3.101 \(\int x^3 \log (-1+4 x+4 \sqrt{(-1+x) x}) \, dx\)

Optimal. Leaf size=172 \[ -\frac{x^4}{32}+\frac{x^3}{192}-\frac{x^2}{1024}-\frac{1}{32} \left (x^2-x\right )^{3/2} x-\frac{1}{12} \left (x^2-x\right )^{3/2}+\frac{149 (1-2 x) \sqrt{x^2-x}}{2048}-\frac{683 \sqrt{x^2-x}}{4096}+\frac{1}{4} x^4 \log \left (4 \sqrt{x^2-x}+4 x-1\right )+\frac{\tanh ^{-1}\left (\frac{1-10 x}{6 \sqrt{x^2-x}}\right )}{32768}-\frac{1537 \tanh ^{-1}\left (\frac{x}{\sqrt{x^2-x}}\right )}{16384}+\frac{x}{4096}-\frac{\log (8 x+1)}{32768} \]

[Out]

x/4096 - x^2/1024 + x^3/192 - x^4/32 - (683*Sqrt[-x + x^2])/4096 + (149*(1 - 2*x)*Sqrt[-x + x^2])/2048 - (-x +
 x^2)^(3/2)/12 - (x*(-x + x^2)^(3/2))/32 + ArcTanh[(1 - 10*x)/(6*Sqrt[-x + x^2])]/32768 - (1537*ArcTanh[x/Sqrt
[-x + x^2]])/16384 - Log[1 + 8*x]/32768 + (x^4*Log[-1 + 4*x + 4*Sqrt[-x + x^2]])/4

________________________________________________________________________________________

Rubi [A]  time = 0.380669, antiderivative size = 172, normalized size of antiderivative = 1., number of steps used = 25, number of rules used = 11, integrand size = 21, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.524, Rules used = {2537, 2535, 6742, 640, 620, 206, 612, 734, 843, 724, 670} \[ -\frac{x^4}{32}+\frac{x^3}{192}-\frac{x^2}{1024}-\frac{1}{32} \left (x^2-x\right )^{3/2} x-\frac{1}{12} \left (x^2-x\right )^{3/2}+\frac{149 (1-2 x) \sqrt{x^2-x}}{2048}-\frac{683 \sqrt{x^2-x}}{4096}+\frac{1}{4} x^4 \log \left (4 \sqrt{x^2-x}+4 x-1\right )+\frac{\tanh ^{-1}\left (\frac{1-10 x}{6 \sqrt{x^2-x}}\right )}{32768}-\frac{1537 \tanh ^{-1}\left (\frac{x}{\sqrt{x^2-x}}\right )}{16384}+\frac{x}{4096}-\frac{\log (8 x+1)}{32768} \]

Antiderivative was successfully verified.

[In]

Int[x^3*Log[-1 + 4*x + 4*Sqrt[(-1 + x)*x]],x]

[Out]

x/4096 - x^2/1024 + x^3/192 - x^4/32 - (683*Sqrt[-x + x^2])/4096 + (149*(1 - 2*x)*Sqrt[-x + x^2])/2048 - (-x +
 x^2)^(3/2)/12 - (x*(-x + x^2)^(3/2))/32 + ArcTanh[(1 - 10*x)/(6*Sqrt[-x + x^2])]/32768 - (1537*ArcTanh[x/Sqrt
[-x + x^2]])/16384 - Log[1 + 8*x]/32768 + (x^4*Log[-1 + 4*x + 4*Sqrt[-x + x^2]])/4

Rule 2537

Int[Log[(d_.) + (f_.)*Sqrt[u_] + (e_.)*(x_)]*(v_.), x_Symbol] :> Int[v*Log[d + e*x + f*Sqrt[ExpandToSum[u, x]]
], x] /; FreeQ[{d, e, f}, x] && QuadraticQ[u, x] &&  !QuadraticMatchQ[u, x] && (EqQ[v, 1] || MatchQ[v, ((g_.)*
x)^(m_.) /; FreeQ[{g, m}, x]])

Rule 2535

Int[Log[(d_.) + (e_.)*(x_) + (f_.)*Sqrt[(a_.) + (b_.)*(x_) + (c_.)*(x_)^2]]*((g_.)*(x_))^(m_.), x_Symbol] :> S
imp[((g*x)^(m + 1)*Log[d + e*x + f*Sqrt[a + b*x + c*x^2]])/(g*(m + 1)), x] + Dist[(f^2*(b^2 - 4*a*c))/(2*g*(m
+ 1)), Int[(g*x)^(m + 1)/((2*d*e - b*f^2)*(a + b*x + c*x^2) - f*(b*d - 2*a*e + (2*c*d - b*e)*x)*Sqrt[a + b*x +
 c*x^2]), x], x] /; FreeQ[{a, b, c, d, e, f, g, m}, x] && EqQ[e^2 - c*f^2, 0] && NeQ[m, -1] && IntegerQ[2*m]

Rule 6742

Int[u_, x_Symbol] :> With[{v = ExpandIntegrand[u, x]}, Int[v, x] /; SumQ[v]]

Rule 640

Int[((d_.) + (e_.)*(x_))*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(e*(a + b*x + c*x^2)^(p +
 1))/(2*c*(p + 1)), x] + Dist[(2*c*d - b*e)/(2*c), Int[(a + b*x + c*x^2)^p, x], x] /; FreeQ[{a, b, c, d, e, p}
, x] && NeQ[2*c*d - b*e, 0] && NeQ[p, -1]

Rule 620

Int[1/Sqrt[(b_.)*(x_) + (c_.)*(x_)^2], x_Symbol] :> Dist[2, Subst[Int[1/(1 - c*x^2), x], x, x/Sqrt[b*x + c*x^2
]], x] /; FreeQ[{b, c}, x]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 612

Int[((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[((b + 2*c*x)*(a + b*x + c*x^2)^p)/(2*c*(2*p +
1)), x] - Dist[(p*(b^2 - 4*a*c))/(2*c*(2*p + 1)), Int[(a + b*x + c*x^2)^(p - 1), x], x] /; FreeQ[{a, b, c}, x]
 && NeQ[b^2 - 4*a*c, 0] && GtQ[p, 0] && IntegerQ[4*p]

Rule 734

Int[((d_.) + (e_.)*(x_))^(m_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[((d + e*x)^(m + 1)*(
a + b*x + c*x^2)^p)/(e*(m + 2*p + 1)), x] - Dist[p/(e*(m + 2*p + 1)), Int[(d + e*x)^m*Simp[b*d - 2*a*e + (2*c*
d - b*e)*x, x]*(a + b*x + c*x^2)^(p - 1), x], x] /; FreeQ[{a, b, c, d, e, m}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ
[c*d^2 - b*d*e + a*e^2, 0] && NeQ[2*c*d - b*e, 0] && GtQ[p, 0] && NeQ[m + 2*p + 1, 0] && ( !RationalQ[m] || Lt
Q[m, 1]) &&  !ILtQ[m + 2*p, 0] && IntQuadraticQ[a, b, c, d, e, m, p, x]

Rule 843

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Dis
t[g/e, Int[(d + e*x)^(m + 1)*(a + b*x + c*x^2)^p, x], x] + Dist[(e*f - d*g)/e, Int[(d + e*x)^m*(a + b*x + c*x^
2)^p, x], x] /; FreeQ[{a, b, c, d, e, f, g, m, p}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0]
&&  !IGtQ[m, 0]

Rule 724

Int[1/(((d_.) + (e_.)*(x_))*Sqrt[(a_.) + (b_.)*(x_) + (c_.)*(x_)^2]), x_Symbol] :> Dist[-2, Subst[Int[1/(4*c*d
^2 - 4*b*d*e + 4*a*e^2 - x^2), x], x, (2*a*e - b*d - (2*c*d - b*e)*x)/Sqrt[a + b*x + c*x^2]], x] /; FreeQ[{a,
b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[2*c*d - b*e, 0]

Rule 670

Int[((d_.) + (e_.)*(x_))^(m_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(e*(d + e*x)^(m - 1)
*(a + b*x + c*x^2)^(p + 1))/(c*(m + 2*p + 1)), x] + Dist[((m + p)*(2*c*d - b*e))/(c*(m + 2*p + 1)), Int[(d + e
*x)^(m - 1)*(a + b*x + c*x^2)^p, x], x] /; FreeQ[{a, b, c, d, e, p}, x] && NeQ[b^2 - 4*a*c, 0] && EqQ[c*d^2 -
b*d*e + a*e^2, 0] && GtQ[m, 1] && NeQ[m + 2*p + 1, 0] && IntegerQ[2*p]

Rubi steps

\begin{align*} \int x^3 \log \left (-1+4 x+4 \sqrt{(-1+x) x}\right ) \, dx &=\int x^3 \log \left (-1+4 x+4 \sqrt{-x+x^2}\right ) \, dx\\ &=\frac{1}{4} x^4 \log \left (-1+4 x+4 \sqrt{-x+x^2}\right )+2 \int \frac{x^4}{-4 (1+2 x) \sqrt{-x+x^2}+8 \left (-x+x^2\right )} \, dx\\ &=\frac{1}{4} x^4 \log \left (-1+4 x+4 \sqrt{-x+x^2}\right )+2 \int \left (\frac{1}{8192}-\frac{x}{1024}+\frac{x^2}{128}-\frac{x^3}{16}-\frac{1}{8192 (1+8 x)}-\frac{x}{12 \sqrt{-x+x^2}}-\frac{85 \sqrt{-x+x^2}}{1024}+\frac{\sqrt{-x+x^2}}{3072 (-1-8 x)}-\frac{11}{128} x \sqrt{-x+x^2}-\frac{1}{16} x^2 \sqrt{-x+x^2}\right ) \, dx\\ &=\frac{x}{4096}-\frac{x^2}{1024}+\frac{x^3}{192}-\frac{x^4}{32}-\frac{\log (1+8 x)}{32768}+\frac{1}{4} x^4 \log \left (-1+4 x+4 \sqrt{-x+x^2}\right )+\frac{\int \frac{\sqrt{-x+x^2}}{-1-8 x} \, dx}{1536}-\frac{1}{8} \int x^2 \sqrt{-x+x^2} \, dx-\frac{85}{512} \int \sqrt{-x+x^2} \, dx-\frac{1}{6} \int \frac{x}{\sqrt{-x+x^2}} \, dx-\frac{11}{64} \int x \sqrt{-x+x^2} \, dx\\ &=\frac{x}{4096}-\frac{x^2}{1024}+\frac{x^3}{192}-\frac{x^4}{32}-\frac{683 \sqrt{-x+x^2}}{4096}+\frac{85 (1-2 x) \sqrt{-x+x^2}}{2048}-\frac{11}{192} \left (-x+x^2\right )^{3/2}-\frac{1}{32} x \left (-x+x^2\right )^{3/2}-\frac{\log (1+8 x)}{32768}+\frac{1}{4} x^4 \log \left (-1+4 x+4 \sqrt{-x+x^2}\right )+\frac{\int \frac{1-10 x}{(-1-8 x) \sqrt{-x+x^2}} \, dx}{24576}+\frac{85 \int \frac{1}{\sqrt{-x+x^2}} \, dx}{4096}-\frac{5}{64} \int x \sqrt{-x+x^2} \, dx-\frac{1}{12} \int \frac{1}{\sqrt{-x+x^2}} \, dx-\frac{11}{128} \int \sqrt{-x+x^2} \, dx\\ &=\frac{x}{4096}-\frac{x^2}{1024}+\frac{x^3}{192}-\frac{x^4}{32}-\frac{683 \sqrt{-x+x^2}}{4096}+\frac{129 (1-2 x) \sqrt{-x+x^2}}{2048}-\frac{1}{12} \left (-x+x^2\right )^{3/2}-\frac{1}{32} x \left (-x+x^2\right )^{3/2}-\frac{\log (1+8 x)}{32768}+\frac{1}{4} x^4 \log \left (-1+4 x+4 \sqrt{-x+x^2}\right )+\frac{5 \int \frac{1}{\sqrt{-x+x^2}} \, dx}{98304}+\frac{3 \int \frac{1}{(-1-8 x) \sqrt{-x+x^2}} \, dx}{32768}+\frac{11 \int \frac{1}{\sqrt{-x+x^2}} \, dx}{1024}-\frac{5}{128} \int \sqrt{-x+x^2} \, dx+\frac{85 \operatorname{Subst}\left (\int \frac{1}{1-x^2} \, dx,x,\frac{x}{\sqrt{-x+x^2}}\right )}{2048}-\frac{1}{6} \operatorname{Subst}\left (\int \frac{1}{1-x^2} \, dx,x,\frac{x}{\sqrt{-x+x^2}}\right )\\ &=\frac{x}{4096}-\frac{x^2}{1024}+\frac{x^3}{192}-\frac{x^4}{32}-\frac{683 \sqrt{-x+x^2}}{4096}+\frac{149 (1-2 x) \sqrt{-x+x^2}}{2048}-\frac{1}{12} \left (-x+x^2\right )^{3/2}-\frac{1}{32} x \left (-x+x^2\right )^{3/2}-\frac{769 \tanh ^{-1}\left (\frac{x}{\sqrt{-x+x^2}}\right )}{6144}-\frac{\log (1+8 x)}{32768}+\frac{1}{4} x^4 \log \left (-1+4 x+4 \sqrt{-x+x^2}\right )+\frac{5 \operatorname{Subst}\left (\int \frac{1}{1-x^2} \, dx,x,\frac{x}{\sqrt{-x+x^2}}\right )}{49152}-\frac{3 \operatorname{Subst}\left (\int \frac{1}{36-x^2} \, dx,x,\frac{-1+10 x}{\sqrt{-x+x^2}}\right )}{16384}+\frac{5 \int \frac{1}{\sqrt{-x+x^2}} \, dx}{1024}+\frac{11}{512} \operatorname{Subst}\left (\int \frac{1}{1-x^2} \, dx,x,\frac{x}{\sqrt{-x+x^2}}\right )\\ &=\frac{x}{4096}-\frac{x^2}{1024}+\frac{x^3}{192}-\frac{x^4}{32}-\frac{683 \sqrt{-x+x^2}}{4096}+\frac{149 (1-2 x) \sqrt{-x+x^2}}{2048}-\frac{1}{12} \left (-x+x^2\right )^{3/2}-\frac{1}{32} x \left (-x+x^2\right )^{3/2}+\frac{\tanh ^{-1}\left (\frac{1-10 x}{6 \sqrt{-x+x^2}}\right )}{32768}-\frac{1697 \tanh ^{-1}\left (\frac{x}{\sqrt{-x+x^2}}\right )}{16384}-\frac{\log (1+8 x)}{32768}+\frac{1}{4} x^4 \log \left (-1+4 x+4 \sqrt{-x+x^2}\right )+\frac{5}{512} \operatorname{Subst}\left (\int \frac{1}{1-x^2} \, dx,x,\frac{x}{\sqrt{-x+x^2}}\right )\\ &=\frac{x}{4096}-\frac{x^2}{1024}+\frac{x^3}{192}-\frac{x^4}{32}-\frac{683 \sqrt{-x+x^2}}{4096}+\frac{149 (1-2 x) \sqrt{-x+x^2}}{2048}-\frac{1}{12} \left (-x+x^2\right )^{3/2}-\frac{1}{32} x \left (-x+x^2\right )^{3/2}+\frac{\tanh ^{-1}\left (\frac{1-10 x}{6 \sqrt{-x+x^2}}\right )}{32768}-\frac{1537 \tanh ^{-1}\left (\frac{x}{\sqrt{-x+x^2}}\right )}{16384}-\frac{\log (1+8 x)}{32768}+\frac{1}{4} x^4 \log \left (-1+4 x+4 \sqrt{-x+x^2}\right )\\ \end{align*}

Mathematica [A]  time = 0.495725, size = 117, normalized size = 0.68 \[ \frac{-3072 x^4+512 x^3-96 x^2-8 \sqrt{(x-1) x} \left (384 x^3+640 x^2+764 x+1155\right )+24576 x^4 \log \left (4 x+4 \sqrt{(x-1) x}-1\right )+24 x-6 \log (8 x+1)-4611 \log \left (-2 x-2 \sqrt{(x-1) x}+1\right )+3 \log \left (-10 x+6 \sqrt{(x-1) x}+1\right )}{98304} \]

Antiderivative was successfully verified.

[In]

Integrate[x^3*Log[-1 + 4*x + 4*Sqrt[(-1 + x)*x]],x]

[Out]

(24*x - 96*x^2 + 512*x^3 - 3072*x^4 - 8*Sqrt[(-1 + x)*x]*(1155 + 764*x + 640*x^2 + 384*x^3) - 6*Log[1 + 8*x] -
 4611*Log[1 - 2*x - 2*Sqrt[(-1 + x)*x]] + 24576*x^4*Log[-1 + 4*x + 4*Sqrt[(-1 + x)*x]] + 3*Log[1 - 10*x + 6*Sq
rt[(-1 + x)*x]])/98304

________________________________________________________________________________________

Maple [F]  time = 0.01, size = 0, normalized size = 0. \begin{align*} \int{x}^{3}\ln \left ( -1+4\,x+4\,\sqrt{ \left ( -1+x \right ) x} \right ) \, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^3*ln(-1+4*x+4*((-1+x)*x)^(1/2)),x)

[Out]

int(x^3*ln(-1+4*x+4*((-1+x)*x)^(1/2)),x)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int x^{3} \log \left (4 \, x + 4 \, \sqrt{{\left (x - 1\right )} x} - 1\right )\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^3*log(-1+4*x+4*((-1+x)*x)^(1/2)),x, algorithm="maxima")

[Out]

integrate(x^3*log(4*x + 4*sqrt((x - 1)*x) - 1), x)

________________________________________________________________________________________

Fricas [A]  time = 2.51507, size = 424, normalized size = 2.47 \begin{align*} -\frac{1}{32} \, x^{4} + \frac{1}{192} \, x^{3} - \frac{1}{1024} \, x^{2} + \frac{1}{4} \,{\left (x^{4} - 1\right )} \log \left (4 \, x + 4 \, \sqrt{x^{2} - x} - 1\right ) - \frac{1}{12288} \,{\left (384 \, x^{3} + 640 \, x^{2} + 764 \, x + 1155\right )} \sqrt{x^{2} - x} + \frac{1}{4096} \, x + \frac{4095}{32768} \, \log \left (8 \, x + 1\right ) - \frac{2559}{32768} \, \log \left (-2 \, x + 2 \, \sqrt{x^{2} - x} + 1\right ) + \frac{4095}{32768} \, \log \left (-2 \, x + 2 \, \sqrt{x^{2} - x} - 1\right ) - \frac{4095}{32768} \, \log \left (-4 \, x + 4 \, \sqrt{x^{2} - x} + 1\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^3*log(-1+4*x+4*((-1+x)*x)^(1/2)),x, algorithm="fricas")

[Out]

-1/32*x^4 + 1/192*x^3 - 1/1024*x^2 + 1/4*(x^4 - 1)*log(4*x + 4*sqrt(x^2 - x) - 1) - 1/12288*(384*x^3 + 640*x^2
 + 764*x + 1155)*sqrt(x^2 - x) + 1/4096*x + 4095/32768*log(8*x + 1) - 2559/32768*log(-2*x + 2*sqrt(x^2 - x) +
1) + 4095/32768*log(-2*x + 2*sqrt(x^2 - x) - 1) - 4095/32768*log(-4*x + 4*sqrt(x^2 - x) + 1)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**3*ln(-1+4*x+4*((-1+x)*x)**(1/2)),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [A]  time = 1.35666, size = 181, normalized size = 1.05 \begin{align*} \frac{1}{4} \, x^{4} \log \left (4 \, x + 4 \, \sqrt{{\left (x - 1\right )} x} - 1\right ) - \frac{1}{32} \, x^{4} + \frac{1}{192} \, x^{3} - \frac{1}{1024} \, x^{2} - \frac{1}{12288} \,{\left (4 \,{\left (32 \,{\left (3 \, x + 5\right )} x + 191\right )} x + 1155\right )} \sqrt{x^{2} - x} + \frac{1}{4096} \, x - \frac{1}{32768} \, \log \left ({\left | 8 \, x + 1 \right |}\right ) + \frac{1537}{32768} \, \log \left ({\left | -2 \, x + 2 \, \sqrt{x^{2} - x} + 1 \right |}\right ) - \frac{1}{32768} \, \log \left ({\left | -2 \, x + 2 \, \sqrt{x^{2} - x} - 1 \right |}\right ) + \frac{1}{32768} \, \log \left ({\left | -4 \, x + 4 \, \sqrt{x^{2} - x} + 1 \right |}\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^3*log(-1+4*x+4*((-1+x)*x)^(1/2)),x, algorithm="giac")

[Out]

1/4*x^4*log(4*x + 4*sqrt((x - 1)*x) - 1) - 1/32*x^4 + 1/192*x^3 - 1/1024*x^2 - 1/12288*(4*(32*(3*x + 5)*x + 19
1)*x + 1155)*sqrt(x^2 - x) + 1/4096*x - 1/32768*log(abs(8*x + 1)) + 1537/32768*log(abs(-2*x + 2*sqrt(x^2 - x)
+ 1)) - 1/32768*log(abs(-2*x + 2*sqrt(x^2 - x) - 1)) + 1/32768*log(abs(-4*x + 4*sqrt(x^2 - x) + 1))