### 3.17 $$\int (2-2 \sin (c+d x))^n \, dx$$

Optimal. Leaf size=59 $\frac{2^{2 n+\frac{1}{2}} \cos (c+d x) \, _2F_1\left (\frac{1}{2},\frac{1}{2}-n;\frac{3}{2};\frac{1}{2} (\sin (c+d x)+1)\right )}{d \sqrt{1-\sin (c+d x)}}$

[Out]

(2^(1/2 + 2*n)*Cos[c + d*x]*Hypergeometric2F1[1/2, 1/2 - n, 3/2, (1 + Sin[c + d*x])/2])/(d*Sqrt[1 - Sin[c + d*
x]])

________________________________________________________________________________________

Rubi [A]  time = 0.0156874, antiderivative size = 59, normalized size of antiderivative = 1., number of steps used = 1, number of rules used = 1, integrand size = 12, $$\frac{\text{number of rules}}{\text{integrand size}}$$ = 0.083, Rules used = {2651} $\frac{2^{2 n+\frac{1}{2}} \cos (c+d x) \, _2F_1\left (\frac{1}{2},\frac{1}{2}-n;\frac{3}{2};\frac{1}{2} (\sin (c+d x)+1)\right )}{d \sqrt{1-\sin (c+d x)}}$

Antiderivative was successfully veriﬁed.

[In]

Int[(2 - 2*Sin[c + d*x])^n,x]

[Out]

(2^(1/2 + 2*n)*Cos[c + d*x]*Hypergeometric2F1[1/2, 1/2 - n, 3/2, (1 + Sin[c + d*x])/2])/(d*Sqrt[1 - Sin[c + d*
x]])

Rule 2651

Int[((a_) + (b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> -Simp[(2^(n + 1/2)*a^(n - 1/2)*b*Cos[c + d*x]*Hy
pergeometric2F1[1/2, 1/2 - n, 3/2, (1*(1 - (b*Sin[c + d*x])/a))/2])/(d*Sqrt[a + b*Sin[c + d*x]]), x] /; FreeQ[
{a, b, c, d, n}, x] && EqQ[a^2 - b^2, 0] &&  !IntegerQ[2*n] && GtQ[a, 0]

Rubi steps

\begin{align*} \int (2-2 \sin (c+d x))^n \, dx &=\frac{2^{\frac{1}{2}+2 n} \cos (c+d x) \, _2F_1\left (\frac{1}{2},\frac{1}{2}-n;\frac{3}{2};\frac{1}{2} (1+\sin (c+d x))\right )}{d \sqrt{1-\sin (c+d x)}}\\ \end{align*}

Mathematica [A]  time = 0.106498, size = 90, normalized size = 1.53 $\frac{\cos (c+d x) (2-2 \sin (c+d x))^n \cos ^2\left (\frac{1}{4} (2 c+2 d x+\pi )\right )^{-n-\frac{1}{2}} \, _2F_1\left (\frac{1}{2},\frac{1}{2}-n;\frac{3}{2};\frac{1}{4} \cos ^2(c+d x) \csc ^2\left (\frac{1}{4} (2 c+2 d x-\pi )\right )\right )}{d}$

Warning: Unable to verify antiderivative.

[In]

Integrate[(2 - 2*Sin[c + d*x])^n,x]

[Out]

(Cos[c + d*x]*(Cos[(2*c + Pi + 2*d*x)/4]^2)^(-1/2 - n)*Hypergeometric2F1[1/2, 1/2 - n, 3/2, (Cos[c + d*x]^2*Cs
c[(2*c - Pi + 2*d*x)/4]^2)/4]*(2 - 2*Sin[c + d*x])^n)/d

________________________________________________________________________________________

Maple [F]  time = 0.212, size = 0, normalized size = 0. \begin{align*} \int \left ( 2-2\,\sin \left ( dx+c \right ) \right ) ^{n}\, dx \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

int((2-2*sin(d*x+c))^n,x)

[Out]

int((2-2*sin(d*x+c))^n,x)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int{\left (-2 \, \sin \left (d x + c\right ) + 2\right )}^{n}\,{d x} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate((2-2*sin(d*x+c))^n,x, algorithm="maxima")

[Out]

integrate((-2*sin(d*x + c) + 2)^n, x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left ({\left (-2 \, \sin \left (d x + c\right ) + 2\right )}^{n}, x\right ) \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate((2-2*sin(d*x+c))^n,x, algorithm="fricas")

[Out]

integral((-2*sin(d*x + c) + 2)^n, x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \left (2 - 2 \sin{\left (c + d x \right )}\right )^{n}\, dx \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate((2-2*sin(d*x+c))**n,x)

[Out]

Integral((2 - 2*sin(c + d*x))**n, x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int{\left (-2 \, \sin \left (d x + c\right ) + 2\right )}^{n}\,{d x} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate((2-2*sin(d*x+c))^n,x, algorithm="giac")

[Out]

integrate((-2*sin(d*x + c) + 2)^n, x)