### 3.50 $$\int \frac{d+e x^4}{x^3 (a+b x^4+c x^8)} \, dx$$

Optimal. Leaf size=199 $-\frac{\sqrt{c} \left (\frac{b d-2 a e}{\sqrt{b^2-4 a c}}+d\right ) \tan ^{-1}\left (\frac{\sqrt{2} \sqrt{c} x^2}{\sqrt{b-\sqrt{b^2-4 a c}}}\right )}{2 \sqrt{2} a \sqrt{b-\sqrt{b^2-4 a c}}}-\frac{\sqrt{c} \left (d-\frac{b d-2 a e}{\sqrt{b^2-4 a c}}\right ) \tan ^{-1}\left (\frac{\sqrt{2} \sqrt{c} x^2}{\sqrt{\sqrt{b^2-4 a c}+b}}\right )}{2 \sqrt{2} a \sqrt{\sqrt{b^2-4 a c}+b}}-\frac{d}{2 a x^2}$

[Out]

-d/(2*a*x^2) - (Sqrt[c]*(d + (b*d - 2*a*e)/Sqrt[b^2 - 4*a*c])*ArcTan[(Sqrt[2]*Sqrt[c]*x^2)/Sqrt[b - Sqrt[b^2 -
4*a*c]]])/(2*Sqrt[2]*a*Sqrt[b - Sqrt[b^2 - 4*a*c]]) - (Sqrt[c]*(d - (b*d - 2*a*e)/Sqrt[b^2 - 4*a*c])*ArcTan[(
Sqrt[2]*Sqrt[c]*x^2)/Sqrt[b + Sqrt[b^2 - 4*a*c]]])/(2*Sqrt[2]*a*Sqrt[b + Sqrt[b^2 - 4*a*c]])

________________________________________________________________________________________

Rubi [A]  time = 0.311309, antiderivative size = 199, normalized size of antiderivative = 1., number of steps used = 5, number of rules used = 4, integrand size = 25, $$\frac{\text{number of rules}}{\text{integrand size}}$$ = 0.16, Rules used = {1490, 1281, 1166, 205} $-\frac{\sqrt{c} \left (\frac{b d-2 a e}{\sqrt{b^2-4 a c}}+d\right ) \tan ^{-1}\left (\frac{\sqrt{2} \sqrt{c} x^2}{\sqrt{b-\sqrt{b^2-4 a c}}}\right )}{2 \sqrt{2} a \sqrt{b-\sqrt{b^2-4 a c}}}-\frac{\sqrt{c} \left (d-\frac{b d-2 a e}{\sqrt{b^2-4 a c}}\right ) \tan ^{-1}\left (\frac{\sqrt{2} \sqrt{c} x^2}{\sqrt{\sqrt{b^2-4 a c}+b}}\right )}{2 \sqrt{2} a \sqrt{\sqrt{b^2-4 a c}+b}}-\frac{d}{2 a x^2}$

Antiderivative was successfully veriﬁed.

[In]

Int[(d + e*x^4)/(x^3*(a + b*x^4 + c*x^8)),x]

[Out]

-d/(2*a*x^2) - (Sqrt[c]*(d + (b*d - 2*a*e)/Sqrt[b^2 - 4*a*c])*ArcTan[(Sqrt[2]*Sqrt[c]*x^2)/Sqrt[b - Sqrt[b^2 -
4*a*c]]])/(2*Sqrt[2]*a*Sqrt[b - Sqrt[b^2 - 4*a*c]]) - (Sqrt[c]*(d - (b*d - 2*a*e)/Sqrt[b^2 - 4*a*c])*ArcTan[(
Sqrt[2]*Sqrt[c]*x^2)/Sqrt[b + Sqrt[b^2 - 4*a*c]]])/(2*Sqrt[2]*a*Sqrt[b + Sqrt[b^2 - 4*a*c]])

Rule 1490

Int[(x_)^(m_.)*((a_) + (c_.)*(x_)^(n2_.) + (b_.)*(x_)^(n_))^(p_)*((d_) + (e_.)*(x_)^(n_))^(q_.), x_Symbol] :>
With[{k = GCD[m + 1, n]}, Dist[1/k, Subst[Int[x^((m + 1)/k - 1)*(d + e*x^(n/k))^q*(a + b*x^(n/k) + c*x^((2*n)/
k))^p, x], x, x^k], x] /; k != 1] /; FreeQ[{a, b, c, d, e, p, q}, x] && EqQ[n2, 2*n] && NeQ[b^2 - 4*a*c, 0] &&
IGtQ[n, 0] && IntegerQ[m]

Rule 1281

Int[((f_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^2)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_), x_Symbol] :> Simp[(d*(
f*x)^(m + 1)*(a + b*x^2 + c*x^4)^(p + 1))/(a*f*(m + 1)), x] + Dist[1/(a*f^2*(m + 1)), Int[(f*x)^(m + 2)*(a + b
*x^2 + c*x^4)^p*Simp[a*e*(m + 1) - b*d*(m + 2*p + 3) - c*d*(m + 4*p + 5)*x^2, x], x], x] /; FreeQ[{a, b, c, d,
e, f, p}, x] && NeQ[b^2 - 4*a*c, 0] && LtQ[m, -1] && IntegerQ[2*p] && (IntegerQ[p] || IntegerQ[m])

Rule 1166

Int[((d_) + (e_.)*(x_)^2)/((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[b^2 - 4*a*c, 2]}, Di
st[e/2 + (2*c*d - b*e)/(2*q), Int[1/(b/2 - q/2 + c*x^2), x], x] + Dist[e/2 - (2*c*d - b*e)/(2*q), Int[1/(b/2 +
q/2 + c*x^2), x], x]] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - a*e^2, 0] && PosQ[b^
2 - 4*a*c]

Rule 205

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]*ArcTan[x/Rt[a/b, 2]])/a, x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rubi steps

\begin{align*} \int \frac{d+e x^4}{x^3 \left (a+b x^4+c x^8\right )} \, dx &=\frac{1}{2} \operatorname{Subst}\left (\int \frac{d+e x^2}{x^2 \left (a+b x^2+c x^4\right )} \, dx,x,x^2\right )\\ &=-\frac{d}{2 a x^2}-\frac{\operatorname{Subst}\left (\int \frac{b d-a e+c d x^2}{a+b x^2+c x^4} \, dx,x,x^2\right )}{2 a}\\ &=-\frac{d}{2 a x^2}-\frac{\left (c \left (d-\frac{b d-2 a e}{\sqrt{b^2-4 a c}}\right )\right ) \operatorname{Subst}\left (\int \frac{1}{\frac{b}{2}+\frac{1}{2} \sqrt{b^2-4 a c}+c x^2} \, dx,x,x^2\right )}{4 a}-\frac{\left (c \left (d+\frac{b d-2 a e}{\sqrt{b^2-4 a c}}\right )\right ) \operatorname{Subst}\left (\int \frac{1}{\frac{b}{2}-\frac{1}{2} \sqrt{b^2-4 a c}+c x^2} \, dx,x,x^2\right )}{4 a}\\ &=-\frac{d}{2 a x^2}-\frac{\sqrt{c} \left (d+\frac{b d-2 a e}{\sqrt{b^2-4 a c}}\right ) \tan ^{-1}\left (\frac{\sqrt{2} \sqrt{c} x^2}{\sqrt{b-\sqrt{b^2-4 a c}}}\right )}{2 \sqrt{2} a \sqrt{b-\sqrt{b^2-4 a c}}}-\frac{\sqrt{c} \left (d-\frac{b d-2 a e}{\sqrt{b^2-4 a c}}\right ) \tan ^{-1}\left (\frac{\sqrt{2} \sqrt{c} x^2}{\sqrt{b+\sqrt{b^2-4 a c}}}\right )}{2 \sqrt{2} a \sqrt{b+\sqrt{b^2-4 a c}}}\\ \end{align*}

Mathematica [C]  time = 0.0490785, size = 89, normalized size = 0.45 $-\frac{\text{RootSum}\left [\text{\#1}^4 b+\text{\#1}^8 c+a\& ,\frac{\text{\#1}^4 c d \log (x-\text{\#1})-a e \log (x-\text{\#1})+b d \log (x-\text{\#1})}{\text{\#1}^2 b+2 \text{\#1}^6 c}\& \right ]}{4 a}-\frac{d}{2 a x^2}$

Antiderivative was successfully veriﬁed.

[In]

Integrate[(d + e*x^4)/(x^3*(a + b*x^4 + c*x^8)),x]

[Out]

-d/(2*a*x^2) - RootSum[a + b*#1^4 + c*#1^8 & , (b*d*Log[x - #1] - a*e*Log[x - #1] + c*d*Log[x - #1]*#1^4)/(b*#
1^2 + 2*c*#1^6) & ]/(4*a)

________________________________________________________________________________________

Maple [B]  time = 0.02, size = 365, normalized size = 1.8 \begin{align*} -{\frac{c\sqrt{2}d}{4\,a}\arctan \left ({c{x}^{2}\sqrt{2}{\frac{1}{\sqrt{ \left ( b+\sqrt{-4\,ac+{b}^{2}} \right ) c}}}} \right ){\frac{1}{\sqrt{ \left ( b+\sqrt{-4\,ac+{b}^{2}} \right ) c}}}}-{\frac{c\sqrt{2}e}{2}\arctan \left ({c{x}^{2}\sqrt{2}{\frac{1}{\sqrt{ \left ( b+\sqrt{-4\,ac+{b}^{2}} \right ) c}}}} \right ){\frac{1}{\sqrt{-4\,ac+{b}^{2}}}}{\frac{1}{\sqrt{ \left ( b+\sqrt{-4\,ac+{b}^{2}} \right ) c}}}}+{\frac{c\sqrt{2}bd}{4\,a}\arctan \left ({c{x}^{2}\sqrt{2}{\frac{1}{\sqrt{ \left ( b+\sqrt{-4\,ac+{b}^{2}} \right ) c}}}} \right ){\frac{1}{\sqrt{-4\,ac+{b}^{2}}}}{\frac{1}{\sqrt{ \left ( b+\sqrt{-4\,ac+{b}^{2}} \right ) c}}}}+{\frac{c\sqrt{2}d}{4\,a}{\it Artanh} \left ({c{x}^{2}\sqrt{2}{\frac{1}{\sqrt{ \left ( -b+\sqrt{-4\,ac+{b}^{2}} \right ) c}}}} \right ){\frac{1}{\sqrt{ \left ( -b+\sqrt{-4\,ac+{b}^{2}} \right ) c}}}}-{\frac{c\sqrt{2}e}{2}{\it Artanh} \left ({c{x}^{2}\sqrt{2}{\frac{1}{\sqrt{ \left ( -b+\sqrt{-4\,ac+{b}^{2}} \right ) c}}}} \right ){\frac{1}{\sqrt{-4\,ac+{b}^{2}}}}{\frac{1}{\sqrt{ \left ( -b+\sqrt{-4\,ac+{b}^{2}} \right ) c}}}}+{\frac{c\sqrt{2}bd}{4\,a}{\it Artanh} \left ({c{x}^{2}\sqrt{2}{\frac{1}{\sqrt{ \left ( -b+\sqrt{-4\,ac+{b}^{2}} \right ) c}}}} \right ){\frac{1}{\sqrt{-4\,ac+{b}^{2}}}}{\frac{1}{\sqrt{ \left ( -b+\sqrt{-4\,ac+{b}^{2}} \right ) c}}}}-{\frac{d}{2\,a{x}^{2}}} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

int((e*x^4+d)/x^3/(c*x^8+b*x^4+a),x)

[Out]

-1/4/a*c*2^(1/2)/((b+(-4*a*c+b^2)^(1/2))*c)^(1/2)*arctan(c*x^2*2^(1/2)/((b+(-4*a*c+b^2)^(1/2))*c)^(1/2))*d-1/2
*c/(-4*a*c+b^2)^(1/2)*2^(1/2)/((b+(-4*a*c+b^2)^(1/2))*c)^(1/2)*arctan(c*x^2*2^(1/2)/((b+(-4*a*c+b^2)^(1/2))*c)
^(1/2))*e+1/4/a*c/(-4*a*c+b^2)^(1/2)*2^(1/2)/((b+(-4*a*c+b^2)^(1/2))*c)^(1/2)*arctan(c*x^2*2^(1/2)/((b+(-4*a*c
+b^2)^(1/2))*c)^(1/2))*b*d+1/4/a*c*2^(1/2)/((-b+(-4*a*c+b^2)^(1/2))*c)^(1/2)*arctanh(c*x^2*2^(1/2)/((-b+(-4*a*
c+b^2)^(1/2))*c)^(1/2))*d-1/2*c/(-4*a*c+b^2)^(1/2)*2^(1/2)/((-b+(-4*a*c+b^2)^(1/2))*c)^(1/2)*arctanh(c*x^2*2^(
1/2)/((-b+(-4*a*c+b^2)^(1/2))*c)^(1/2))*e+1/4/a*c/(-4*a*c+b^2)^(1/2)*2^(1/2)/((-b+(-4*a*c+b^2)^(1/2))*c)^(1/2)
*arctanh(c*x^2*2^(1/2)/((-b+(-4*a*c+b^2)^(1/2))*c)^(1/2))*b*d-1/2*d/a/x^2

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{result too large to display} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x^4+d)/x^3/(c*x^8+b*x^4+a),x, algorithm="maxima")

[Out]

-integrate((c*d*x^4 + b*d - a*e)*x/(c*x^8 + b*x^4 + a), x)/a - 1/2*d/(a*x^2)

________________________________________________________________________________________

Fricas [B]  time = 5.41222, size = 5485, normalized size = 27.56 \begin{align*} \text{result too large to display} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x^4+d)/x^3/(c*x^8+b*x^4+a),x, algorithm="fricas")

[Out]

1/4*(sqrt(1/2)*a*x^2*sqrt(-(a^2*b*e^2 + (b^3 - 3*a*b*c)*d^2 - 2*(a*b^2 - 2*a^2*c)*d*e + (a^3*b^2 - 4*a^4*c)*sq
rt(-(4*a^3*b*d*e^3 - a^4*e^4 - (b^4 - 2*a*b^2*c + a^2*c^2)*d^4 + 4*(a*b^3 - a^2*b*c)*d^3*e - 2*(3*a^2*b^2 - a^
3*c)*d^2*e^2)/(a^6*b^2 - 4*a^7*c)))/(a^3*b^2 - 4*a^4*c))*log((3*a*b^2*c*d^2*e^2 - 3*a^2*b*c*d*e^3 + a^3*c*e^4
+ (b^2*c^2 - a*c^3)*d^4 - (b^3*c + a*b*c^2)*d^3*e)*x^2 + 1/2*sqrt(1/2)*((b^5 - 5*a*b^3*c + 4*a^2*b*c^2)*d^3 -
(3*a*b^4 - 13*a^2*b^2*c + 4*a^3*c^2)*d^2*e + 3*(a^2*b^3 - 4*a^3*b*c)*d*e^2 - (a^3*b^2 - 4*a^4*c)*e^3 - ((a^3*b
^4 - 6*a^4*b^2*c + 8*a^5*c^2)*d - (a^4*b^3 - 4*a^5*b*c)*e)*sqrt(-(4*a^3*b*d*e^3 - a^4*e^4 - (b^4 - 2*a*b^2*c +
a^2*c^2)*d^4 + 4*(a*b^3 - a^2*b*c)*d^3*e - 2*(3*a^2*b^2 - a^3*c)*d^2*e^2)/(a^6*b^2 - 4*a^7*c)))*sqrt(-(a^2*b*
e^2 + (b^3 - 3*a*b*c)*d^2 - 2*(a*b^2 - 2*a^2*c)*d*e + (a^3*b^2 - 4*a^4*c)*sqrt(-(4*a^3*b*d*e^3 - a^4*e^4 - (b^
4 - 2*a*b^2*c + a^2*c^2)*d^4 + 4*(a*b^3 - a^2*b*c)*d^3*e - 2*(3*a^2*b^2 - a^3*c)*d^2*e^2)/(a^6*b^2 - 4*a^7*c))
)/(a^3*b^2 - 4*a^4*c))) - sqrt(1/2)*a*x^2*sqrt(-(a^2*b*e^2 + (b^3 - 3*a*b*c)*d^2 - 2*(a*b^2 - 2*a^2*c)*d*e + (
a^3*b^2 - 4*a^4*c)*sqrt(-(4*a^3*b*d*e^3 - a^4*e^4 - (b^4 - 2*a*b^2*c + a^2*c^2)*d^4 + 4*(a*b^3 - a^2*b*c)*d^3*
e - 2*(3*a^2*b^2 - a^3*c)*d^2*e^2)/(a^6*b^2 - 4*a^7*c)))/(a^3*b^2 - 4*a^4*c))*log((3*a*b^2*c*d^2*e^2 - 3*a^2*b
*c*d*e^3 + a^3*c*e^4 + (b^2*c^2 - a*c^3)*d^4 - (b^3*c + a*b*c^2)*d^3*e)*x^2 - 1/2*sqrt(1/2)*((b^5 - 5*a*b^3*c
+ 4*a^2*b*c^2)*d^3 - (3*a*b^4 - 13*a^2*b^2*c + 4*a^3*c^2)*d^2*e + 3*(a^2*b^3 - 4*a^3*b*c)*d*e^2 - (a^3*b^2 - 4
*a^4*c)*e^3 - ((a^3*b^4 - 6*a^4*b^2*c + 8*a^5*c^2)*d - (a^4*b^3 - 4*a^5*b*c)*e)*sqrt(-(4*a^3*b*d*e^3 - a^4*e^4
- (b^4 - 2*a*b^2*c + a^2*c^2)*d^4 + 4*(a*b^3 - a^2*b*c)*d^3*e - 2*(3*a^2*b^2 - a^3*c)*d^2*e^2)/(a^6*b^2 - 4*a
^7*c)))*sqrt(-(a^2*b*e^2 + (b^3 - 3*a*b*c)*d^2 - 2*(a*b^2 - 2*a^2*c)*d*e + (a^3*b^2 - 4*a^4*c)*sqrt(-(4*a^3*b*
d*e^3 - a^4*e^4 - (b^4 - 2*a*b^2*c + a^2*c^2)*d^4 + 4*(a*b^3 - a^2*b*c)*d^3*e - 2*(3*a^2*b^2 - a^3*c)*d^2*e^2)
/(a^6*b^2 - 4*a^7*c)))/(a^3*b^2 - 4*a^4*c))) + sqrt(1/2)*a*x^2*sqrt(-(a^2*b*e^2 + (b^3 - 3*a*b*c)*d^2 - 2*(a*b
^2 - 2*a^2*c)*d*e - (a^3*b^2 - 4*a^4*c)*sqrt(-(4*a^3*b*d*e^3 - a^4*e^4 - (b^4 - 2*a*b^2*c + a^2*c^2)*d^4 + 4*(
a*b^3 - a^2*b*c)*d^3*e - 2*(3*a^2*b^2 - a^3*c)*d^2*e^2)/(a^6*b^2 - 4*a^7*c)))/(a^3*b^2 - 4*a^4*c))*log((3*a*b^
2*c*d^2*e^2 - 3*a^2*b*c*d*e^3 + a^3*c*e^4 + (b^2*c^2 - a*c^3)*d^4 - (b^3*c + a*b*c^2)*d^3*e)*x^2 + 1/2*sqrt(1/
2)*((b^5 - 5*a*b^3*c + 4*a^2*b*c^2)*d^3 - (3*a*b^4 - 13*a^2*b^2*c + 4*a^3*c^2)*d^2*e + 3*(a^2*b^3 - 4*a^3*b*c)
*d*e^2 - (a^3*b^2 - 4*a^4*c)*e^3 + ((a^3*b^4 - 6*a^4*b^2*c + 8*a^5*c^2)*d - (a^4*b^3 - 4*a^5*b*c)*e)*sqrt(-(4*
a^3*b*d*e^3 - a^4*e^4 - (b^4 - 2*a*b^2*c + a^2*c^2)*d^4 + 4*(a*b^3 - a^2*b*c)*d^3*e - 2*(3*a^2*b^2 - a^3*c)*d^
2*e^2)/(a^6*b^2 - 4*a^7*c)))*sqrt(-(a^2*b*e^2 + (b^3 - 3*a*b*c)*d^2 - 2*(a*b^2 - 2*a^2*c)*d*e - (a^3*b^2 - 4*a
^4*c)*sqrt(-(4*a^3*b*d*e^3 - a^4*e^4 - (b^4 - 2*a*b^2*c + a^2*c^2)*d^4 + 4*(a*b^3 - a^2*b*c)*d^3*e - 2*(3*a^2*
b^2 - a^3*c)*d^2*e^2)/(a^6*b^2 - 4*a^7*c)))/(a^3*b^2 - 4*a^4*c))) - sqrt(1/2)*a*x^2*sqrt(-(a^2*b*e^2 + (b^3 -
3*a*b*c)*d^2 - 2*(a*b^2 - 2*a^2*c)*d*e - (a^3*b^2 - 4*a^4*c)*sqrt(-(4*a^3*b*d*e^3 - a^4*e^4 - (b^4 - 2*a*b^2*c
+ a^2*c^2)*d^4 + 4*(a*b^3 - a^2*b*c)*d^3*e - 2*(3*a^2*b^2 - a^3*c)*d^2*e^2)/(a^6*b^2 - 4*a^7*c)))/(a^3*b^2 -
4*a^4*c))*log((3*a*b^2*c*d^2*e^2 - 3*a^2*b*c*d*e^3 + a^3*c*e^4 + (b^2*c^2 - a*c^3)*d^4 - (b^3*c + a*b*c^2)*d^3
*e)*x^2 - 1/2*sqrt(1/2)*((b^5 - 5*a*b^3*c + 4*a^2*b*c^2)*d^3 - (3*a*b^4 - 13*a^2*b^2*c + 4*a^3*c^2)*d^2*e + 3*
(a^2*b^3 - 4*a^3*b*c)*d*e^2 - (a^3*b^2 - 4*a^4*c)*e^3 + ((a^3*b^4 - 6*a^4*b^2*c + 8*a^5*c^2)*d - (a^4*b^3 - 4*
a^5*b*c)*e)*sqrt(-(4*a^3*b*d*e^3 - a^4*e^4 - (b^4 - 2*a*b^2*c + a^2*c^2)*d^4 + 4*(a*b^3 - a^2*b*c)*d^3*e - 2*(
3*a^2*b^2 - a^3*c)*d^2*e^2)/(a^6*b^2 - 4*a^7*c)))*sqrt(-(a^2*b*e^2 + (b^3 - 3*a*b*c)*d^2 - 2*(a*b^2 - 2*a^2*c)
*d*e - (a^3*b^2 - 4*a^4*c)*sqrt(-(4*a^3*b*d*e^3 - a^4*e^4 - (b^4 - 2*a*b^2*c + a^2*c^2)*d^4 + 4*(a*b^3 - a^2*b
*c)*d^3*e - 2*(3*a^2*b^2 - a^3*c)*d^2*e^2)/(a^6*b^2 - 4*a^7*c)))/(a^3*b^2 - 4*a^4*c))) - 2*d)/(a*x^2)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x**4+d)/x**3/(c*x**8+b*x**4+a),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [C]  time = 7.0813, size = 2365, normalized size = 11.88 \begin{align*} \text{result too large to display} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x^4+d)/x^3/(c*x^8+b*x^4+a),x, algorithm="giac")

[Out]

-((a*c^3)^(1/4)*a*c*d*x^4*cosh(1/2*imag_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c)))))*sin(5/4*pi + 1/2*real_part(a
rcsin(1/2*sqrt(a*c)*b/(a*abs(c))))) - (a*c^3)^(1/4)*a*c*d*x^4*sin(5/4*pi + 1/2*real_part(arcsin(1/2*sqrt(a*c)*
b/(a*abs(c)))))*sinh(1/2*imag_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c))))) + (a*c^3)^(1/4)*a*b*d*cosh(1/2*imag_pa
rt(arcsin(1/2*sqrt(a*c)*b/(a*abs(c)))))*sin(5/4*pi + 1/2*real_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c))))) - (a*c
^3)^(1/4)*a^2*cosh(1/2*imag_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c)))))*e*sin(5/4*pi + 1/2*real_part(arcsin(1/2*
sqrt(a*c)*b/(a*abs(c))))) - (a*c^3)^(1/4)*a*b*d*sin(5/4*pi + 1/2*real_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c))))
)*sinh(1/2*imag_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c))))) + (a*c^3)^(1/4)*a^2*e*sin(5/4*pi + 1/2*real_part(arc
sin(1/2*sqrt(a*c)*b/(a*abs(c)))))*sinh(1/2*imag_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c))))))*arctan((x^2 - (a/c)
^(1/4)*cos(5/4*pi + 1/2*arcsin(1/2*sqrt(a*c)*b/(a*abs(c)))))/((a/c)^(1/4)*sin(5/4*pi + 1/2*arcsin(1/2*sqrt(a*c
)*b/(a*abs(c))))))/(sqrt(b^2 - 4*a*c)*a*b*abs(a) - (b^2 - 4*a*c)*a^2) - ((a*c^3)^(1/4)*a*c*d*x^4*cosh(1/2*imag
_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c)))))*sin(1/4*pi + 1/2*real_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c))))) - (
a*c^3)^(1/4)*a*c*d*x^4*sin(1/4*pi + 1/2*real_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c)))))*sinh(1/2*imag_part(arcs
in(1/2*sqrt(a*c)*b/(a*abs(c))))) + (a*c^3)^(1/4)*a*b*d*cosh(1/2*imag_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c)))))
*sin(1/4*pi + 1/2*real_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c))))) - (a*c^3)^(1/4)*a^2*cosh(1/2*imag_part(arcsin
(1/2*sqrt(a*c)*b/(a*abs(c)))))*e*sin(1/4*pi + 1/2*real_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c))))) - (a*c^3)^(1/
4)*a*b*d*sin(1/4*pi + 1/2*real_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c)))))*sinh(1/2*imag_part(arcsin(1/2*sqrt(a*
c)*b/(a*abs(c))))) + (a*c^3)^(1/4)*a^2*e*sin(1/4*pi + 1/2*real_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c)))))*sinh(
1/2*imag_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c))))))*arctan((x^2 - (a/c)^(1/4)*cos(1/4*pi + 1/2*arcsin(1/2*sqrt
(a*c)*b/(a*abs(c)))))/((a/c)^(1/4)*sin(1/4*pi + 1/2*arcsin(1/2*sqrt(a*c)*b/(a*abs(c))))))/(sqrt(b^2 - 4*a*c)*a
*b*abs(a) - (b^2 - 4*a*c)*a^2) + 1/2*((a*c^3)^(1/4)*a*c*d*x^4*cos(5/4*pi + 1/2*real_part(arcsin(1/2*sqrt(a*c)*
b/(a*abs(c)))))*cosh(1/2*imag_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c))))) - (a*c^3)^(1/4)*a*c*d*x^4*cos(5/4*pi +
1/2*real_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c)))))*sinh(1/2*imag_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c))))) +
(a*c^3)^(1/4)*a*b*d*cos(5/4*pi + 1/2*real_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c)))))*cosh(1/2*imag_part(arcsin(
1/2*sqrt(a*c)*b/(a*abs(c))))) - (a*c^3)^(1/4)*a^2*cos(5/4*pi + 1/2*real_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c))
)))*cosh(1/2*imag_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c)))))*e - (a*c^3)^(1/4)*a*b*d*cos(5/4*pi + 1/2*real_part
(arcsin(1/2*sqrt(a*c)*b/(a*abs(c)))))*sinh(1/2*imag_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c))))) + (a*c^3)^(1/4)*
a^2*cos(5/4*pi + 1/2*real_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c)))))*e*sinh(1/2*imag_part(arcsin(1/2*sqrt(a*c)*
b/(a*abs(c))))))*log(x^4 - 2*x^2*(a/c)^(1/4)*cos(5/4*pi + 1/2*arcsin(1/2*sqrt(a*c)*b/(a*abs(c)))) + sqrt(a/c))
/(sqrt(b^2 - 4*a*c)*a*b*abs(a) - (b^2 - 4*a*c)*a^2) + 1/2*((a*c^3)^(1/4)*a*c*d*x^4*cos(1/4*pi + 1/2*real_part(
arcsin(1/2*sqrt(a*c)*b/(a*abs(c)))))*cosh(1/2*imag_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c))))) - (a*c^3)^(1/4)*a
*c*d*x^4*cos(1/4*pi + 1/2*real_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c)))))*sinh(1/2*imag_part(arcsin(1/2*sqrt(a*
c)*b/(a*abs(c))))) + (a*c^3)^(1/4)*a*b*d*cos(1/4*pi + 1/2*real_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c)))))*cosh(
1/2*imag_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c))))) - (a*c^3)^(1/4)*a^2*cos(1/4*pi + 1/2*real_part(arcsin(1/2*s
qrt(a*c)*b/(a*abs(c)))))*cosh(1/2*imag_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c)))))*e - (a*c^3)^(1/4)*a*b*d*cos(1
/4*pi + 1/2*real_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c)))))*sinh(1/2*imag_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c)
)))) + (a*c^3)^(1/4)*a^2*cos(1/4*pi + 1/2*real_part(arcsin(1/2*sqrt(a*c)*b/(a*abs(c)))))*e*sinh(1/2*imag_part(
arcsin(1/2*sqrt(a*c)*b/(a*abs(c))))))*log(x^4 - 2*x^2*(a/c)^(1/4)*cos(1/4*pi + 1/2*arcsin(1/2*sqrt(a*c)*b/(a*a
bs(c)))) + sqrt(a/c))/(sqrt(b^2 - 4*a*c)*a*b*abs(a) - (b^2 - 4*a*c)*a^2) - 1/2*d/(a*x^2)