### 3.7 $$\int \frac{a+b x^3+c x^6}{(d+e x^3)^2} \, dx$$

Optimal. Leaf size=213 $\frac{x \left (a e^2-b d e+c d^2\right )}{3 d e^2 \left (d+e x^3\right )}+\frac{\log \left (d^{2/3}-\sqrt [3]{d} \sqrt [3]{e} x+e^{2/3} x^2\right ) \left (4 c d^2-e (2 a e+b d)\right )}{18 d^{5/3} e^{7/3}}-\frac{\log \left (\sqrt [3]{d}+\sqrt [3]{e} x\right ) \left (4 c d^2-e (2 a e+b d)\right )}{9 d^{5/3} e^{7/3}}+\frac{\tan ^{-1}\left (\frac{\sqrt [3]{d}-2 \sqrt [3]{e} x}{\sqrt{3} \sqrt [3]{d}}\right ) \left (4 c d^2-e (2 a e+b d)\right )}{3 \sqrt{3} d^{5/3} e^{7/3}}+\frac{c x}{e^2}$

[Out]

(c*x)/e^2 + ((c*d^2 - b*d*e + a*e^2)*x)/(3*d*e^2*(d + e*x^3)) + ((4*c*d^2 - e*(b*d + 2*a*e))*ArcTan[(d^(1/3) -
2*e^(1/3)*x)/(Sqrt[3]*d^(1/3))])/(3*Sqrt[3]*d^(5/3)*e^(7/3)) - ((4*c*d^2 - e*(b*d + 2*a*e))*Log[d^(1/3) + e^(
1/3)*x])/(9*d^(5/3)*e^(7/3)) + ((4*c*d^2 - e*(b*d + 2*a*e))*Log[d^(2/3) - d^(1/3)*e^(1/3)*x + e^(2/3)*x^2])/(1
8*d^(5/3)*e^(7/3))

________________________________________________________________________________________

Rubi [A]  time = 0.225653, antiderivative size = 213, normalized size of antiderivative = 1., number of steps used = 8, number of rules used = 8, integrand size = 22, $$\frac{\text{number of rules}}{\text{integrand size}}$$ = 0.364, Rules used = {1409, 388, 200, 31, 634, 617, 204, 628} $\frac{x \left (a e^2-b d e+c d^2\right )}{3 d e^2 \left (d+e x^3\right )}+\frac{\log \left (d^{2/3}-\sqrt [3]{d} \sqrt [3]{e} x+e^{2/3} x^2\right ) \left (4 c d^2-e (2 a e+b d)\right )}{18 d^{5/3} e^{7/3}}-\frac{\log \left (\sqrt [3]{d}+\sqrt [3]{e} x\right ) \left (4 c d^2-e (2 a e+b d)\right )}{9 d^{5/3} e^{7/3}}+\frac{\tan ^{-1}\left (\frac{\sqrt [3]{d}-2 \sqrt [3]{e} x}{\sqrt{3} \sqrt [3]{d}}\right ) \left (4 c d^2-e (2 a e+b d)\right )}{3 \sqrt{3} d^{5/3} e^{7/3}}+\frac{c x}{e^2}$

Antiderivative was successfully veriﬁed.

[In]

Int[(a + b*x^3 + c*x^6)/(d + e*x^3)^2,x]

[Out]

(c*x)/e^2 + ((c*d^2 - b*d*e + a*e^2)*x)/(3*d*e^2*(d + e*x^3)) + ((4*c*d^2 - e*(b*d + 2*a*e))*ArcTan[(d^(1/3) -
2*e^(1/3)*x)/(Sqrt[3]*d^(1/3))])/(3*Sqrt[3]*d^(5/3)*e^(7/3)) - ((4*c*d^2 - e*(b*d + 2*a*e))*Log[d^(1/3) + e^(
1/3)*x])/(9*d^(5/3)*e^(7/3)) + ((4*c*d^2 - e*(b*d + 2*a*e))*Log[d^(2/3) - d^(1/3)*e^(1/3)*x + e^(2/3)*x^2])/(1
8*d^(5/3)*e^(7/3))

Rule 1409

Int[((d_) + (e_.)*(x_)^(n_))^(q_)*((a_) + (b_.)*(x_)^(n_) + (c_.)*(x_)^(n2_)), x_Symbol] :> -Simp[((c*d^2 - b*
d*e + a*e^2)*x*(d + e*x^n)^(q + 1))/(d*e^2*n*(q + 1)), x] + Dist[1/(n*(q + 1)*d*e^2), Int[(d + e*x^n)^(q + 1)*
Simp[c*d^2 - b*d*e + a*e^2*(n*(q + 1) + 1) + c*d*e*n*(q + 1)*x^n, x], x], x] /; FreeQ[{a, b, c, d, e, n}, x] &
& EqQ[n2, 2*n] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0] && LtQ[q, -1]

Rule 388

Int[((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_)), x_Symbol] :> Simp[(d*x*(a + b*x^n)^(p + 1))/(b*(n*
(p + 1) + 1)), x] - Dist[(a*d - b*c*(n*(p + 1) + 1))/(b*(n*(p + 1) + 1)), Int[(a + b*x^n)^p, x], x] /; FreeQ[{
a, b, c, d, n}, x] && NeQ[b*c - a*d, 0] && NeQ[n*(p + 1) + 1, 0]

Rule 200

Int[((a_) + (b_.)*(x_)^3)^(-1), x_Symbol] :> Dist[1/(3*Rt[a, 3]^2), Int[1/(Rt[a, 3] + Rt[b, 3]*x), x], x] + Di
st[1/(3*Rt[a, 3]^2), Int[(2*Rt[a, 3] - Rt[b, 3]*x)/(Rt[a, 3]^2 - Rt[a, 3]*Rt[b, 3]*x + Rt[b, 3]^2*x^2), x], x]
/; FreeQ[{a, b}, x]

Rule 31

Int[((a_) + (b_.)*(x_))^(-1), x_Symbol] :> Simp[Log[RemoveContent[a + b*x, x]]/b, x] /; FreeQ[{a, b}, x]

Rule 634

Int[((d_.) + (e_.)*(x_))/((a_) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Dist[(2*c*d - b*e)/(2*c), Int[1/(a +
b*x + c*x^2), x], x] + Dist[e/(2*c), Int[(b + 2*c*x)/(a + b*x + c*x^2), x], x] /; FreeQ[{a, b, c, d, e}, x] &
& NeQ[2*c*d - b*e, 0] && NeQ[b^2 - 4*a*c, 0] &&  !NiceSqrtQ[b^2 - 4*a*c]

Rule 617

Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*Simplify[(a*c)/b^2]}, Dist[-2/b, Sub
st[Int[1/(q - x^2), x], x, 1 + (2*c*x)/b], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /;
FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 204

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> -Simp[ArcTan[(Rt[-b, 2]*x)/Rt[-a, 2]]/(Rt[-a, 2]*Rt[-b, 2]), x] /
; FreeQ[{a, b}, x] && PosQ[a/b] && (LtQ[a, 0] || LtQ[b, 0])

Rule 628

Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Simp[(d*Log[RemoveContent[a + b*x +
c*x^2, x]])/b, x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[2*c*d - b*e, 0]

Rubi steps

\begin{align*} \int \frac{a+b x^3+c x^6}{\left (d+e x^3\right )^2} \, dx &=\frac{\left (c d^2-b d e+a e^2\right ) x}{3 d e^2 \left (d+e x^3\right )}-\frac{\int \frac{c d^2-e (b d+2 a e)-3 c d e x^3}{d+e x^3} \, dx}{3 d e^2}\\ &=\frac{c x}{e^2}+\frac{\left (c d^2-b d e+a e^2\right ) x}{3 d e^2 \left (d+e x^3\right )}-\frac{\left (4 c d^2-e (b d+2 a e)\right ) \int \frac{1}{d+e x^3} \, dx}{3 d e^2}\\ &=\frac{c x}{e^2}+\frac{\left (c d^2-b d e+a e^2\right ) x}{3 d e^2 \left (d+e x^3\right )}-\frac{\left (4 c d^2-e (b d+2 a e)\right ) \int \frac{1}{\sqrt [3]{d}+\sqrt [3]{e} x} \, dx}{9 d^{5/3} e^2}-\frac{\left (4 c d^2-e (b d+2 a e)\right ) \int \frac{2 \sqrt [3]{d}-\sqrt [3]{e} x}{d^{2/3}-\sqrt [3]{d} \sqrt [3]{e} x+e^{2/3} x^2} \, dx}{9 d^{5/3} e^2}\\ &=\frac{c x}{e^2}+\frac{\left (c d^2-b d e+a e^2\right ) x}{3 d e^2 \left (d+e x^3\right )}-\frac{\left (4 c d^2-e (b d+2 a e)\right ) \log \left (\sqrt [3]{d}+\sqrt [3]{e} x\right )}{9 d^{5/3} e^{7/3}}+\frac{\left (4 c d^2-e (b d+2 a e)\right ) \int \frac{-\sqrt [3]{d} \sqrt [3]{e}+2 e^{2/3} x}{d^{2/3}-\sqrt [3]{d} \sqrt [3]{e} x+e^{2/3} x^2} \, dx}{18 d^{5/3} e^{7/3}}-\frac{\left (4 c d^2-e (b d+2 a e)\right ) \int \frac{1}{d^{2/3}-\sqrt [3]{d} \sqrt [3]{e} x+e^{2/3} x^2} \, dx}{6 d^{4/3} e^2}\\ &=\frac{c x}{e^2}+\frac{\left (c d^2-b d e+a e^2\right ) x}{3 d e^2 \left (d+e x^3\right )}-\frac{\left (4 c d^2-e (b d+2 a e)\right ) \log \left (\sqrt [3]{d}+\sqrt [3]{e} x\right )}{9 d^{5/3} e^{7/3}}+\frac{\left (4 c d^2-e (b d+2 a e)\right ) \log \left (d^{2/3}-\sqrt [3]{d} \sqrt [3]{e} x+e^{2/3} x^2\right )}{18 d^{5/3} e^{7/3}}-\frac{\left (4 c d^2-e (b d+2 a e)\right ) \operatorname{Subst}\left (\int \frac{1}{-3-x^2} \, dx,x,1-\frac{2 \sqrt [3]{e} x}{\sqrt [3]{d}}\right )}{3 d^{5/3} e^{7/3}}\\ &=\frac{c x}{e^2}+\frac{\left (c d^2-b d e+a e^2\right ) x}{3 d e^2 \left (d+e x^3\right )}+\frac{\left (4 c d^2-e (b d+2 a e)\right ) \tan ^{-1}\left (\frac{\sqrt [3]{d}-2 \sqrt [3]{e} x}{\sqrt{3} \sqrt [3]{d}}\right )}{3 \sqrt{3} d^{5/3} e^{7/3}}-\frac{\left (4 c d^2-e (b d+2 a e)\right ) \log \left (\sqrt [3]{d}+\sqrt [3]{e} x\right )}{9 d^{5/3} e^{7/3}}+\frac{\left (4 c d^2-e (b d+2 a e)\right ) \log \left (d^{2/3}-\sqrt [3]{d} \sqrt [3]{e} x+e^{2/3} x^2\right )}{18 d^{5/3} e^{7/3}}\\ \end{align*}

Mathematica [A]  time = 0.19949, size = 199, normalized size = 0.93 $\frac{\frac{\log \left (d^{2/3}-\sqrt [3]{d} \sqrt [3]{e} x+e^{2/3} x^2\right ) \left (4 c d^2-e (2 a e+b d)\right )}{d^{5/3}}+\frac{6 \sqrt [3]{e} x \left (e (a e-b d)+c d^2\right )}{d \left (d+e x^3\right )}-\frac{2 \log \left (\sqrt [3]{d}+\sqrt [3]{e} x\right ) \left (4 c d^2-e (2 a e+b d)\right )}{d^{5/3}}+\frac{2 \sqrt{3} \tan ^{-1}\left (\frac{1-\frac{2 \sqrt [3]{e} x}{\sqrt [3]{d}}}{\sqrt{3}}\right ) \left (4 c d^2-e (2 a e+b d)\right )}{d^{5/3}}+18 c \sqrt [3]{e} x}{18 e^{7/3}}$

Antiderivative was successfully veriﬁed.

[In]

Integrate[(a + b*x^3 + c*x^6)/(d + e*x^3)^2,x]

[Out]

(18*c*e^(1/3)*x + (6*e^(1/3)*(c*d^2 + e*(-(b*d) + a*e))*x)/(d*(d + e*x^3)) + (2*Sqrt[3]*(4*c*d^2 - e*(b*d + 2*
a*e))*ArcTan[(1 - (2*e^(1/3)*x)/d^(1/3))/Sqrt[3]])/d^(5/3) - (2*(4*c*d^2 - e*(b*d + 2*a*e))*Log[d^(1/3) + e^(1
/3)*x])/d^(5/3) + ((4*c*d^2 - e*(b*d + 2*a*e))*Log[d^(2/3) - d^(1/3)*e^(1/3)*x + e^(2/3)*x^2])/d^(5/3))/(18*e^
(7/3))

________________________________________________________________________________________

Maple [A]  time = 0.008, size = 345, normalized size = 1.6 \begin{align*}{\frac{cx}{{e}^{2}}}+{\frac{ax}{3\,d \left ( e{x}^{3}+d \right ) }}-{\frac{bx}{3\,e \left ( e{x}^{3}+d \right ) }}+{\frac{dxc}{3\,{e}^{2} \left ( e{x}^{3}+d \right ) }}+{\frac{2\,a}{9\,de}\ln \left ( x+\sqrt [3]{{\frac{d}{e}}} \right ) \left ({\frac{d}{e}} \right ) ^{-{\frac{2}{3}}}}+{\frac{b}{9\,{e}^{2}}\ln \left ( x+\sqrt [3]{{\frac{d}{e}}} \right ) \left ({\frac{d}{e}} \right ) ^{-{\frac{2}{3}}}}-{\frac{4\,cd}{9\,{e}^{3}}\ln \left ( x+\sqrt [3]{{\frac{d}{e}}} \right ) \left ({\frac{d}{e}} \right ) ^{-{\frac{2}{3}}}}-{\frac{a}{9\,de}\ln \left ({x}^{2}-\sqrt [3]{{\frac{d}{e}}}x+ \left ({\frac{d}{e}} \right ) ^{{\frac{2}{3}}} \right ) \left ({\frac{d}{e}} \right ) ^{-{\frac{2}{3}}}}-{\frac{b}{18\,{e}^{2}}\ln \left ({x}^{2}-\sqrt [3]{{\frac{d}{e}}}x+ \left ({\frac{d}{e}} \right ) ^{{\frac{2}{3}}} \right ) \left ({\frac{d}{e}} \right ) ^{-{\frac{2}{3}}}}+{\frac{2\,cd}{9\,{e}^{3}}\ln \left ({x}^{2}-\sqrt [3]{{\frac{d}{e}}}x+ \left ({\frac{d}{e}} \right ) ^{{\frac{2}{3}}} \right ) \left ({\frac{d}{e}} \right ) ^{-{\frac{2}{3}}}}+{\frac{2\,\sqrt{3}a}{9\,de}\arctan \left ({\frac{\sqrt{3}}{3} \left ( 2\,{x{\frac{1}{\sqrt [3]{{\frac{d}{e}}}}}}-1 \right ) } \right ) \left ({\frac{d}{e}} \right ) ^{-{\frac{2}{3}}}}+{\frac{\sqrt{3}b}{9\,{e}^{2}}\arctan \left ({\frac{\sqrt{3}}{3} \left ( 2\,{x{\frac{1}{\sqrt [3]{{\frac{d}{e}}}}}}-1 \right ) } \right ) \left ({\frac{d}{e}} \right ) ^{-{\frac{2}{3}}}}-{\frac{4\,d\sqrt{3}c}{9\,{e}^{3}}\arctan \left ({\frac{\sqrt{3}}{3} \left ( 2\,{x{\frac{1}{\sqrt [3]{{\frac{d}{e}}}}}}-1 \right ) } \right ) \left ({\frac{d}{e}} \right ) ^{-{\frac{2}{3}}}} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

int((c*x^6+b*x^3+a)/(e*x^3+d)^2,x)

[Out]

c*x/e^2+1/3/d*x/(e*x^3+d)*a-1/3/e*x/(e*x^3+d)*b+1/3/e^2*d*x/(e*x^3+d)*c+2/9/e/d/(d/e)^(2/3)*ln(x+(d/e)^(1/3))*
a+1/9/e^2/(d/e)^(2/3)*ln(x+(d/e)^(1/3))*b-4/9/e^3*d/(d/e)^(2/3)*ln(x+(d/e)^(1/3))*c-1/9/e/d/(d/e)^(2/3)*ln(x^2
-(d/e)^(1/3)*x+(d/e)^(2/3))*a-1/18/e^2/(d/e)^(2/3)*ln(x^2-(d/e)^(1/3)*x+(d/e)^(2/3))*b+2/9/e^3*d/(d/e)^(2/3)*l
n(x^2-(d/e)^(1/3)*x+(d/e)^(2/3))*c+2/9/e/d/(d/e)^(2/3)*3^(1/2)*arctan(1/3*3^(1/2)*(2/(d/e)^(1/3)*x-1))*a+1/9/e
^2/(d/e)^(2/3)*3^(1/2)*arctan(1/3*3^(1/2)*(2/(d/e)^(1/3)*x-1))*b-4/9/e^3*d/(d/e)^(2/3)*3^(1/2)*arctan(1/3*3^(1
/2)*(2/(d/e)^(1/3)*x-1))*c

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*x^6+b*x^3+a)/(e*x^3+d)^2,x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [A]  time = 1.38885, size = 1548, normalized size = 7.27 \begin{align*} \text{result too large to display} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*x^6+b*x^3+a)/(e*x^3+d)^2,x, algorithm="fricas")

[Out]

[1/18*(18*c*d^3*e^2*x^4 - 3*sqrt(1/3)*(4*c*d^4*e - b*d^3*e^2 - 2*a*d^2*e^3 + (4*c*d^3*e^2 - b*d^2*e^3 - 2*a*d*
e^4)*x^3)*sqrt(-(d^2*e)^(1/3)/e)*log((2*d*e*x^3 - 3*(d^2*e)^(1/3)*d*x - d^2 + 3*sqrt(1/3)*(2*d*e*x^2 + (d^2*e)
^(2/3)*x - (d^2*e)^(1/3)*d)*sqrt(-(d^2*e)^(1/3)/e))/(e*x^3 + d)) + (4*c*d^3 - b*d^2*e - 2*a*d*e^2 + (4*c*d^2*e
- b*d*e^2 - 2*a*e^3)*x^3)*(d^2*e)^(2/3)*log(d*e*x^2 - (d^2*e)^(2/3)*x + (d^2*e)^(1/3)*d) - 2*(4*c*d^3 - b*d^2
*e - 2*a*d*e^2 + (4*c*d^2*e - b*d*e^2 - 2*a*e^3)*x^3)*(d^2*e)^(2/3)*log(d*e*x + (d^2*e)^(2/3)) + 6*(4*c*d^4*e
- b*d^3*e^2 + a*d^2*e^3)*x)/(d^3*e^4*x^3 + d^4*e^3), 1/18*(18*c*d^3*e^2*x^4 - 6*sqrt(1/3)*(4*c*d^4*e - b*d^3*e
^2 - 2*a*d^2*e^3 + (4*c*d^3*e^2 - b*d^2*e^3 - 2*a*d*e^4)*x^3)*sqrt((d^2*e)^(1/3)/e)*arctan(sqrt(1/3)*(2*(d^2*e
)^(2/3)*x - (d^2*e)^(1/3)*d)*sqrt((d^2*e)^(1/3)/e)/d^2) + (4*c*d^3 - b*d^2*e - 2*a*d*e^2 + (4*c*d^2*e - b*d*e^
2 - 2*a*e^3)*x^3)*(d^2*e)^(2/3)*log(d*e*x^2 - (d^2*e)^(2/3)*x + (d^2*e)^(1/3)*d) - 2*(4*c*d^3 - b*d^2*e - 2*a*
d*e^2 + (4*c*d^2*e - b*d*e^2 - 2*a*e^3)*x^3)*(d^2*e)^(2/3)*log(d*e*x + (d^2*e)^(2/3)) + 6*(4*c*d^4*e - b*d^3*e
^2 + a*d^2*e^3)*x)/(d^3*e^4*x^3 + d^4*e^3)]

________________________________________________________________________________________

Sympy [A]  time = 1.98364, size = 206, normalized size = 0.97 \begin{align*} \frac{c x}{e^{2}} + \frac{x \left (a e^{2} - b d e + c d^{2}\right )}{3 d^{2} e^{2} + 3 d e^{3} x^{3}} + \operatorname{RootSum}{\left (729 t^{3} d^{5} e^{7} - 8 a^{3} e^{6} - 12 a^{2} b d e^{5} + 48 a^{2} c d^{2} e^{4} - 6 a b^{2} d^{2} e^{4} + 48 a b c d^{3} e^{3} - 96 a c^{2} d^{4} e^{2} - b^{3} d^{3} e^{3} + 12 b^{2} c d^{4} e^{2} - 48 b c^{2} d^{5} e + 64 c^{3} d^{6}, \left ( t \mapsto t \log{\left (\frac{9 t d^{2} e^{2}}{2 a e^{2} + b d e - 4 c d^{2}} + x \right )} \right )\right )} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*x**6+b*x**3+a)/(e*x**3+d)**2,x)

[Out]

c*x/e**2 + x*(a*e**2 - b*d*e + c*d**2)/(3*d**2*e**2 + 3*d*e**3*x**3) + RootSum(729*_t**3*d**5*e**7 - 8*a**3*e*
*6 - 12*a**2*b*d*e**5 + 48*a**2*c*d**2*e**4 - 6*a*b**2*d**2*e**4 + 48*a*b*c*d**3*e**3 - 96*a*c**2*d**4*e**2 -
b**3*d**3*e**3 + 12*b**2*c*d**4*e**2 - 48*b*c**2*d**5*e + 64*c**3*d**6, Lambda(_t, _t*log(9*_t*d**2*e**2/(2*a*
e**2 + b*d*e - 4*c*d**2) + x)))

________________________________________________________________________________________

Giac [A]  time = 1.12166, size = 306, normalized size = 1.44 \begin{align*} c x e^{\left (-2\right )} - \frac{\sqrt{3}{\left (4 \, \left (-d e^{2}\right )^{\frac{1}{3}} c d^{2} - \left (-d e^{2}\right )^{\frac{1}{3}} b d e - 2 \, \left (-d e^{2}\right )^{\frac{1}{3}} a e^{2}\right )} \arctan \left (\frac{\sqrt{3}{\left (2 \, x + \left (-d e^{\left (-1\right )}\right )^{\frac{1}{3}}\right )}}{3 \, \left (-d e^{\left (-1\right )}\right )^{\frac{1}{3}}}\right ) e^{\left (-3\right )}}{9 \, d^{2}} + \frac{{\left (4 \, c d^{2} - b d e - 2 \, a e^{2}\right )} \left (-d e^{\left (-1\right )}\right )^{\frac{1}{3}} e^{\left (-2\right )} \log \left ({\left | x - \left (-d e^{\left (-1\right )}\right )^{\frac{1}{3}} \right |}\right )}{9 \, d^{2}} - \frac{{\left (4 \, \left (-d e^{2}\right )^{\frac{1}{3}} c d^{2} - \left (-d e^{2}\right )^{\frac{1}{3}} b d e - 2 \, \left (-d e^{2}\right )^{\frac{1}{3}} a e^{2}\right )} e^{\left (-3\right )} \log \left (x^{2} + \left (-d e^{\left (-1\right )}\right )^{\frac{1}{3}} x + \left (-d e^{\left (-1\right )}\right )^{\frac{2}{3}}\right )}{18 \, d^{2}} + \frac{{\left (c d^{2} x - b d x e + a x e^{2}\right )} e^{\left (-2\right )}}{3 \,{\left (x^{3} e + d\right )} d} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*x^6+b*x^3+a)/(e*x^3+d)^2,x, algorithm="giac")

[Out]

c*x*e^(-2) - 1/9*sqrt(3)*(4*(-d*e^2)^(1/3)*c*d^2 - (-d*e^2)^(1/3)*b*d*e - 2*(-d*e^2)^(1/3)*a*e^2)*arctan(1/3*s
qrt(3)*(2*x + (-d*e^(-1))^(1/3))/(-d*e^(-1))^(1/3))*e^(-3)/d^2 + 1/9*(4*c*d^2 - b*d*e - 2*a*e^2)*(-d*e^(-1))^(
1/3)*e^(-2)*log(abs(x - (-d*e^(-1))^(1/3)))/d^2 - 1/18*(4*(-d*e^2)^(1/3)*c*d^2 - (-d*e^2)^(1/3)*b*d*e - 2*(-d*
e^2)^(1/3)*a*e^2)*e^(-3)*log(x^2 + (-d*e^(-1))^(1/3)*x + (-d*e^(-1))^(2/3))/d^2 + 1/3*(c*d^2*x - b*d*x*e + a*x
*e^2)*e^(-2)/((x^3*e + d)*d)