(2*b*c^3*cos(3*x) + 2*
b*c^3*cos(x) + c^4 + 2*(2*a*c^3 + c^4)*cos(2*x))*cos(4*x) + 4*(2*b^2*c^2*cos(x) + b*c^3 + 2*(2*a*b*c^2 + b*c^3
)*cos(2*x))*cos(3*x) + 4*(2*a*c^3 + c^4 + 2*(2*a*b*c^2 + b*c^3)*cos(x))*cos(2*x) + 4*(b*c^3*sin(3*x) + b*c^3*s
in(x) + (2*a*c^3 + c^4)*sin(2*x))*sin(4*x) + 8*(b^2*c^2*sin(x) + (2*a*b*c^2 + b*c^3)*sin(2*x))*sin(3*x)), x) +
b*x - c*sin(x))/c^2

________________________________________________________________________________________

Fricas [B]  time = 13.0151, size = 13111, normalized size = 43.85 \begin{align*} \text{result too large to display} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(x)^3/(a+b*cos(x)+c*cos(x)^2),x, algorithm="fricas")

[Out]

1/4*(sqrt(2)*c^2*sqrt((a^2*b^4 - b^6 + 2*a^3*c^3 + (2*a^4 - 9*a^2*b^2)*c^2 - 2*(2*a^3*b^2 - 3*a*b^4)*c + (4*a*
c^7 + (8*a^2 - b^2)*c^6 + 2*(2*a^3 - 3*a*b^2)*c^5 - (a^2*b^2 - b^4)*c^4)*sqrt(-(a^4*b^6 - 2*a^2*b^8 + b^10 + 9
*a^4*b^2*c^4 + 12*(a^5*b^2 - 2*a^3*b^4)*c^3 + 2*(2*a^6*b^2 - 11*a^4*b^4 + 11*a^2*b^6)*c^2 - 4*(a^5*b^4 - 3*a^3
*b^6 + 2*a*b^8)*c)/(4*a*c^13 + (16*a^2 - b^2)*c^12 + 12*(2*a^3 - a*b^2)*c^11 + 2*(8*a^4 - 11*a^2*b^2 + b^4)*c^
10 + 4*(a^5 - 3*a^3*b^2 + 2*a*b^4)*c^9 - (a^4*b^2 - 2*a^2*b^4 + b^6)*c^8)))/(4*a*c^7 + (8*a^2 - b^2)*c^6 + 2*(
2*a^3 - 3*a*b^2)*c^5 - (a^2*b^2 - b^4)*c^4))*log(6*a^5*b*c^3 + 4*(a^6*b - 2*a^4*b^3)*c^2 - (4*a^4*c^7 + (8*a^5
- a^3*b^2)*c^6 + 2*(2*a^6 - 3*a^4*b^2)*c^5 - (a^5*b^2 - a^3*b^4)*c^4)*sqrt(-(a^4*b^6 - 2*a^2*b^8 + b^10 + 9*a
^4*b^2*c^4 + 12*(a^5*b^2 - 2*a^3*b^4)*c^3 + 2*(2*a^6*b^2 - 11*a^4*b^4 + 11*a^2*b^6)*c^2 - 4*(a^5*b^4 - 3*a^3*b
^6 + 2*a*b^8)*c)/(4*a*c^13 + (16*a^2 - b^2)*c^12 + 12*(2*a^3 - a*b^2)*c^11 + 2*(8*a^4 - 11*a^2*b^2 + b^4)*c^10
+ 4*(a^5 - 3*a^3*b^2 + 2*a*b^4)*c^9 - (a^4*b^2 - 2*a^2*b^4 + b^6)*c^8))*cos(x) - 2*(a^5*b^3 - a^3*b^5)*c + 1/
2*sqrt(2)*((12*a^2*b*c^9 + 7*(4*a^3*b - a*b^3)*c^8 + (20*a^4*b - 27*a^2*b^3 + b^5)*c^7 + (4*a^5*b - 13*a^3*b^3
+ 9*a*b^5)*c^6 - (a^4*b^3 - 2*a^2*b^5 + b^7)*c^5)*sqrt(-(a^4*b^6 - 2*a^2*b^8 + b^10 + 9*a^4*b^2*c^4 + 12*(a^5
*b^2 - 2*a^3*b^4)*c^3 + 2*(2*a^6*b^2 - 11*a^4*b^4 + 11*a^2*b^6)*c^2 - 4*(a^5*b^4 - 3*a^3*b^6 + 2*a*b^8)*c)/(4*
a*c^13 + (16*a^2 - b^2)*c^12 + 12*(2*a^3 - a*b^2)*c^11 + 2*(8*a^4 - 11*a^2*b^2 + b^4)*c^10 + 4*(a^5 - 3*a^3*b^
2 + 2*a*b^4)*c^9 - (a^4*b^2 - 2*a^2*b^4 + b^6)*c^8))*sin(x) - (12*a^4*b*c^5 + (20*a^5*b - 31*a^3*b^3)*c^4 + (8
*a^6*b - 33*a^4*b^3 + 27*a^2*b^5)*c^3 - 3*(2*a^5*b^3 - 5*a^3*b^5 + 3*a*b^7)*c^2 + (a^4*b^5 - 2*a^2*b^7 + b^9)*
c)*sin(x))*sqrt((a^2*b^4 - b^6 + 2*a^3*c^3 + (2*a^4 - 9*a^2*b^2)*c^2 - 2*(2*a^3*b^2 - 3*a*b^4)*c + (4*a*c^7 +
(8*a^2 - b^2)*c^6 + 2*(2*a^3 - 3*a*b^2)*c^5 - (a^2*b^2 - b^4)*c^4)*sqrt(-(a^4*b^6 - 2*a^2*b^8 + b^10 + 9*a^4*b
^2*c^4 + 12*(a^5*b^2 - 2*a^3*b^4)*c^3 + 2*(2*a^6*b^2 - 11*a^4*b^4 + 11*a^2*b^6)*c^2 - 4*(a^5*b^4 - 3*a^3*b^6 +
2*a*b^8)*c)/(4*a*c^13 + (16*a^2 - b^2)*c^12 + 12*(2*a^3 - a*b^2)*c^11 + 2*(8*a^4 - 11*a^2*b^2 + b^4)*c^10 + 4
*(a^5 - 3*a^3*b^2 + 2*a*b^4)*c^9 - (a^4*b^2 - 2*a^2*b^4 + b^6)*c^8)))/(4*a*c^7 + (8*a^2 - b^2)*c^6 + 2*(2*a^3
- 3*a*b^2)*c^5 - (a^2*b^2 - b^4)*c^4)) - (a^5*b^4 - a^3*b^6 - 3*a^5*b^2*c^2 - 2*(a^6*b^2 - 2*a^4*b^4)*c)*cos(x
)) - sqrt(2)*c^2*sqrt((a^2*b^4 - b^6 + 2*a^3*c^3 + (2*a^4 - 9*a^2*b^2)*c^2 - 2*(2*a^3*b^2 - 3*a*b^4)*c + (4*a*
c^7 + (8*a^2 - b^2)*c^6 + 2*(2*a^3 - 3*a*b^2)*c^5 - (a^2*b^2 - b^4)*c^4)*sqrt(-(a^4*b^6 - 2*a^2*b^8 + b^10 + 9
*a^4*b^2*c^4 + 12*(a^5*b^2 - 2*a^3*b^4)*c^3 + 2*(2*a^6*b^2 - 11*a^4*b^4 + 11*a^2*b^6)*c^2 - 4*(a^5*b^4 - 3*a^3
*b^6 + 2*a*b^8)*c)/(4*a*c^13 + (16*a^2 - b^2)*c^12 + 12*(2*a^3 - a*b^2)*c^11 + 2*(8*a^4 - 11*a^2*b^2 + b^4)*c^
10 + 4*(a^5 - 3*a^3*b^2 + 2*a*b^4)*c^9 - (a^4*b^2 - 2*a^2*b^4 + b^6)*c^8)))/(4*a*c^7 + (8*a^2 - b^2)*c^6 + 2*(
2*a^3 - 3*a*b^2)*c^5 - (a^2*b^2 - b^4)*c^4))*log(6*a^5*b*c^3 + 4*(a^6*b - 2*a^4*b^3)*c^2 - (4*a^4*c^7 + (8*a^5
- a^3*b^2)*c^6 + 2*(2*a^6 - 3*a^4*b^2)*c^5 - (a^5*b^2 - a^3*b^4)*c^4)*sqrt(-(a^4*b^6 - 2*a^2*b^8 + b^10 + 9*a
^4*b^2*c^4 + 12*(a^5*b^2 - 2*a^3*b^4)*c^3 + 2*(2*a^6*b^2 - 11*a^4*b^4 + 11*a^2*b^6)*c^2 - 4*(a^5*b^4 - 3*a^3*b
^6 + 2*a*b^8)*c)/(4*a*c^13 + (16*a^2 - b^2)*c^12 + 12*(2*a^3 - a*b^2)*c^11 + 2*(8*a^4 - 11*a^2*b^2 + b^4)*c^10
+ 4*(a^5 - 3*a^3*b^2 + 2*a*b^4)*c^9 - (a^4*b^2 - 2*a^2*b^4 + b^6)*c^8))*cos(x) - 2*(a^5*b^3 - a^3*b^5)*c - 1/
2*sqrt(2)*((12*a^2*b*c^9 + 7*(4*a^3*b - a*b^3)*c^8 + (20*a^4*b - 27*a^2*b^3 + b^5)*c^7 + (4*a^5*b - 13*a^3*b^3
+ 9*a*b^5)*c^6 - (a^4*b^3 - 2*a^2*b^5 + b^7)*c^5)*sqrt(-(a^4*b^6 - 2*a^2*b^8 + b^10 + 9*a^4*b^2*c^4 + 12*(a^5
*b^2 - 2*a^3*b^4)*c^3 + 2*(2*a^6*b^2 - 11*a^4*b^4 + 11*a^2*b^6)*c^2 - 4*(a^5*b^4 - 3*a^3*b^6 + 2*a*b^8)*c)/(4*
a*c^13 + (16*a^2 - b^2)*c^12 + 12*(2*a^3 - a*b^2)*c^11 + 2*(8*a^4 - 11*a^2*b^2 + b^4)*c^10 + 4*(a^5 - 3*a^3*b^
2 + 2*a*b^4)*c^9 - (a^4*b^2 - 2*a^2*b^4 + b^6)*c^8))*sin(x) - (12*a^4*b*c^5 + (20*a^5*b - 31*a^3*b^3)*c^4 + (8
*a^6*b - 33*a^4*b^3 + 27*a^2*b^5)*c^3 - 3*(2*a^5*b^3 - 5*a^3*b^5 + 3*a*b^7)*c^2 + (a^4*b^5 - 2*a^2*b^7 + b^9)*
c)*sin(x))*sqrt((a^2*b^4 - b^6 + 2*a^3*c^3 + (2*a^4 - 9*a^2*b^2)*c^2 - 2*(2*a^3*b^2 - 3*a*b^4)*c + (4*a*c^7 +
(8*a^2 - b^2)*c^6 + 2*(2*a^3 - 3*a*b^2)*c^5 - (a^2*b^2 - b^4)*c^4)*sqrt(-(a^4*b^6 - 2*a^2*b^8 + b^10 + 9*a^4*b
^2*c^4 + 12*(a^5*b^2 - 2*a^3*b^4)*c^3 + 2*(2*a^6*b^2 - 11*a^4*b^4 + 11*a^2*b^6)*c^2 - 4*(a^5*b^4 - 3*a^3*b^6 +
2*a*b^8)*c)/(4*a*c^13 + (16*a^2 - b^2)*c^12 + 12*(2*a^3 - a*b^2)*c^11 + 2*(8*a^4 - 11*a^2*b^2 + b^4)*c^10 + 4
*(a^5 - 3*a^3*b^2 + 2*a*b^4)*c^9 - (a^4*b^2 - 2*a^2*b^4 + b^6)*c^8)))/(4*a*c^7 + (8*a^2 - b^2)*c^6 + 2*(2*a^3
- 3*a*b^2)*c^5 - (a^2*b^2 - b^4)*c^4)) - (a^5*b^4 - a^3*b^6 - 3*a^5*b^2*c^2 - 2*(a^6*b^2 - 2*a^4*b^4)*c)*cos(x
)) + sqrt(2)*c^2*sqrt((a^2*b^4 - b^6 + 2*a^3*c^3 + (2*a^4 - 9*a^2*b^2)*c^2 - 2*(2*a^3*b^2 - 3*a*b^4)*c - (4*a*
c^7 + (8*a^2 - b^2)*c^6 + 2*(2*a^3 - 3*a*b^2)*c^5 - (a^2*b^2 - b^4)*c^4)*sqrt(-(a^4*b^6 - 2*a^2*b^8 + b^10 + 9
*a^4*b^2*c^4 + 12*(a^5*b^2 - 2*a^3*b^4)*c^3 + 2*(2*a^6*b^2 - 11*a^4*b^4 + 11*a^2*b^6)*c^2 - 4*(a^5*b^4 - 3*a^3
*b^6 + 2*a*b^8)*c)/(4*a*c^13 + (16*a^2 - b^2)*c^12 + 12*(2*a^3 - a*b^2)*c^11 + 2*(8*a^4 - 11*a^2*b^2 + b^4)*c^
10 + 4*(a^5 - 3*a^3*b^2 + 2*a*b^4)*c^9 - (a^4*b^2 - 2*a^2*b^4 + b^6)*c^8)))/(4*a*c^7 + (8*a^2 - b^2)*c^6 + 2*(
2*a^3 - 3*a*b^2)*c^5 - (a^2*b^2 - b^4)*c^4))*log(-6*a^5*b*c^3 - 4*(a^6*b - 2*a^4*b^3)*c^2 - (4*a^4*c^7 + (8*a^
5 - a^3*b^2)*c^6 + 2*(2*a^6 - 3*a^4*b^2)*c^5 - (a^5*b^2 - a^3*b^4)*c^4)*sqrt(-(a^4*b^6 - 2*a^2*b^8 + b^10 + 9*
a^4*b^2*c^4 + 12*(a^5*b^2 - 2*a^3*b^4)*c^3 + 2*(2*a^6*b^2 - 11*a^4*b^4 + 11*a^2*b^6)*c^2 - 4*(a^5*b^4 - 3*a^3*
b^6 + 2*a*b^8)*c)/(4*a*c^13 + (16*a^2 - b^2)*c^12 + 12*(2*a^3 - a*b^2)*c^11 + 2*(8*a^4 - 11*a^2*b^2 + b^4)*c^1
0 + 4*(a^5 - 3*a^3*b^2 + 2*a*b^4)*c^9 - (a^4*b^2 - 2*a^2*b^4 + b^6)*c^8))*cos(x) + 2*(a^5*b^3 - a^3*b^5)*c + 1
/2*sqrt(2)*((12*a^2*b*c^9 + 7*(4*a^3*b - a*b^3)*c^8 + (20*a^4*b - 27*a^2*b^3 + b^5)*c^7 + (4*a^5*b - 13*a^3*b^
3 + 9*a*b^5)*c^6 - (a^4*b^3 - 2*a^2*b^5 + b^7)*c^5)*sqrt(-(a^4*b^6 - 2*a^2*b^8 + b^10 + 9*a^4*b^2*c^4 + 12*(a^
5*b^2 - 2*a^3*b^4)*c^3 + 2*(2*a^6*b^2 - 11*a^4*b^4 + 11*a^2*b^6)*c^2 - 4*(a^5*b^4 - 3*a^3*b^6 + 2*a*b^8)*c)/(4
*a*c^13 + (16*a^2 - b^2)*c^12 + 12*(2*a^3 - a*b^2)*c^11 + 2*(8*a^4 - 11*a^2*b^2 + b^4)*c^10 + 4*(a^5 - 3*a^3*b
^2 + 2*a*b^4)*c^9 - (a^4*b^2 - 2*a^2*b^4 + b^6)*c^8))*sin(x) + (12*a^4*b*c^5 + (20*a^5*b - 31*a^3*b^3)*c^4 + (
8*a^6*b - 33*a^4*b^3 + 27*a^2*b^5)*c^3 - 3*(2*a^5*b^3 - 5*a^3*b^5 + 3*a*b^7)*c^2 + (a^4*b^5 - 2*a^2*b^7 + b^9)
*c)*sin(x))*sqrt((a^2*b^4 - b^6 + 2*a^3*c^3 + (2*a^4 - 9*a^2*b^2)*c^2 - 2*(2*a^3*b^2 - 3*a*b^4)*c - (4*a*c^7 +
(8*a^2 - b^2)*c^6 + 2*(2*a^3 - 3*a*b^2)*c^5 - (a^2*b^2 - b^4)*c^4)*sqrt(-(a^4*b^6 - 2*a^2*b^8 + b^10 + 9*a^4*
b^2*c^4 + 12*(a^5*b^2 - 2*a^3*b^4)*c^3 + 2*(2*a^6*b^2 - 11*a^4*b^4 + 11*a^2*b^6)*c^2 - 4*(a^5*b^4 - 3*a^3*b^6
+ 2*a*b^8)*c)/(4*a*c^13 + (16*a^2 - b^2)*c^12 + 12*(2*a^3 - a*b^2)*c^11 + 2*(8*a^4 - 11*a^2*b^2 + b^4)*c^10 +
4*(a^5 - 3*a^3*b^2 + 2*a*b^4)*c^9 - (a^4*b^2 - 2*a^2*b^4 + b^6)*c^8)))/(4*a*c^7 + (8*a^2 - b^2)*c^6 + 2*(2*a^3
- 3*a*b^2)*c^5 - (a^2*b^2 - b^4)*c^4)) + (a^5*b^4 - a^3*b^6 - 3*a^5*b^2*c^2 - 2*(a^6*b^2 - 2*a^4*b^4)*c)*cos(
x)) - sqrt(2)*c^2*sqrt((a^2*b^4 - b^6 + 2*a^3*c^3 + (2*a^4 - 9*a^2*b^2)*c^2 - 2*(2*a^3*b^2 - 3*a*b^4)*c - (4*a
*c^7 + (8*a^2 - b^2)*c^6 + 2*(2*a^3 - 3*a*b^2)*c^5 - (a^2*b^2 - b^4)*c^4)*sqrt(-(a^4*b^6 - 2*a^2*b^8 + b^10 +
9*a^4*b^2*c^4 + 12*(a^5*b^2 - 2*a^3*b^4)*c^3 + 2*(2*a^6*b^2 - 11*a^4*b^4 + 11*a^2*b^6)*c^2 - 4*(a^5*b^4 - 3*a^
3*b^6 + 2*a*b^8)*c)/(4*a*c^13 + (16*a^2 - b^2)*c^12 + 12*(2*a^3 - a*b^2)*c^11 + 2*(8*a^4 - 11*a^2*b^2 + b^4)*c
^10 + 4*(a^5 - 3*a^3*b^2 + 2*a*b^4)*c^9 - (a^4*b^2 - 2*a^2*b^4 + b^6)*c^8)))/(4*a*c^7 + (8*a^2 - b^2)*c^6 + 2*
(2*a^3 - 3*a*b^2)*c^5 - (a^2*b^2 - b^4)*c^4))*log(-6*a^5*b*c^3 - 4*(a^6*b - 2*a^4*b^3)*c^2 - (4*a^4*c^7 + (8*a
^5 - a^3*b^2)*c^6 + 2*(2*a^6 - 3*a^4*b^2)*c^5 - (a^5*b^2 - a^3*b^4)*c^4)*sqrt(-(a^4*b^6 - 2*a^2*b^8 + b^10 + 9
*a^4*b^2*c^4 + 12*(a^5*b^2 - 2*a^3*b^4)*c^3 + 2*(2*a^6*b^2 - 11*a^4*b^4 + 11*a^2*b^6)*c^2 - 4*(a^5*b^4 - 3*a^3
*b^6 + 2*a*b^8)*c)/(4*a*c^13 + (16*a^2 - b^2)*c^12 + 12*(2*a^3 - a*b^2)*c^11 + 2*(8*a^4 - 11*a^2*b^2 + b^4)*c^
10 + 4*(a^5 - 3*a^3*b^2 + 2*a*b^4)*c^9 - (a^4*b^2 - 2*a^2*b^4 + b^6)*c^8))*cos(x) + 2*(a^5*b^3 - a^3*b^5)*c -
1/2*sqrt(2)*((12*a^2*b*c^9 + 7*(4*a^3*b - a*b^3)*c^8 + (20*a^4*b - 27*a^2*b^3 + b^5)*c^7 + (4*a^5*b - 13*a^3*b
^3 + 9*a*b^5)*c^6 - (a^4*b^3 - 2*a^2*b^5 + b^7)*c^5)*sqrt(-(a^4*b^6 - 2*a^2*b^8 + b^10 + 9*a^4*b^2*c^4 + 12*(a
^5*b^2 - 2*a^3*b^4)*c^3 + 2*(2*a^6*b^2 - 11*a^4*b^4 + 11*a^2*b^6)*c^2 - 4*(a^5*b^4 - 3*a^3*b^6 + 2*a*b^8)*c)/(
4*a*c^13 + (16*a^2 - b^2)*c^12 + 12*(2*a^3 - a*b^2)*c^11 + 2*(8*a^4 - 11*a^2*b^2 + b^4)*c^10 + 4*(a^5 - 3*a^3*
b^2 + 2*a*b^4)*c^9 - (a^4*b^2 - 2*a^2*b^4 + b^6)*c^8))*sin(x) + (12*a^4*b*c^5 + (20*a^5*b - 31*a^3*b^3)*c^4 +
(8*a^6*b - 33*a^4*b^3 + 27*a^2*b^5)*c^3 - 3*(2*a^5*b^3 - 5*a^3*b^5 + 3*a*b^7)*c^2 + (a^4*b^5 - 2*a^2*b^7 + b^9
)*c)*sin(x))*sqrt((a^2*b^4 - b^6 + 2*a^3*c^3 + (2*a^4 - 9*a^2*b^2)*c^2 - 2*(2*a^3*b^2 - 3*a*b^4)*c - (4*a*c^7
+ (8*a^2 - b^2)*c^6 + 2*(2*a^3 - 3*a*b^2)*c^5 - (a^2*b^2 - b^4)*c^4)*sqrt(-(a^4*b^6 - 2*a^2*b^8 + b^10 + 9*a^4
*b^2*c^4 + 12*(a^5*b^2 - 2*a^3*b^4)*c^3 + 2*(2*a^6*b^2 - 11*a^4*b^4 + 11*a^2*b^6)*c^2 - 4*(a^5*b^4 - 3*a^3*b^6
+ 2*a*b^8)*c)/(4*a*c^13 + (16*a^2 - b^2)*c^12 + 12*(2*a^3 - a*b^2)*c^11 + 2*(8*a^4 - 11*a^2*b^2 + b^4)*c^10 +
4*(a^5 - 3*a^3*b^2 + 2*a*b^4)*c^9 - (a^4*b^2 - 2*a^2*b^4 + b^6)*c^8)))/(4*a*c^7 + (8*a^2 - b^2)*c^6 + 2*(2*a^
3 - 3*a*b^2)*c^5 - (a^2*b^2 - b^4)*c^4)) + (a^5*b^4 - a^3*b^6 - 3*a^5*b^2*c^2 - 2*(a^6*b^2 - 2*a^4*b^4)*c)*cos
(x)) - 4*b*x + 4*c*sin(x))/c^2

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(x)**3/(a+b*cos(x)+c*cos(x)**2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(x)^3/(a+b*cos(x)+c*cos(x)^2),x, algorithm="giac")

[Out]

Timed out