### 3.309 $$\int \frac{\log (\log (x) \sin (x))}{x^2} \, dx$$

Optimal. Leaf size=25 $\text{Unintegrable}\left (\frac{\cot (x)}{x},x\right )+\text{Ei}(-\log (x))-\frac{\log (\log (x) \sin (x))}{x}$

[Out]

ExpIntegralEi[-Log[x]] - Log[Log[x]*Sin[x]]/x + Unintegrable[Cot[x]/x, x]

________________________________________________________________________________________

Rubi [A]  time = 0.344563, antiderivative size = 0, normalized size of antiderivative = 0., number of steps used = 0, number of rules used = 0, integrand size = 0, $$\frac{\text{number of rules}}{\text{integrand size}}$$ = 0., Rules used = {} $\int \frac{\log (\log (x) \sin (x))}{x^2} \, dx$

Veriﬁcation is Not applicable to the result.

[In]

Int[Log[Log[x]*Sin[x]]/x^2,x]

[Out]

ExpIntegralEi[-Log[x]] - Log[Log[x]*Sin[x]]/x + Defer[Int][Cot[x]/x, x]

Rubi steps

\begin{align*} \int \frac{\log (\log (x) \sin (x))}{x^2} \, dx &=-\frac{\log (\log (x) \sin (x))}{x}-\int \frac{-1-x \cot (x) \log (x)}{x^2 \log (x)} \, dx\\ &=-\frac{\log (\log (x) \sin (x))}{x}-\int \left (-\frac{\cot (x)}{x}-\frac{1}{x^2 \log (x)}\right ) \, dx\\ &=-\frac{\log (\log (x) \sin (x))}{x}+\int \frac{\cot (x)}{x} \, dx+\int \frac{1}{x^2 \log (x)} \, dx\\ &=-\frac{\log (\log (x) \sin (x))}{x}+\int \frac{\cot (x)}{x} \, dx+\operatorname{Subst}\left (\int \frac{e^{-x}}{x} \, dx,x,\log (x)\right )\\ &=\text{Ei}(-\log (x))-\frac{\log (\log (x) \sin (x))}{x}+\int \frac{\cot (x)}{x} \, dx\\ \end{align*}

Mathematica [A]  time = 1.93027, size = 0, normalized size = 0. $\int \frac{\log (\log (x) \sin (x))}{x^2} \, dx$

Veriﬁcation is Not applicable to the result.

[In]

Integrate[Log[Log[x]*Sin[x]]/x^2,x]

[Out]

Integrate[Log[Log[x]*Sin[x]]/x^2, x]

________________________________________________________________________________________

Maple [A]  time = 0.434, size = 0, normalized size = 0. \begin{align*} \int{\frac{\ln \left ( \ln \left ( x \right ) \sin \left ( x \right ) \right ) }{{x}^{2}}}\, dx \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

int(ln(ln(x)*sin(x))/x^2,x)

[Out]

int(ln(ln(x)*sin(x))/x^2,x)

________________________________________________________________________________________

Maxima [A]  time = 0., size = 0, normalized size = 0. \begin{align*} \frac{x{\left ({\rm Ei}\left (-\log \left (x\right )\right ) + \overline{{\rm Ei}\left (-\log \left (x\right )\right )}\right )} - 2 \, x \int \frac{\sin \left (x\right )}{{\left (\cos \left (x\right )^{2} + \sin \left (x\right )^{2} + 2 \, \cos \left (x\right ) + 1\right )} x}\,{d x} + 2 \, x \int \frac{\sin \left (x\right )}{{\left (\cos \left (x\right )^{2} + \sin \left (x\right )^{2} - 2 \, \cos \left (x\right ) + 1\right )} x}\,{d x} + 2 \, \log \left (2\right ) - \log \left (\cos \left (x\right )^{2} + \sin \left (x\right )^{2} + 2 \, \cos \left (x\right ) + 1\right ) - \log \left (\cos \left (x\right )^{2} + \sin \left (x\right )^{2} - 2 \, \cos \left (x\right ) + 1\right ) - 2 \, \log \left (\log \left (x\right )\right )}{2 \, x} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(log(log(x)*sin(x))/x^2,x, algorithm="maxima")

[Out]

1/2*(x*(Ei(-log(x)) + conjugate(Ei(-log(x)))) - 2*x*integrate(sin(x)/(x*cos(x)^2 + x*sin(x)^2 + 2*x*cos(x) + x
), x) + 2*x*integrate(sin(x)/(x*cos(x)^2 + x*sin(x)^2 - 2*x*cos(x) + x), x) + 2*log(2) - log(cos(x)^2 + sin(x)
^2 + 2*cos(x) + 1) - log(cos(x)^2 + sin(x)^2 - 2*cos(x) + 1) - 2*log(log(x)))/x

________________________________________________________________________________________

Fricas [A]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{\log \left (\log \left (x\right ) \sin \left (x\right )\right )}{x^{2}}, x\right ) \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(log(log(x)*sin(x))/x^2,x, algorithm="fricas")

[Out]

integral(log(log(x)*sin(x))/x^2, x)

________________________________________________________________________________________

Sympy [A]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\log{\left (\log{\left (x \right )} \sin{\left (x \right )} \right )}}{x^{2}}\, dx \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(ln(ln(x)*sin(x))/x**2,x)

[Out]

Integral(log(log(x)*sin(x))/x**2, x)

________________________________________________________________________________________

Giac [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: TypeError} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(log(log(x)*sin(x))/x^2,x, algorithm="giac")

[Out]

Exception raised: TypeError