### 3.79 $$\int \sqrt{a+\frac{c}{x^2}+\frac{b}{x}} x^4 \sqrt{d+e x} \, dx$$

Optimal. Leaf size=981 $\frac{2}{11} \sqrt{a+\frac{b}{x}+\frac{c}{x^2}} \sqrt{d+e x} x^5+\frac{2 (a d+b e) \sqrt{a+\frac{b}{x}+\frac{c}{x^2}} (d+e x)^{7/2} x}{99 a e^4}-\frac{2 \left (29 a^2 d^2+8 b^2 e^2+a e (19 b d-18 c e)\right ) \sqrt{a+\frac{b}{x}+\frac{c}{x^2}} (d+e x)^{5/2} x}{693 a^2 e^4}+\frac{2 \left (233 a^3 d^3+4 a^2 e (18 b d-37 c e) d+48 b^3 e^3+a b e^2 (67 b d-157 c e)\right ) \sqrt{a+\frac{b}{x}+\frac{c}{x^2}} (d+e x)^{3/2} x}{3465 a^3 e^4}+\frac{\sqrt{2} \sqrt{b^2-4 a c} \left (128 a^5 d^5-4 a^4 e (14 b d-27 c e) d^3-a^3 e^2 \left (37 b^2 d^2-135 b c e d+156 c^2 e^2\right ) d+128 b^5 e^5-8 a b^3 e^4 (7 b d+87 c e)-a^2 b e^3 \left (37 b^2 d^2-258 b c e d-771 c^2 e^2\right )\right ) \sqrt{a+\frac{b}{x}+\frac{c}{x^2}} \sqrt{d+e x} \sqrt{-\frac{a \left (a x^2+b x+c\right )}{b^2-4 a c}} E\left (\sin ^{-1}\left (\frac{\sqrt{\frac{b+2 a x+\sqrt{b^2-4 a c}}{\sqrt{b^2-4 a c}}}}{\sqrt{2}}\right )|-\frac{2 \sqrt{b^2-4 a c} e}{2 a d-\left (b+\sqrt{b^2-4 a c}\right ) e}\right ) x}{3465 a^5 e^5 \sqrt{\frac{a (d+e x)}{2 a d-\left (b+\sqrt{b^2-4 a c}\right ) e}} \left (a x^2+b x+c\right )}-\frac{2 \sqrt{2} \sqrt{b^2-4 a c} \left (a d^2-e (b d-c e)\right ) \left (128 a^4 d^4+4 a^3 e (2 b d+3 c e) d^2-64 b^4 e^4-4 a b^2 e^3 (7 b d-69 c e)-3 a^2 e^2 \left (3 b^2 d^2-29 b c e d+50 c^2 e^2\right )\right ) \sqrt{a+\frac{b}{x}+\frac{c}{x^2}} \sqrt{\frac{a (d+e x)}{2 a d-\left (b+\sqrt{b^2-4 a c}\right ) e}} \sqrt{-\frac{a \left (a x^2+b x+c\right )}{b^2-4 a c}} \text{EllipticF}\left (\sin ^{-1}\left (\frac{\sqrt{\frac{b+2 a x+\sqrt{b^2-4 a c}}{\sqrt{b^2-4 a c}}}}{\sqrt{2}}\right ),-\frac{2 \sqrt{b^2-4 a c} e}{2 a d-\left (b+\sqrt{b^2-4 a c}\right ) e}\right ) x}{3465 a^5 e^5 \sqrt{d+e x} \left (a x^2+b x+c\right )}-\frac{2 \left (187 a^4 d^4-4 a^3 e (2 b d+3 c e) d^2+64 b^4 e^4+4 a b^2 e^3 (7 b d-69 c e)+3 a^2 e^2 \left (3 b^2 d^2-29 b c e d+50 c^2 e^2\right )\right ) \sqrt{a+\frac{b}{x}+\frac{c}{x^2}} \sqrt{d+e x} x}{3465 a^4 e^4}$

[Out]

(-2*(187*a^4*d^4 + 64*b^4*e^4 + 4*a*b^2*e^3*(7*b*d - 69*c*e) - 4*a^3*d^2*e*(2*b*d + 3*c*e) + 3*a^2*e^2*(3*b^2*
d^2 - 29*b*c*d*e + 50*c^2*e^2))*Sqrt[a + c/x^2 + b/x]*x*Sqrt[d + e*x])/(3465*a^4*e^4) + (2*Sqrt[a + c/x^2 + b/
x]*x^5*Sqrt[d + e*x])/11 + (2*(233*a^3*d^3 + 48*b^3*e^3 + a*b*e^2*(67*b*d - 157*c*e) + 4*a^2*d*e*(18*b*d - 37*
c*e))*Sqrt[a + c/x^2 + b/x]*x*(d + e*x)^(3/2))/(3465*a^3*e^4) - (2*(29*a^2*d^2 + 8*b^2*e^2 + a*e*(19*b*d - 18*
c*e))*Sqrt[a + c/x^2 + b/x]*x*(d + e*x)^(5/2))/(693*a^2*e^4) + (2*(a*d + b*e)*Sqrt[a + c/x^2 + b/x]*x*(d + e*x
)^(7/2))/(99*a*e^4) + (Sqrt[2]*Sqrt[b^2 - 4*a*c]*(128*a^5*d^5 + 128*b^5*e^5 - 4*a^4*d^3*e*(14*b*d - 27*c*e) -
8*a*b^3*e^4*(7*b*d + 87*c*e) - a^2*b*e^3*(37*b^2*d^2 - 258*b*c*d*e - 771*c^2*e^2) - a^3*d*e^2*(37*b^2*d^2 - 13
5*b*c*d*e + 156*c^2*e^2))*Sqrt[a + c/x^2 + b/x]*x*Sqrt[d + e*x]*Sqrt[-((a*(c + b*x + a*x^2))/(b^2 - 4*a*c))]*E
llipticE[ArcSin[Sqrt[(b + Sqrt[b^2 - 4*a*c] + 2*a*x)/Sqrt[b^2 - 4*a*c]]/Sqrt[2]], (-2*Sqrt[b^2 - 4*a*c]*e)/(2*
a*d - (b + Sqrt[b^2 - 4*a*c])*e)])/(3465*a^5*e^5*Sqrt[(a*(d + e*x))/(2*a*d - (b + Sqrt[b^2 - 4*a*c])*e)]*(c +
b*x + a*x^2)) - (2*Sqrt[2]*Sqrt[b^2 - 4*a*c]*(a*d^2 - e*(b*d - c*e))*(128*a^4*d^4 - 64*b^4*e^4 - 4*a*b^2*e^3*(
7*b*d - 69*c*e) + 4*a^3*d^2*e*(2*b*d + 3*c*e) - 3*a^2*e^2*(3*b^2*d^2 - 29*b*c*d*e + 50*c^2*e^2))*Sqrt[a + c/x^
2 + b/x]*x*Sqrt[(a*(d + e*x))/(2*a*d - (b + Sqrt[b^2 - 4*a*c])*e)]*Sqrt[-((a*(c + b*x + a*x^2))/(b^2 - 4*a*c))
]*EllipticF[ArcSin[Sqrt[(b + Sqrt[b^2 - 4*a*c] + 2*a*x)/Sqrt[b^2 - 4*a*c]]/Sqrt[2]], (-2*Sqrt[b^2 - 4*a*c]*e)/
(2*a*d - (b + Sqrt[b^2 - 4*a*c])*e)])/(3465*a^5*e^5*Sqrt[d + e*x]*(c + b*x + a*x^2))

________________________________________________________________________________________

Rubi [A]  time = 6.17238, antiderivative size = 981, normalized size of antiderivative = 1., number of steps used = 11, number of rules used = 7, integrand size = 29, $$\frac{\text{number of rules}}{\text{integrand size}}$$ = 0.241, Rules used = {1573, 918, 1653, 843, 718, 424, 419} $\frac{2}{11} \sqrt{a+\frac{b}{x}+\frac{c}{x^2}} \sqrt{d+e x} x^5+\frac{2 (a d+b e) \sqrt{a+\frac{b}{x}+\frac{c}{x^2}} (d+e x)^{7/2} x}{99 a e^4}-\frac{2 \left (29 a^2 d^2+8 b^2 e^2+a e (19 b d-18 c e)\right ) \sqrt{a+\frac{b}{x}+\frac{c}{x^2}} (d+e x)^{5/2} x}{693 a^2 e^4}+\frac{2 \left (233 a^3 d^3+4 a^2 e (18 b d-37 c e) d+48 b^3 e^3+a b e^2 (67 b d-157 c e)\right ) \sqrt{a+\frac{b}{x}+\frac{c}{x^2}} (d+e x)^{3/2} x}{3465 a^3 e^4}+\frac{\sqrt{2} \sqrt{b^2-4 a c} \left (128 a^5 d^5-4 a^4 e (14 b d-27 c e) d^3-a^3 e^2 \left (37 b^2 d^2-135 b c e d+156 c^2 e^2\right ) d+128 b^5 e^5-8 a b^3 e^4 (7 b d+87 c e)-a^2 b e^3 \left (37 b^2 d^2-258 b c e d-771 c^2 e^2\right )\right ) \sqrt{a+\frac{b}{x}+\frac{c}{x^2}} \sqrt{d+e x} \sqrt{-\frac{a \left (a x^2+b x+c\right )}{b^2-4 a c}} E\left (\sin ^{-1}\left (\frac{\sqrt{\frac{b+2 a x+\sqrt{b^2-4 a c}}{\sqrt{b^2-4 a c}}}}{\sqrt{2}}\right )|-\frac{2 \sqrt{b^2-4 a c} e}{2 a d-\left (b+\sqrt{b^2-4 a c}\right ) e}\right ) x}{3465 a^5 e^5 \sqrt{\frac{a (d+e x)}{2 a d-\left (b+\sqrt{b^2-4 a c}\right ) e}} \left (a x^2+b x+c\right )}-\frac{2 \sqrt{2} \sqrt{b^2-4 a c} \left (a d^2-e (b d-c e)\right ) \left (128 a^4 d^4+4 a^3 e (2 b d+3 c e) d^2-64 b^4 e^4-4 a b^2 e^3 (7 b d-69 c e)-3 a^2 e^2 \left (3 b^2 d^2-29 b c e d+50 c^2 e^2\right )\right ) \sqrt{a+\frac{b}{x}+\frac{c}{x^2}} \sqrt{\frac{a (d+e x)}{2 a d-\left (b+\sqrt{b^2-4 a c}\right ) e}} \sqrt{-\frac{a \left (a x^2+b x+c\right )}{b^2-4 a c}} F\left (\sin ^{-1}\left (\frac{\sqrt{\frac{b+2 a x+\sqrt{b^2-4 a c}}{\sqrt{b^2-4 a c}}}}{\sqrt{2}}\right )|-\frac{2 \sqrt{b^2-4 a c} e}{2 a d-\left (b+\sqrt{b^2-4 a c}\right ) e}\right ) x}{3465 a^5 e^5 \sqrt{d+e x} \left (a x^2+b x+c\right )}-\frac{2 \left (187 a^4 d^4-4 a^3 e (2 b d+3 c e) d^2+64 b^4 e^4+4 a b^2 e^3 (7 b d-69 c e)+3 a^2 e^2 \left (3 b^2 d^2-29 b c e d+50 c^2 e^2\right )\right ) \sqrt{a+\frac{b}{x}+\frac{c}{x^2}} \sqrt{d+e x} x}{3465 a^4 e^4}$

Antiderivative was successfully veriﬁed.

[In]

Int[Sqrt[a + c/x^2 + b/x]*x^4*Sqrt[d + e*x],x]

[Out]

(-2*(187*a^4*d^4 + 64*b^4*e^4 + 4*a*b^2*e^3*(7*b*d - 69*c*e) - 4*a^3*d^2*e*(2*b*d + 3*c*e) + 3*a^2*e^2*(3*b^2*
d^2 - 29*b*c*d*e + 50*c^2*e^2))*Sqrt[a + c/x^2 + b/x]*x*Sqrt[d + e*x])/(3465*a^4*e^4) + (2*Sqrt[a + c/x^2 + b/
x]*x^5*Sqrt[d + e*x])/11 + (2*(233*a^3*d^3 + 48*b^3*e^3 + a*b*e^2*(67*b*d - 157*c*e) + 4*a^2*d*e*(18*b*d - 37*
c*e))*Sqrt[a + c/x^2 + b/x]*x*(d + e*x)^(3/2))/(3465*a^3*e^4) - (2*(29*a^2*d^2 + 8*b^2*e^2 + a*e*(19*b*d - 18*
c*e))*Sqrt[a + c/x^2 + b/x]*x*(d + e*x)^(5/2))/(693*a^2*e^4) + (2*(a*d + b*e)*Sqrt[a + c/x^2 + b/x]*x*(d + e*x
)^(7/2))/(99*a*e^4) + (Sqrt[2]*Sqrt[b^2 - 4*a*c]*(128*a^5*d^5 + 128*b^5*e^5 - 4*a^4*d^3*e*(14*b*d - 27*c*e) -
8*a*b^3*e^4*(7*b*d + 87*c*e) - a^2*b*e^3*(37*b^2*d^2 - 258*b*c*d*e - 771*c^2*e^2) - a^3*d*e^2*(37*b^2*d^2 - 13
5*b*c*d*e + 156*c^2*e^2))*Sqrt[a + c/x^2 + b/x]*x*Sqrt[d + e*x]*Sqrt[-((a*(c + b*x + a*x^2))/(b^2 - 4*a*c))]*E
llipticE[ArcSin[Sqrt[(b + Sqrt[b^2 - 4*a*c] + 2*a*x)/Sqrt[b^2 - 4*a*c]]/Sqrt[2]], (-2*Sqrt[b^2 - 4*a*c]*e)/(2*
a*d - (b + Sqrt[b^2 - 4*a*c])*e)])/(3465*a^5*e^5*Sqrt[(a*(d + e*x))/(2*a*d - (b + Sqrt[b^2 - 4*a*c])*e)]*(c +
b*x + a*x^2)) - (2*Sqrt[2]*Sqrt[b^2 - 4*a*c]*(a*d^2 - e*(b*d - c*e))*(128*a^4*d^4 - 64*b^4*e^4 - 4*a*b^2*e^3*(
7*b*d - 69*c*e) + 4*a^3*d^2*e*(2*b*d + 3*c*e) - 3*a^2*e^2*(3*b^2*d^2 - 29*b*c*d*e + 50*c^2*e^2))*Sqrt[a + c/x^
2 + b/x]*x*Sqrt[(a*(d + e*x))/(2*a*d - (b + Sqrt[b^2 - 4*a*c])*e)]*Sqrt[-((a*(c + b*x + a*x^2))/(b^2 - 4*a*c))
]*EllipticF[ArcSin[Sqrt[(b + Sqrt[b^2 - 4*a*c] + 2*a*x)/Sqrt[b^2 - 4*a*c]]/Sqrt[2]], (-2*Sqrt[b^2 - 4*a*c]*e)/
(2*a*d - (b + Sqrt[b^2 - 4*a*c])*e)])/(3465*a^5*e^5*Sqrt[d + e*x]*(c + b*x + a*x^2))

Rule 1573

Int[(x_)^(m_.)*((a_.) + (b_.)*(x_)^(mn_.) + (c_.)*(x_)^(mn2_.))^(p_)*((d_) + (e_.)*(x_)^(n_.))^(q_.), x_Symbol
] :> Dist[(x^(2*n*FracPart[p])*(a + b/x^n + c/x^(2*n))^FracPart[p])/(c + b*x^n + a*x^(2*n))^FracPart[p], Int[x
^(m - 2*n*p)*(d + e*x^n)^q*(c + b*x^n + a*x^(2*n))^p, x], x] /; FreeQ[{a, b, c, d, e, m, n, p, q}, x] && EqQ[m
n, -n] && EqQ[mn2, 2*mn] &&  !IntegerQ[p] &&  !IntegerQ[q] && PosQ[n]

Rule 918

Int[((d_.) + (e_.)*(x_))^(m_.)*Sqrt[(f_.) + (g_.)*(x_)]*Sqrt[(a_.) + (b_.)*(x_) + (c_.)*(x_)^2], x_Symbol] :>
Simp[(2*(d + e*x)^(m + 1)*Sqrt[f + g*x]*Sqrt[a + b*x + c*x^2])/(e*(2*m + 5)), x] - Dist[1/(e*(2*m + 5)), Int[(
(d + e*x)^m*Simp[b*d*f - 3*a*e*f + a*d*g + 2*(c*d*f - b*e*f + b*d*g - a*e*g)*x - (c*e*f - 3*c*d*g + b*e*g)*x^2
, x])/(Sqrt[f + g*x]*Sqrt[a + b*x + c*x^2]), x], x] /; FreeQ[{a, b, c, d, e, f, g, m}, x] && NeQ[e*f - d*g, 0]
&& NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0] && IntegerQ[2*m] &&  !LtQ[m, -1]

Rule 1653

Int[(Pq_)*((d_.) + (e_.)*(x_))^(m_.)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> With[{q = Expon[Pq
, x], f = Coeff[Pq, x, Expon[Pq, x]]}, Simp[(f*(d + e*x)^(m + q - 1)*(a + b*x + c*x^2)^(p + 1))/(c*e^(q - 1)*(
m + q + 2*p + 1)), x] + Dist[1/(c*e^q*(m + q + 2*p + 1)), Int[(d + e*x)^m*(a + b*x + c*x^2)^p*ExpandToSum[c*e^
q*(m + q + 2*p + 1)*Pq - c*f*(m + q + 2*p + 1)*(d + e*x)^q - f*(d + e*x)^(q - 2)*(b*d*e*(p + 1) + a*e^2*(m + q
- 1) - c*d^2*(m + q + 2*p + 1) - e*(2*c*d - b*e)*(m + q + p)*x), x], x], x] /; GtQ[q, 1] && NeQ[m + q + 2*p +
1, 0]] /; FreeQ[{a, b, c, d, e, m, p}, x] && PolyQ[Pq, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2
, 0] &&  !(IGtQ[m, 0] && RationalQ[a, b, c, d, e] && (IntegerQ[p] || ILtQ[p + 1/2, 0]))

Rule 843

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Dis
t[g/e, Int[(d + e*x)^(m + 1)*(a + b*x + c*x^2)^p, x], x] + Dist[(e*f - d*g)/e, Int[(d + e*x)^m*(a + b*x + c*x^
2)^p, x], x] /; FreeQ[{a, b, c, d, e, f, g, m, p}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0]
&&  !IGtQ[m, 0]

Rule 718

Int[((d_.) + (e_.)*(x_))^(m_)/Sqrt[(a_.) + (b_.)*(x_) + (c_.)*(x_)^2], x_Symbol] :> Dist[(2*Rt[b^2 - 4*a*c, 2]
*(d + e*x)^m*Sqrt[-((c*(a + b*x + c*x^2))/(b^2 - 4*a*c))])/(c*Sqrt[a + b*x + c*x^2]*((2*c*(d + e*x))/(2*c*d -
b*e - e*Rt[b^2 - 4*a*c, 2]))^m), Subst[Int[(1 + (2*e*Rt[b^2 - 4*a*c, 2]*x^2)/(2*c*d - b*e - e*Rt[b^2 - 4*a*c,
2]))^m/Sqrt[1 - x^2], x], x, Sqrt[(b + Rt[b^2 - 4*a*c, 2] + 2*c*x)/(2*Rt[b^2 - 4*a*c, 2])]], x] /; FreeQ[{a, b
, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0] && NeQ[2*c*d - b*e, 0] && EqQ[m^2, 1/4]

Rule 424

Int[Sqrt[(a_) + (b_.)*(x_)^2]/Sqrt[(c_) + (d_.)*(x_)^2], x_Symbol] :> Simp[(Sqrt[a]*EllipticE[ArcSin[Rt[-(d/c)
, 2]*x], (b*c)/(a*d)])/(Sqrt[c]*Rt[-(d/c), 2]), x] /; FreeQ[{a, b, c, d}, x] && NegQ[d/c] && GtQ[c, 0] && GtQ[
a, 0]

Rule 419

Int[1/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_)^2]), x_Symbol] :> Simp[(1*EllipticF[ArcSin[Rt[-(d/c),
2]*x], (b*c)/(a*d)])/(Sqrt[a]*Sqrt[c]*Rt[-(d/c), 2]), x] /; FreeQ[{a, b, c, d}, x] && NegQ[d/c] && GtQ[c, 0] &
& GtQ[a, 0] &&  !(NegQ[b/a] && SimplerSqrtQ[-(b/a), -(d/c)])

Rubi steps

\begin{align*} \int \sqrt{a+\frac{c}{x^2}+\frac{b}{x}} x^4 \sqrt{d+e x} \, dx &=\frac{\left (\sqrt{a+\frac{c}{x^2}+\frac{b}{x}} x\right ) \int x^3 \sqrt{d+e x} \sqrt{c+b x+a x^2} \, dx}{\sqrt{c+b x+a x^2}}\\ &=\frac{2}{11} \sqrt{a+\frac{c}{x^2}+\frac{b}{x}} x^5 \sqrt{d+e x}-\frac{\left (\sqrt{a+\frac{c}{x^2}+\frac{b}{x}} x\right ) \int \frac{x^3 \left (-3 c d-2 (b d+c e) x-(a d+b e) x^2\right )}{\sqrt{d+e x} \sqrt{c+b x+a x^2}} \, dx}{11 \sqrt{c+b x+a x^2}}\\ &=\frac{2}{11} \sqrt{a+\frac{c}{x^2}+\frac{b}{x}} x^5 \sqrt{d+e x}+\frac{2 (a d+b e) \sqrt{a+\frac{c}{x^2}+\frac{b}{x}} x (d+e x)^{7/2}}{99 a e^4}-\frac{\left (2 \sqrt{a+\frac{c}{x^2}+\frac{b}{x}} x\right ) \int \frac{\frac{1}{2} d^3 e (a d+b e) (b d+7 c e)+\frac{1}{2} d^2 e (a d+b e) \left (2 a d^2+e (11 b d+21 c e)\right ) x+\frac{3}{2} d e^2 (a d+b e) \left (5 a d^2+e (9 b d+7 c e)\right ) x^2+\frac{1}{2} e^3 \left (33 a^2 d^3+2 a d e (29 b d-10 c e)+b e^2 (25 b d+7 c e)\right ) x^3+\frac{1}{2} e^4 \left (29 a^2 d^2+8 b^2 e^2+a e (19 b d-18 c e)\right ) x^4}{\sqrt{d+e x} \sqrt{c+b x+a x^2}} \, dx}{99 a e^5 \sqrt{c+b x+a x^2}}\\ &=\frac{2}{11} \sqrt{a+\frac{c}{x^2}+\frac{b}{x}} x^5 \sqrt{d+e x}-\frac{2 \left (29 a^2 d^2+8 b^2 e^2+a e (19 b d-18 c e)\right ) \sqrt{a+\frac{c}{x^2}+\frac{b}{x}} x (d+e x)^{5/2}}{693 a^2 e^4}+\frac{2 (a d+b e) \sqrt{a+\frac{c}{x^2}+\frac{b}{x}} x (d+e x)^{7/2}}{99 a e^4}-\frac{\left (4 \sqrt{a+\frac{c}{x^2}+\frac{b}{x}} x\right ) \int \frac{-\frac{1}{2} d^2 e^5 \left (4 b^2 e^2 (b d+5 c e)+a^2 d^2 (11 b d+48 c e)+a e \left (6 b^2 d^2+14 b c d e-45 c^2 e^2\right )\right )-\frac{1}{4} d e^5 \left (44 a^3 d^4+16 b^2 e^3 (4 b d+5 c e)+a^2 d^2 e (179 b d+107 c e)+a e^2 \left (91 b^2 d^2-101 b c d e-180 c^2 e^2\right )\right ) x-\frac{1}{2} e^6 \left (107 a^3 d^4+2 a^2 d^2 e (73 b d-50 c e)+4 b^2 e^3 (13 b d+5 c e)+a e^2 \left (73 b^2 d^2-143 b c d e-45 c^2 e^2\right )\right ) x^2-\frac{1}{4} e^7 \left (233 a^3 d^3+48 b^3 e^3+a b e^2 (67 b d-157 c e)+4 a^2 d e (18 b d-37 c e)\right ) x^3}{\sqrt{d+e x} \sqrt{c+b x+a x^2}} \, dx}{693 a^2 e^9 \sqrt{c+b x+a x^2}}\\ &=\frac{2}{11} \sqrt{a+\frac{c}{x^2}+\frac{b}{x}} x^5 \sqrt{d+e x}+\frac{2 \left (233 a^3 d^3+48 b^3 e^3+a b e^2 (67 b d-157 c e)+4 a^2 d e (18 b d-37 c e)\right ) \sqrt{a+\frac{c}{x^2}+\frac{b}{x}} x (d+e x)^{3/2}}{3465 a^3 e^4}-\frac{2 \left (29 a^2 d^2+8 b^2 e^2+a e (19 b d-18 c e)\right ) \sqrt{a+\frac{c}{x^2}+\frac{b}{x}} x (d+e x)^{5/2}}{693 a^2 e^4}+\frac{2 (a d+b e) \sqrt{a+\frac{c}{x^2}+\frac{b}{x}} x (d+e x)^{7/2}}{99 a e^4}-\frac{\left (8 \sqrt{a+\frac{c}{x^2}+\frac{b}{x}} x\right ) \int \frac{\frac{3}{8} d e^8 \left (16 b^3 e^3 (b d+3 c e)+a^3 d^3 (41 b d+73 c e)+a b e^2 \left (9 b^2 d^2-52 b c d e-157 c^2 e^2\right )+2 a^2 d e \left (2 b^2 d^2-12 b c d e+c^2 e^2\right )\right )+\frac{3}{8} e^8 \left (82 a^4 d^5+2 a^3 d^3 e (69 b d-22 c e)+16 b^3 e^4 (5 b d+3 c e)+a b e^3 \left (37 b^2 d^2-328 b c d e-157 c^2 e^2\right )+a^2 d e^2 \left (13 b^2 d^2-111 b c d e+152 c^2 e^2\right )\right ) x+\frac{3}{8} e^9 \left (187 a^4 d^4+64 b^4 e^4+4 a b^2 e^3 (7 b d-69 c e)-4 a^3 d^2 e (2 b d+3 c e)+3 a^2 e^2 \left (3 b^2 d^2-29 b c d e+50 c^2 e^2\right )\right ) x^2}{\sqrt{d+e x} \sqrt{c+b x+a x^2}} \, dx}{3465 a^3 e^{12} \sqrt{c+b x+a x^2}}\\ &=-\frac{2 \left (187 a^4 d^4+64 b^4 e^4+4 a b^2 e^3 (7 b d-69 c e)-4 a^3 d^2 e (2 b d+3 c e)+3 a^2 e^2 \left (3 b^2 d^2-29 b c d e+50 c^2 e^2\right )\right ) \sqrt{a+\frac{c}{x^2}+\frac{b}{x}} x \sqrt{d+e x}}{3465 a^4 e^4}+\frac{2}{11} \sqrt{a+\frac{c}{x^2}+\frac{b}{x}} x^5 \sqrt{d+e x}+\frac{2 \left (233 a^3 d^3+48 b^3 e^3+a b e^2 (67 b d-157 c e)+4 a^2 d e (18 b d-37 c e)\right ) \sqrt{a+\frac{c}{x^2}+\frac{b}{x}} x (d+e x)^{3/2}}{3465 a^3 e^4}-\frac{2 \left (29 a^2 d^2+8 b^2 e^2+a e (19 b d-18 c e)\right ) \sqrt{a+\frac{c}{x^2}+\frac{b}{x}} x (d+e x)^{5/2}}{693 a^2 e^4}+\frac{2 (a d+b e) \sqrt{a+\frac{c}{x^2}+\frac{b}{x}} x (d+e x)^{7/2}}{99 a e^4}-\frac{\left (16 \sqrt{a+\frac{c}{x^2}+\frac{b}{x}} x\right ) \int \frac{-\frac{3}{8} e^{10} \left (16 a^4 d^4 (2 b d-c e)+32 b^4 e^4 (b d+c e)-a^3 d^2 e \left (10 b^2 d^2-26 b c d e+9 c^2 e^2\right )-2 a b^2 e^3 \left (5 b^2 d^2+98 b c d e+69 c^2 e^2\right )-3 a^2 e^2 \left (3 b^3 d^3-13 b^2 c d^2 e-89 b c^2 d e^2-25 c^3 e^3\right )\right )-\frac{3}{16} e^{10} \left (128 a^5 d^5+128 b^5 e^5-4 a^4 d^3 e (14 b d-27 c e)-8 a b^3 e^4 (7 b d+87 c e)-a^2 b e^3 \left (37 b^2 d^2-258 b c d e-771 c^2 e^2\right )-a^3 d e^2 \left (37 b^2 d^2-135 b c d e+156 c^2 e^2\right )\right ) x}{\sqrt{d+e x} \sqrt{c+b x+a x^2}} \, dx}{10395 a^4 e^{14} \sqrt{c+b x+a x^2}}\\ &=-\frac{2 \left (187 a^4 d^4+64 b^4 e^4+4 a b^2 e^3 (7 b d-69 c e)-4 a^3 d^2 e (2 b d+3 c e)+3 a^2 e^2 \left (3 b^2 d^2-29 b c d e+50 c^2 e^2\right )\right ) \sqrt{a+\frac{c}{x^2}+\frac{b}{x}} x \sqrt{d+e x}}{3465 a^4 e^4}+\frac{2}{11} \sqrt{a+\frac{c}{x^2}+\frac{b}{x}} x^5 \sqrt{d+e x}+\frac{2 \left (233 a^3 d^3+48 b^3 e^3+a b e^2 (67 b d-157 c e)+4 a^2 d e (18 b d-37 c e)\right ) \sqrt{a+\frac{c}{x^2}+\frac{b}{x}} x (d+e x)^{3/2}}{3465 a^3 e^4}-\frac{2 \left (29 a^2 d^2+8 b^2 e^2+a e (19 b d-18 c e)\right ) \sqrt{a+\frac{c}{x^2}+\frac{b}{x}} x (d+e x)^{5/2}}{693 a^2 e^4}+\frac{2 (a d+b e) \sqrt{a+\frac{c}{x^2}+\frac{b}{x}} x (d+e x)^{7/2}}{99 a e^4}+\frac{\left (\left (128 a^5 d^5+128 b^5 e^5-4 a^4 d^3 e (14 b d-27 c e)-8 a b^3 e^4 (7 b d+87 c e)-a^2 b e^3 \left (37 b^2 d^2-258 b c d e-771 c^2 e^2\right )-a^3 d e^2 \left (37 b^2 d^2-135 b c d e+156 c^2 e^2\right )\right ) \sqrt{a+\frac{c}{x^2}+\frac{b}{x}} x\right ) \int \frac{\sqrt{d+e x}}{\sqrt{c+b x+a x^2}} \, dx}{3465 a^4 e^5 \sqrt{c+b x+a x^2}}-\frac{\left (16 \left (\frac{3}{16} d e^{10} \left (128 a^5 d^5+128 b^5 e^5-4 a^4 d^3 e (14 b d-27 c e)-8 a b^3 e^4 (7 b d+87 c e)-a^2 b e^3 \left (37 b^2 d^2-258 b c d e-771 c^2 e^2\right )-a^3 d e^2 \left (37 b^2 d^2-135 b c d e+156 c^2 e^2\right )\right )-\frac{3}{8} e^{11} \left (16 a^4 d^4 (2 b d-c e)+32 b^4 e^4 (b d+c e)-a^3 d^2 e \left (10 b^2 d^2-26 b c d e+9 c^2 e^2\right )-2 a b^2 e^3 \left (5 b^2 d^2+98 b c d e+69 c^2 e^2\right )-3 a^2 e^2 \left (3 b^3 d^3-13 b^2 c d^2 e-89 b c^2 d e^2-25 c^3 e^3\right )\right )\right ) \sqrt{a+\frac{c}{x^2}+\frac{b}{x}} x\right ) \int \frac{1}{\sqrt{d+e x} \sqrt{c+b x+a x^2}} \, dx}{10395 a^4 e^{15} \sqrt{c+b x+a x^2}}\\ &=-\frac{2 \left (187 a^4 d^4+64 b^4 e^4+4 a b^2 e^3 (7 b d-69 c e)-4 a^3 d^2 e (2 b d+3 c e)+3 a^2 e^2 \left (3 b^2 d^2-29 b c d e+50 c^2 e^2\right )\right ) \sqrt{a+\frac{c}{x^2}+\frac{b}{x}} x \sqrt{d+e x}}{3465 a^4 e^4}+\frac{2}{11} \sqrt{a+\frac{c}{x^2}+\frac{b}{x}} x^5 \sqrt{d+e x}+\frac{2 \left (233 a^3 d^3+48 b^3 e^3+a b e^2 (67 b d-157 c e)+4 a^2 d e (18 b d-37 c e)\right ) \sqrt{a+\frac{c}{x^2}+\frac{b}{x}} x (d+e x)^{3/2}}{3465 a^3 e^4}-\frac{2 \left (29 a^2 d^2+8 b^2 e^2+a e (19 b d-18 c e)\right ) \sqrt{a+\frac{c}{x^2}+\frac{b}{x}} x (d+e x)^{5/2}}{693 a^2 e^4}+\frac{2 (a d+b e) \sqrt{a+\frac{c}{x^2}+\frac{b}{x}} x (d+e x)^{7/2}}{99 a e^4}+\frac{\left (\sqrt{2} \sqrt{b^2-4 a c} \left (128 a^5 d^5+128 b^5 e^5-4 a^4 d^3 e (14 b d-27 c e)-8 a b^3 e^4 (7 b d+87 c e)-a^2 b e^3 \left (37 b^2 d^2-258 b c d e-771 c^2 e^2\right )-a^3 d e^2 \left (37 b^2 d^2-135 b c d e+156 c^2 e^2\right )\right ) \sqrt{a+\frac{c}{x^2}+\frac{b}{x}} x \sqrt{d+e x} \sqrt{-\frac{a \left (c+b x+a x^2\right )}{b^2-4 a c}}\right ) \operatorname{Subst}\left (\int \frac{\sqrt{1+\frac{2 \sqrt{b^2-4 a c} e x^2}{2 a d-b e-\sqrt{b^2-4 a c} e}}}{\sqrt{1-x^2}} \, dx,x,\frac{\sqrt{\frac{b+\sqrt{b^2-4 a c}+2 a x}{\sqrt{b^2-4 a c}}}}{\sqrt{2}}\right )}{3465 a^5 e^5 \sqrt{\frac{a (d+e x)}{2 a d-b e-\sqrt{b^2-4 a c} e}} \left (c+b x+a x^2\right )}-\frac{\left (32 \sqrt{2} \sqrt{b^2-4 a c} \left (\frac{3}{16} d e^{10} \left (128 a^5 d^5+128 b^5 e^5-4 a^4 d^3 e (14 b d-27 c e)-8 a b^3 e^4 (7 b d+87 c e)-a^2 b e^3 \left (37 b^2 d^2-258 b c d e-771 c^2 e^2\right )-a^3 d e^2 \left (37 b^2 d^2-135 b c d e+156 c^2 e^2\right )\right )-\frac{3}{8} e^{11} \left (16 a^4 d^4 (2 b d-c e)+32 b^4 e^4 (b d+c e)-a^3 d^2 e \left (10 b^2 d^2-26 b c d e+9 c^2 e^2\right )-2 a b^2 e^3 \left (5 b^2 d^2+98 b c d e+69 c^2 e^2\right )-3 a^2 e^2 \left (3 b^3 d^3-13 b^2 c d^2 e-89 b c^2 d e^2-25 c^3 e^3\right )\right )\right ) \sqrt{a+\frac{c}{x^2}+\frac{b}{x}} x \sqrt{\frac{a (d+e x)}{2 a d-b e-\sqrt{b^2-4 a c} e}} \sqrt{-\frac{a \left (c+b x+a x^2\right )}{b^2-4 a c}}\right ) \operatorname{Subst}\left (\int \frac{1}{\sqrt{1-x^2} \sqrt{1+\frac{2 \sqrt{b^2-4 a c} e x^2}{2 a d-b e-\sqrt{b^2-4 a c} e}}} \, dx,x,\frac{\sqrt{\frac{b+\sqrt{b^2-4 a c}+2 a x}{\sqrt{b^2-4 a c}}}}{\sqrt{2}}\right )}{10395 a^5 e^{15} \sqrt{d+e x} \left (c+b x+a x^2\right )}\\ &=-\frac{2 \left (187 a^4 d^4+64 b^4 e^4+4 a b^2 e^3 (7 b d-69 c e)-4 a^3 d^2 e (2 b d+3 c e)+3 a^2 e^2 \left (3 b^2 d^2-29 b c d e+50 c^2 e^2\right )\right ) \sqrt{a+\frac{c}{x^2}+\frac{b}{x}} x \sqrt{d+e x}}{3465 a^4 e^4}+\frac{2}{11} \sqrt{a+\frac{c}{x^2}+\frac{b}{x}} x^5 \sqrt{d+e x}+\frac{2 \left (233 a^3 d^3+48 b^3 e^3+a b e^2 (67 b d-157 c e)+4 a^2 d e (18 b d-37 c e)\right ) \sqrt{a+\frac{c}{x^2}+\frac{b}{x}} x (d+e x)^{3/2}}{3465 a^3 e^4}-\frac{2 \left (29 a^2 d^2+8 b^2 e^2+a e (19 b d-18 c e)\right ) \sqrt{a+\frac{c}{x^2}+\frac{b}{x}} x (d+e x)^{5/2}}{693 a^2 e^4}+\frac{2 (a d+b e) \sqrt{a+\frac{c}{x^2}+\frac{b}{x}} x (d+e x)^{7/2}}{99 a e^4}+\frac{\sqrt{2} \sqrt{b^2-4 a c} \left (128 a^5 d^5+128 b^5 e^5-4 a^4 d^3 e (14 b d-27 c e)-8 a b^3 e^4 (7 b d+87 c e)-a^2 b e^3 \left (37 b^2 d^2-258 b c d e-771 c^2 e^2\right )-a^3 d e^2 \left (37 b^2 d^2-135 b c d e+156 c^2 e^2\right )\right ) \sqrt{a+\frac{c}{x^2}+\frac{b}{x}} x \sqrt{d+e x} \sqrt{-\frac{a \left (c+b x+a x^2\right )}{b^2-4 a c}} E\left (\sin ^{-1}\left (\frac{\sqrt{\frac{b+\sqrt{b^2-4 a c}+2 a x}{\sqrt{b^2-4 a c}}}}{\sqrt{2}}\right )|-\frac{2 \sqrt{b^2-4 a c} e}{2 a d-\left (b+\sqrt{b^2-4 a c}\right ) e}\right )}{3465 a^5 e^5 \sqrt{\frac{a (d+e x)}{2 a d-\left (b+\sqrt{b^2-4 a c}\right ) e}} \left (c+b x+a x^2\right )}-\frac{2 \sqrt{2} \sqrt{b^2-4 a c} \left (a d^2-b d e+c e^2\right ) \left (128 a^4 d^4+8 a^3 b d^3 e-9 a^2 b^2 d^2 e^2+12 a^3 c d^2 e^2-28 a b^3 d e^3+87 a^2 b c d e^3-64 b^4 e^4+276 a b^2 c e^4-150 a^2 c^2 e^4\right ) \sqrt{a+\frac{c}{x^2}+\frac{b}{x}} x \sqrt{\frac{a (d+e x)}{2 a d-\left (b+\sqrt{b^2-4 a c}\right ) e}} \sqrt{-\frac{a \left (c+b x+a x^2\right )}{b^2-4 a c}} F\left (\sin ^{-1}\left (\frac{\sqrt{\frac{b+\sqrt{b^2-4 a c}+2 a x}{\sqrt{b^2-4 a c}}}}{\sqrt{2}}\right )|-\frac{2 \sqrt{b^2-4 a c} e}{2 a d-\left (b+\sqrt{b^2-4 a c}\right ) e}\right )}{3465 a^5 e^5 \sqrt{d+e x} \left (c+b x+a x^2\right )}\\ \end{align*}

Mathematica [C]  time = 14.3281, size = 10904, normalized size = 11.12 $\text{Result too large to show}$

Warning: Unable to verify antiderivative.

[In]

Integrate[Sqrt[a + c/x^2 + b/x]*x^4*Sqrt[d + e*x],x]

[Out]

Result too large to show

________________________________________________________________________________________

Maple [B]  time = 0.148, size = 11938, normalized size = 12.2 \begin{align*} \text{output too large to display} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

int(x^4*(a+c/x^2+b/x)^(1/2)*(e*x+d)^(1/2),x)

[Out]

result too large to display

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \sqrt{e x + d} \sqrt{a + \frac{b}{x} + \frac{c}{x^{2}}} x^{4}\,{d x} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^4*(a+c/x^2+b/x)^(1/2)*(e*x+d)^(1/2),x, algorithm="maxima")

[Out]

integrate(sqrt(e*x + d)*sqrt(a + b/x + c/x^2)*x^4, x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\sqrt{e x + d} x^{4} \sqrt{\frac{a x^{2} + b x + c}{x^{2}}}, x\right ) \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^4*(a+c/x^2+b/x)^(1/2)*(e*x+d)^(1/2),x, algorithm="fricas")

[Out]

integral(sqrt(e*x + d)*x^4*sqrt((a*x^2 + b*x + c)/x^2), x)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**4*(a+c/x**2+b/x)**(1/2)*(e*x+d)**(1/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^4*(a+c/x^2+b/x)^(1/2)*(e*x+d)^(1/2),x, algorithm="giac")

[Out]

Timed out