### 3.47 $$\int \frac{d+e x^4}{a+b x^4+c x^8} \, dx$$

Optimal. Leaf size=375 $-\frac{\left (e-\frac{2 c d-b e}{\sqrt{b^2-4 a c}}\right ) \tan ^{-1}\left (\frac{\sqrt [4]{2} \sqrt [4]{c} x}{\sqrt [4]{-\sqrt{b^2-4 a c}-b}}\right )}{2 \sqrt [4]{2} \sqrt [4]{c} \left (-\sqrt{b^2-4 a c}-b\right )^{3/4}}-\frac{\left (\frac{2 c d-b e}{\sqrt{b^2-4 a c}}+e\right ) \tan ^{-1}\left (\frac{\sqrt [4]{2} \sqrt [4]{c} x}{\sqrt [4]{\sqrt{b^2-4 a c}-b}}\right )}{2 \sqrt [4]{2} \sqrt [4]{c} \left (\sqrt{b^2-4 a c}-b\right )^{3/4}}-\frac{\left (e-\frac{2 c d-b e}{\sqrt{b^2-4 a c}}\right ) \tanh ^{-1}\left (\frac{\sqrt [4]{2} \sqrt [4]{c} x}{\sqrt [4]{-\sqrt{b^2-4 a c}-b}}\right )}{2 \sqrt [4]{2} \sqrt [4]{c} \left (-\sqrt{b^2-4 a c}-b\right )^{3/4}}-\frac{\left (\frac{2 c d-b e}{\sqrt{b^2-4 a c}}+e\right ) \tanh ^{-1}\left (\frac{\sqrt [4]{2} \sqrt [4]{c} x}{\sqrt [4]{\sqrt{b^2-4 a c}-b}}\right )}{2 \sqrt [4]{2} \sqrt [4]{c} \left (\sqrt{b^2-4 a c}-b\right )^{3/4}}$

[Out]

-((e - (2*c*d - b*e)/Sqrt[b^2 - 4*a*c])*ArcTan[(2^(1/4)*c^(1/4)*x)/(-b - Sqrt[b^2 - 4*a*c])^(1/4)])/(2*2^(1/4)
*c^(1/4)*(-b - Sqrt[b^2 - 4*a*c])^(3/4)) - ((e + (2*c*d - b*e)/Sqrt[b^2 - 4*a*c])*ArcTan[(2^(1/4)*c^(1/4)*x)/(
-b + Sqrt[b^2 - 4*a*c])^(1/4)])/(2*2^(1/4)*c^(1/4)*(-b + Sqrt[b^2 - 4*a*c])^(3/4)) - ((e - (2*c*d - b*e)/Sqrt[
b^2 - 4*a*c])*ArcTanh[(2^(1/4)*c^(1/4)*x)/(-b - Sqrt[b^2 - 4*a*c])^(1/4)])/(2*2^(1/4)*c^(1/4)*(-b - Sqrt[b^2 -
4*a*c])^(3/4)) - ((e + (2*c*d - b*e)/Sqrt[b^2 - 4*a*c])*ArcTanh[(2^(1/4)*c^(1/4)*x)/(-b + Sqrt[b^2 - 4*a*c])^
(1/4)])/(2*2^(1/4)*c^(1/4)*(-b + Sqrt[b^2 - 4*a*c])^(3/4))

________________________________________________________________________________________

Rubi [A]  time = 0.350982, antiderivative size = 375, normalized size of antiderivative = 1., number of steps used = 7, number of rules used = 4, integrand size = 22, $$\frac{\text{number of rules}}{\text{integrand size}}$$ = 0.182, Rules used = {1422, 212, 208, 205} $-\frac{\left (e-\frac{2 c d-b e}{\sqrt{b^2-4 a c}}\right ) \tan ^{-1}\left (\frac{\sqrt [4]{2} \sqrt [4]{c} x}{\sqrt [4]{-\sqrt{b^2-4 a c}-b}}\right )}{2 \sqrt [4]{2} \sqrt [4]{c} \left (-\sqrt{b^2-4 a c}-b\right )^{3/4}}-\frac{\left (\frac{2 c d-b e}{\sqrt{b^2-4 a c}}+e\right ) \tan ^{-1}\left (\frac{\sqrt [4]{2} \sqrt [4]{c} x}{\sqrt [4]{\sqrt{b^2-4 a c}-b}}\right )}{2 \sqrt [4]{2} \sqrt [4]{c} \left (\sqrt{b^2-4 a c}-b\right )^{3/4}}-\frac{\left (e-\frac{2 c d-b e}{\sqrt{b^2-4 a c}}\right ) \tanh ^{-1}\left (\frac{\sqrt [4]{2} \sqrt [4]{c} x}{\sqrt [4]{-\sqrt{b^2-4 a c}-b}}\right )}{2 \sqrt [4]{2} \sqrt [4]{c} \left (-\sqrt{b^2-4 a c}-b\right )^{3/4}}-\frac{\left (\frac{2 c d-b e}{\sqrt{b^2-4 a c}}+e\right ) \tanh ^{-1}\left (\frac{\sqrt [4]{2} \sqrt [4]{c} x}{\sqrt [4]{\sqrt{b^2-4 a c}-b}}\right )}{2 \sqrt [4]{2} \sqrt [4]{c} \left (\sqrt{b^2-4 a c}-b\right )^{3/4}}$

Antiderivative was successfully veriﬁed.

[In]

Int[(d + e*x^4)/(a + b*x^4 + c*x^8),x]

[Out]

-((e - (2*c*d - b*e)/Sqrt[b^2 - 4*a*c])*ArcTan[(2^(1/4)*c^(1/4)*x)/(-b - Sqrt[b^2 - 4*a*c])^(1/4)])/(2*2^(1/4)
*c^(1/4)*(-b - Sqrt[b^2 - 4*a*c])^(3/4)) - ((e + (2*c*d - b*e)/Sqrt[b^2 - 4*a*c])*ArcTan[(2^(1/4)*c^(1/4)*x)/(
-b + Sqrt[b^2 - 4*a*c])^(1/4)])/(2*2^(1/4)*c^(1/4)*(-b + Sqrt[b^2 - 4*a*c])^(3/4)) - ((e - (2*c*d - b*e)/Sqrt[
b^2 - 4*a*c])*ArcTanh[(2^(1/4)*c^(1/4)*x)/(-b - Sqrt[b^2 - 4*a*c])^(1/4)])/(2*2^(1/4)*c^(1/4)*(-b - Sqrt[b^2 -
4*a*c])^(3/4)) - ((e + (2*c*d - b*e)/Sqrt[b^2 - 4*a*c])*ArcTanh[(2^(1/4)*c^(1/4)*x)/(-b + Sqrt[b^2 - 4*a*c])^
(1/4)])/(2*2^(1/4)*c^(1/4)*(-b + Sqrt[b^2 - 4*a*c])^(3/4))

Rule 1422

Int[((d_) + (e_.)*(x_)^(n_))/((a_) + (b_.)*(x_)^(n_) + (c_.)*(x_)^(n2_)), x_Symbol] :> With[{q = Rt[b^2 - 4*a*
c, 2]}, Dist[e/2 + (2*c*d - b*e)/(2*q), Int[1/(b/2 - q/2 + c*x^n), x], x] + Dist[e/2 - (2*c*d - b*e)/(2*q), In
t[1/(b/2 + q/2 + c*x^n), x], x]] /; FreeQ[{a, b, c, d, e, n}, x] && EqQ[n2, 2*n] && NeQ[b^2 - 4*a*c, 0] && NeQ
[c*d^2 - b*d*e + a*e^2, 0] && (PosQ[b^2 - 4*a*c] ||  !IGtQ[n/2, 0])

Rule 212

Int[((a_) + (b_.)*(x_)^4)^(-1), x_Symbol] :> With[{r = Numerator[Rt[-(a/b), 2]], s = Denominator[Rt[-(a/b), 2]
]}, Dist[r/(2*a), Int[1/(r - s*x^2), x], x] + Dist[r/(2*a), Int[1/(r + s*x^2), x], x]] /; FreeQ[{a, b}, x] &&
!GtQ[a/b, 0]

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rule 205

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]*ArcTan[x/Rt[a/b, 2]])/a, x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rubi steps

\begin{align*} \int \frac{d+e x^4}{a+b x^4+c x^8} \, dx &=\frac{1}{2} \left (e-\frac{2 c d-b e}{\sqrt{b^2-4 a c}}\right ) \int \frac{1}{\frac{b}{2}+\frac{1}{2} \sqrt{b^2-4 a c}+c x^4} \, dx+\frac{1}{2} \left (e+\frac{2 c d-b e}{\sqrt{b^2-4 a c}}\right ) \int \frac{1}{\frac{b}{2}-\frac{1}{2} \sqrt{b^2-4 a c}+c x^4} \, dx\\ &=-\frac{\left (e-\frac{2 c d-b e}{\sqrt{b^2-4 a c}}\right ) \int \frac{1}{\sqrt{-b-\sqrt{b^2-4 a c}}-\sqrt{2} \sqrt{c} x^2} \, dx}{2 \sqrt{-b-\sqrt{b^2-4 a c}}}-\frac{\left (e-\frac{2 c d-b e}{\sqrt{b^2-4 a c}}\right ) \int \frac{1}{\sqrt{-b-\sqrt{b^2-4 a c}}+\sqrt{2} \sqrt{c} x^2} \, dx}{2 \sqrt{-b-\sqrt{b^2-4 a c}}}-\frac{\left (e+\frac{2 c d-b e}{\sqrt{b^2-4 a c}}\right ) \int \frac{1}{\sqrt{-b+\sqrt{b^2-4 a c}}-\sqrt{2} \sqrt{c} x^2} \, dx}{2 \sqrt{-b+\sqrt{b^2-4 a c}}}-\frac{\left (e+\frac{2 c d-b e}{\sqrt{b^2-4 a c}}\right ) \int \frac{1}{\sqrt{-b+\sqrt{b^2-4 a c}}+\sqrt{2} \sqrt{c} x^2} \, dx}{2 \sqrt{-b+\sqrt{b^2-4 a c}}}\\ &=-\frac{\left (e-\frac{2 c d-b e}{\sqrt{b^2-4 a c}}\right ) \tan ^{-1}\left (\frac{\sqrt [4]{2} \sqrt [4]{c} x}{\sqrt [4]{-b-\sqrt{b^2-4 a c}}}\right )}{2 \sqrt [4]{2} \sqrt [4]{c} \left (-b-\sqrt{b^2-4 a c}\right )^{3/4}}-\frac{\left (e+\frac{2 c d-b e}{\sqrt{b^2-4 a c}}\right ) \tan ^{-1}\left (\frac{\sqrt [4]{2} \sqrt [4]{c} x}{\sqrt [4]{-b+\sqrt{b^2-4 a c}}}\right )}{2 \sqrt [4]{2} \sqrt [4]{c} \left (-b+\sqrt{b^2-4 a c}\right )^{3/4}}-\frac{\left (e-\frac{2 c d-b e}{\sqrt{b^2-4 a c}}\right ) \tanh ^{-1}\left (\frac{\sqrt [4]{2} \sqrt [4]{c} x}{\sqrt [4]{-b-\sqrt{b^2-4 a c}}}\right )}{2 \sqrt [4]{2} \sqrt [4]{c} \left (-b-\sqrt{b^2-4 a c}\right )^{3/4}}-\frac{\left (e+\frac{2 c d-b e}{\sqrt{b^2-4 a c}}\right ) \tanh ^{-1}\left (\frac{\sqrt [4]{2} \sqrt [4]{c} x}{\sqrt [4]{-b+\sqrt{b^2-4 a c}}}\right )}{2 \sqrt [4]{2} \sqrt [4]{c} \left (-b+\sqrt{b^2-4 a c}\right )^{3/4}}\\ \end{align*}

Mathematica [C]  time = 0.0483642, size = 61, normalized size = 0.16 $\frac{1}{4} \text{RootSum}\left [\text{\#1}^4 b+\text{\#1}^8 c+a\& ,\frac{\text{\#1}^4 e \log (x-\text{\#1})+d \log (x-\text{\#1})}{\text{\#1}^3 b+2 \text{\#1}^7 c}\& \right ]$

Antiderivative was successfully veriﬁed.

[In]

Integrate[(d + e*x^4)/(a + b*x^4 + c*x^8),x]

[Out]

RootSum[a + b*#1^4 + c*#1^8 & , (d*Log[x - #1] + e*Log[x - #1]*#1^4)/(b*#1^3 + 2*c*#1^7) & ]/4

________________________________________________________________________________________

Maple [C]  time = 0.003, size = 47, normalized size = 0.1 \begin{align*}{\frac{1}{4}\sum _{{\it \_R}={\it RootOf} \left ({{\it \_Z}}^{8}c+{{\it \_Z}}^{4}b+a \right ) }{\frac{ \left ({{\it \_R}}^{4}e+d \right ) \ln \left ( x-{\it \_R} \right ) }{2\,{{\it \_R}}^{7}c+{{\it \_R}}^{3}b}}} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

int((e*x^4+d)/(c*x^8+b*x^4+a),x)

[Out]

1/4*sum((_R^4*e+d)/(2*_R^7*c+_R^3*b)*ln(x-_R),_R=RootOf(_Z^8*c+_Z^4*b+a))

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{e x^{4} + d}{c x^{8} + b x^{4} + a}\,{d x} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x^4+d)/(c*x^8+b*x^4+a),x, algorithm="maxima")

[Out]

integrate((e*x^4 + d)/(c*x^8 + b*x^4 + a), x)

________________________________________________________________________________________

Fricas [B]  time = 20.9388, size = 26437, normalized size = 70.5 \begin{align*} \text{result too large to display} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x^4+d)/(c*x^8+b*x^4+a),x, algorithm="fricas")

[Out]

sqrt(sqrt(1/2)*sqrt(-(6*a^2*b*c*d^2*e^2 - 8*a^3*c*d*e^3 + a^3*b*e^4 + (b^3*c - 3*a*b*c^2)*d^4 - 4*(a*b^2*c - 2
*a^2*c^2)*d^3*e - (a^3*b^4*c - 8*a^4*b^2*c^2 + 16*a^5*c^3)*sqrt(-(48*a^3*b*c^2*d^5*e^3 - 8*a^4*b*c*d^3*e^5 + 1
2*a^5*c*d^2*e^6 - a^6*e^8 - (b^4*c^2 - 2*a*b^2*c^3 + a^2*c^4)*d^8 + 8*(a*b^3*c^2 - a^2*b*c^3)*d^7*e - 4*(7*a^2
*b^2*c^2 - 3*a^3*c^3)*d^6*e^2 + 2*(a^3*b^2*c - 19*a^4*c^2)*d^4*e^4)/(a^6*b^6*c^2 - 12*a^7*b^4*c^3 + 48*a^8*b^2
*c^4 - 64*a^9*c^5)))/(a^3*b^4*c - 8*a^4*b^2*c^2 + 16*a^5*c^3)))*arctan(1/4*(2*sqrt(1/2)*(((a^3*b^8*c^2 - 14*a^
4*b^6*c^3 + 72*a^5*b^4*c^4 - 160*a^6*b^2*c^5 + 128*a^7*c^6)*d^3 - 3*(a^4*b^7*c^2 - 12*a^5*b^5*c^3 + 48*a^6*b^3
*c^4 - 64*a^7*b*c^5)*d^2*e + 6*(a^5*b^6*c^2 - 12*a^6*b^4*c^3 + 48*a^7*b^2*c^4 - 64*a^8*c^5)*d*e^2 - (a^5*b^7*c
- 12*a^6*b^5*c^2 + 48*a^7*b^3*c^3 - 64*a^8*b*c^4)*e^3)*x*sqrt(-(48*a^3*b*c^2*d^5*e^3 - 8*a^4*b*c*d^3*e^5 + 12
*a^5*c*d^2*e^6 - a^6*e^8 - (b^4*c^2 - 2*a*b^2*c^3 + a^2*c^4)*d^8 + 8*(a*b^3*c^2 - a^2*b*c^3)*d^7*e - 4*(7*a^2*
b^2*c^2 - 3*a^3*c^3)*d^6*e^2 + 2*(a^3*b^2*c - 19*a^4*c^2)*d^4*e^4)/(a^6*b^6*c^2 - 12*a^7*b^4*c^3 + 48*a^8*b^2*
c^4 - 64*a^9*c^5)) + ((b^7*c^2 - 9*a*b^5*c^3 + 24*a^2*b^3*c^4 - 16*a^3*b*c^5)*d^7 - (7*a*b^6*c^2 - 59*a^2*b^4*
c^3 + 136*a^3*b^2*c^4 - 48*a^4*c^5)*d^6*e + 18*(a^2*b^5*c^2 - 8*a^3*b^3*c^3 + 16*a^4*b*c^4)*d^5*e^2 + (a^2*b^6
*c - 27*a^3*b^4*c^2 + 168*a^4*b^2*c^3 - 304*a^5*c^4)*d^4*e^3 - 5*(a^3*b^5*c - 8*a^4*b^3*c^2 + 16*a^5*b*c^3)*d^
3*e^4 + 9*(a^4*b^4*c - 8*a^5*b^2*c^2 + 16*a^6*c^3)*d^2*e^5 - (a^5*b^4 - 8*a^6*b^2*c + 16*a^7*c^2)*e^7)*x)*sqrt
(-(6*a^2*b*c*d^2*e^2 - 8*a^3*c*d*e^3 + a^3*b*e^4 + (b^3*c - 3*a*b*c^2)*d^4 - 4*(a*b^2*c - 2*a^2*c^2)*d^3*e - (
a^3*b^4*c - 8*a^4*b^2*c^2 + 16*a^5*c^3)*sqrt(-(48*a^3*b*c^2*d^5*e^3 - 8*a^4*b*c*d^3*e^5 + 12*a^5*c*d^2*e^6 - a
^6*e^8 - (b^4*c^2 - 2*a*b^2*c^3 + a^2*c^4)*d^8 + 8*(a*b^3*c^2 - a^2*b*c^3)*d^7*e - 4*(7*a^2*b^2*c^2 - 3*a^3*c^
3)*d^6*e^2 + 2*(a^3*b^2*c - 19*a^4*c^2)*d^4*e^4)/(a^6*b^6*c^2 - 12*a^7*b^4*c^3 + 48*a^8*b^2*c^4 - 64*a^9*c^5))
)/(a^3*b^4*c - 8*a^4*b^2*c^2 + 16*a^5*c^3)) - ((b^7*c^2 - 9*a*b^5*c^3 + 24*a^2*b^3*c^4 - 16*a^3*b*c^5)*d^7 - (
7*a*b^6*c^2 - 59*a^2*b^4*c^3 + 136*a^3*b^2*c^4 - 48*a^4*c^5)*d^6*e + 18*(a^2*b^5*c^2 - 8*a^3*b^3*c^3 + 16*a^4*
b*c^4)*d^5*e^2 + (a^2*b^6*c - 27*a^3*b^4*c^2 + 168*a^4*b^2*c^3 - 304*a^5*c^4)*d^4*e^3 - 5*(a^3*b^5*c - 8*a^4*b
^3*c^2 + 16*a^5*b*c^3)*d^3*e^4 + 9*(a^4*b^4*c - 8*a^5*b^2*c^2 + 16*a^6*c^3)*d^2*e^5 - (a^5*b^4 - 8*a^6*b^2*c +
16*a^7*c^2)*e^7 + ((a^3*b^8*c^2 - 14*a^4*b^6*c^3 + 72*a^5*b^4*c^4 - 160*a^6*b^2*c^5 + 128*a^7*c^6)*d^3 - 3*(a
^4*b^7*c^2 - 12*a^5*b^5*c^3 + 48*a^6*b^3*c^4 - 64*a^7*b*c^5)*d^2*e + 6*(a^5*b^6*c^2 - 12*a^6*b^4*c^3 + 48*a^7*
b^2*c^4 - 64*a^8*c^5)*d*e^2 - (a^5*b^7*c - 12*a^6*b^5*c^2 + 48*a^7*b^3*c^3 - 64*a^8*b*c^4)*e^3)*sqrt(-(48*a^3*
b*c^2*d^5*e^3 - 8*a^4*b*c*d^3*e^5 + 12*a^5*c*d^2*e^6 - a^6*e^8 - (b^4*c^2 - 2*a*b^2*c^3 + a^2*c^4)*d^8 + 8*(a*
b^3*c^2 - a^2*b*c^3)*d^7*e - 4*(7*a^2*b^2*c^2 - 3*a^3*c^3)*d^6*e^2 + 2*(a^3*b^2*c - 19*a^4*c^2)*d^4*e^4)/(a^6*
b^6*c^2 - 12*a^7*b^4*c^3 + 48*a^8*b^2*c^4 - 64*a^9*c^5)))*sqrt(-(6*a^2*b*c*d^2*e^2 - 8*a^3*c*d*e^3 + a^3*b*e^4
+ (b^3*c - 3*a*b*c^2)*d^4 - 4*(a*b^2*c - 2*a^2*c^2)*d^3*e - (a^3*b^4*c - 8*a^4*b^2*c^2 + 16*a^5*c^3)*sqrt(-(4
8*a^3*b*c^2*d^5*e^3 - 8*a^4*b*c*d^3*e^5 + 12*a^5*c*d^2*e^6 - a^6*e^8 - (b^4*c^2 - 2*a*b^2*c^3 + a^2*c^4)*d^8 +
8*(a*b^3*c^2 - a^2*b*c^3)*d^7*e - 4*(7*a^2*b^2*c^2 - 3*a^3*c^3)*d^6*e^2 + 2*(a^3*b^2*c - 19*a^4*c^2)*d^4*e^4)
/(a^6*b^6*c^2 - 12*a^7*b^4*c^3 + 48*a^8*b^2*c^4 - 64*a^9*c^5)))/(a^3*b^4*c - 8*a^4*b^2*c^2 + 16*a^5*c^3))*sqrt
((2*(14*a^3*b*c*d^3*e^5 - 2*a^4*b*d*e^7 + a^5*e^8 - (b^2*c^3 - a*c^4)*d^8 + 2*(b^3*c^2 + a*b*c^3)*d^7*e - (b^4
*c + 9*a*b^2*c^2 + 4*a^2*c^3)*d^6*e^2 + 6*(a*b^3*c + 3*a^2*b*c^2)*d^5*e^3 - 5*(3*a^2*b^2*c + 2*a^3*c^2)*d^4*e^
4 + (a^3*b^2 - 4*a^4*c)*d^2*e^6)*x^2 - sqrt(1/2)*((b^6*c - 7*a*b^4*c^2 + 14*a^2*b^2*c^3 - 8*a^3*c^4)*d^6 - 2*(
3*a*b^5*c - 17*a^2*b^3*c^2 + 20*a^3*b*c^3)*d^5*e + 2*(8*a^2*b^4*c - 39*a^3*b^2*c^2 + 28*a^4*c^3)*d^4*e^2 - 20*
(a^3*b^3*c - 4*a^4*b*c^2)*d^3*e^3 - (a^3*b^4 - 18*a^4*b^2*c + 56*a^5*c^2)*d^2*e^4 + 2*(a^4*b^3 - 4*a^5*b*c)*d*
e^5 - 2*(a^5*b^2 - 4*a^6*c)*e^6 + ((a^3*b^7*c - 12*a^4*b^5*c^2 + 48*a^5*b^3*c^3 - 64*a^6*b*c^4)*d^2 - 2*(a^4*b
^6*c - 12*a^5*b^4*c^2 + 48*a^6*b^2*c^3 - 64*a^7*c^4)*d*e)*sqrt(-(48*a^3*b*c^2*d^5*e^3 - 8*a^4*b*c*d^3*e^5 + 12
*a^5*c*d^2*e^6 - a^6*e^8 - (b^4*c^2 - 2*a*b^2*c^3 + a^2*c^4)*d^8 + 8*(a*b^3*c^2 - a^2*b*c^3)*d^7*e - 4*(7*a^2*
b^2*c^2 - 3*a^3*c^3)*d^6*e^2 + 2*(a^3*b^2*c - 19*a^4*c^2)*d^4*e^4)/(a^6*b^6*c^2 - 12*a^7*b^4*c^3 + 48*a^8*b^2*
c^4 - 64*a^9*c^5)))*sqrt(-(6*a^2*b*c*d^2*e^2 - 8*a^3*c*d*e^3 + a^3*b*e^4 + (b^3*c - 3*a*b*c^2)*d^4 - 4*(a*b^2*
c - 2*a^2*c^2)*d^3*e - (a^3*b^4*c - 8*a^4*b^2*c^2 + 16*a^5*c^3)*sqrt(-(48*a^3*b*c^2*d^5*e^3 - 8*a^4*b*c*d^3*e^
5 + 12*a^5*c*d^2*e^6 - a^6*e^8 - (b^4*c^2 - 2*a*b^2*c^3 + a^2*c^4)*d^8 + 8*(a*b^3*c^2 - a^2*b*c^3)*d^7*e - 4*(
7*a^2*b^2*c^2 - 3*a^3*c^3)*d^6*e^2 + 2*(a^3*b^2*c - 19*a^4*c^2)*d^4*e^4)/(a^6*b^6*c^2 - 12*a^7*b^4*c^3 + 48*a^
8*b^2*c^4 - 64*a^9*c^5)))/(a^3*b^4*c - 8*a^4*b^2*c^2 + 16*a^5*c^3)))/(14*a^3*b*c*d^3*e^5 - 2*a^4*b*d*e^7 + a^5
*e^8 - (b^2*c^3 - a*c^4)*d^8 + 2*(b^3*c^2 + a*b*c^3)*d^7*e - (b^4*c + 9*a*b^2*c^2 + 4*a^2*c^3)*d^6*e^2 + 6*(a*
b^3*c + 3*a^2*b*c^2)*d^5*e^3 - 5*(3*a^2*b^2*c + 2*a^3*c^2)*d^4*e^4 + (a^3*b^2 - 4*a^4*c)*d^2*e^6)))*sqrt(sqrt(
1/2)*sqrt(-(6*a^2*b*c*d^2*e^2 - 8*a^3*c*d*e^3 + a^3*b*e^4 + (b^3*c - 3*a*b*c^2)*d^4 - 4*(a*b^2*c - 2*a^2*c^2)*
d^3*e - (a^3*b^4*c - 8*a^4*b^2*c^2 + 16*a^5*c^3)*sqrt(-(48*a^3*b*c^2*d^5*e^3 - 8*a^4*b*c*d^3*e^5 + 12*a^5*c*d^
2*e^6 - a^6*e^8 - (b^4*c^2 - 2*a*b^2*c^3 + a^2*c^4)*d^8 + 8*(a*b^3*c^2 - a^2*b*c^3)*d^7*e - 4*(7*a^2*b^2*c^2 -
3*a^3*c^3)*d^6*e^2 + 2*(a^3*b^2*c - 19*a^4*c^2)*d^4*e^4)/(a^6*b^6*c^2 - 12*a^7*b^4*c^3 + 48*a^8*b^2*c^4 - 64*
a^9*c^5)))/(a^3*b^4*c - 8*a^4*b^2*c^2 + 16*a^5*c^3)))/(3*a^5*b*d*e^9 - a^6*e^10 + (b^2*c^4 - a*c^5)*d^10 - (3*
b^3*c^3 + a*b*c^4)*d^9*e + 3*(b^4*c^2 + 4*a*b^2*c^3 + a^2*c^4)*d^8*e^2 - (b^5*c + 17*a*b^3*c^2 + 24*a^2*b*c^3)
*d^7*e^3 + 7*(a*b^4*c + 6*a^2*b^2*c^2 + 2*a^3*c^3)*d^6*e^4 - 21*(a^2*b^3*c + 2*a^3*b*c^2)*d^5*e^5 + 14*(2*a^3*
b^2*c + a^4*c^2)*d^4*e^6 + (a^3*b^3 - 16*a^4*b*c)*d^3*e^7 - 3*(a^4*b^2 - a^5*c)*d^2*e^8)) - sqrt(sqrt(1/2)*sqr
t(-(6*a^2*b*c*d^2*e^2 - 8*a^3*c*d*e^3 + a^3*b*e^4 + (b^3*c - 3*a*b*c^2)*d^4 - 4*(a*b^2*c - 2*a^2*c^2)*d^3*e +
(a^3*b^4*c - 8*a^4*b^2*c^2 + 16*a^5*c^3)*sqrt(-(48*a^3*b*c^2*d^5*e^3 - 8*a^4*b*c*d^3*e^5 + 12*a^5*c*d^2*e^6 -
a^6*e^8 - (b^4*c^2 - 2*a*b^2*c^3 + a^2*c^4)*d^8 + 8*(a*b^3*c^2 - a^2*b*c^3)*d^7*e - 4*(7*a^2*b^2*c^2 - 3*a^3*c
^3)*d^6*e^2 + 2*(a^3*b^2*c - 19*a^4*c^2)*d^4*e^4)/(a^6*b^6*c^2 - 12*a^7*b^4*c^3 + 48*a^8*b^2*c^4 - 64*a^9*c^5)
))/(a^3*b^4*c - 8*a^4*b^2*c^2 + 16*a^5*c^3)))*arctan(1/4*(2*sqrt(1/2)*(((a^3*b^8*c^2 - 14*a^4*b^6*c^3 + 72*a^5
*b^4*c^4 - 160*a^6*b^2*c^5 + 128*a^7*c^6)*d^3 - 3*(a^4*b^7*c^2 - 12*a^5*b^5*c^3 + 48*a^6*b^3*c^4 - 64*a^7*b*c^
5)*d^2*e + 6*(a^5*b^6*c^2 - 12*a^6*b^4*c^3 + 48*a^7*b^2*c^4 - 64*a^8*c^5)*d*e^2 - (a^5*b^7*c - 12*a^6*b^5*c^2
+ 48*a^7*b^3*c^3 - 64*a^8*b*c^4)*e^3)*x*sqrt(-(48*a^3*b*c^2*d^5*e^3 - 8*a^4*b*c*d^3*e^5 + 12*a^5*c*d^2*e^6 - a
^6*e^8 - (b^4*c^2 - 2*a*b^2*c^3 + a^2*c^4)*d^8 + 8*(a*b^3*c^2 - a^2*b*c^3)*d^7*e - 4*(7*a^2*b^2*c^2 - 3*a^3*c^
3)*d^6*e^2 + 2*(a^3*b^2*c - 19*a^4*c^2)*d^4*e^4)/(a^6*b^6*c^2 - 12*a^7*b^4*c^3 + 48*a^8*b^2*c^4 - 64*a^9*c^5))
- ((b^7*c^2 - 9*a*b^5*c^3 + 24*a^2*b^3*c^4 - 16*a^3*b*c^5)*d^7 - (7*a*b^6*c^2 - 59*a^2*b^4*c^3 + 136*a^3*b^2*
c^4 - 48*a^4*c^5)*d^6*e + 18*(a^2*b^5*c^2 - 8*a^3*b^3*c^3 + 16*a^4*b*c^4)*d^5*e^2 + (a^2*b^6*c - 27*a^3*b^4*c^
2 + 168*a^4*b^2*c^3 - 304*a^5*c^4)*d^4*e^3 - 5*(a^3*b^5*c - 8*a^4*b^3*c^2 + 16*a^5*b*c^3)*d^3*e^4 + 9*(a^4*b^4
*c - 8*a^5*b^2*c^2 + 16*a^6*c^3)*d^2*e^5 - (a^5*b^4 - 8*a^6*b^2*c + 16*a^7*c^2)*e^7)*x)*sqrt(sqrt(1/2)*sqrt(-(
6*a^2*b*c*d^2*e^2 - 8*a^3*c*d*e^3 + a^3*b*e^4 + (b^3*c - 3*a*b*c^2)*d^4 - 4*(a*b^2*c - 2*a^2*c^2)*d^3*e + (a^3
*b^4*c - 8*a^4*b^2*c^2 + 16*a^5*c^3)*sqrt(-(48*a^3*b*c^2*d^5*e^3 - 8*a^4*b*c*d^3*e^5 + 12*a^5*c*d^2*e^6 - a^6*
e^8 - (b^4*c^2 - 2*a*b^2*c^3 + a^2*c^4)*d^8 + 8*(a*b^3*c^2 - a^2*b*c^3)*d^7*e - 4*(7*a^2*b^2*c^2 - 3*a^3*c^3)*
d^6*e^2 + 2*(a^3*b^2*c - 19*a^4*c^2)*d^4*e^4)/(a^6*b^6*c^2 - 12*a^7*b^4*c^3 + 48*a^8*b^2*c^4 - 64*a^9*c^5)))/(
a^3*b^4*c - 8*a^4*b^2*c^2 + 16*a^5*c^3)))*sqrt(-(6*a^2*b*c*d^2*e^2 - 8*a^3*c*d*e^3 + a^3*b*e^4 + (b^3*c - 3*a*
b*c^2)*d^4 - 4*(a*b^2*c - 2*a^2*c^2)*d^3*e + (a^3*b^4*c - 8*a^4*b^2*c^2 + 16*a^5*c^3)*sqrt(-(48*a^3*b*c^2*d^5*
e^3 - 8*a^4*b*c*d^3*e^5 + 12*a^5*c*d^2*e^6 - a^6*e^8 - (b^4*c^2 - 2*a*b^2*c^3 + a^2*c^4)*d^8 + 8*(a*b^3*c^2 -
a^2*b*c^3)*d^7*e - 4*(7*a^2*b^2*c^2 - 3*a^3*c^3)*d^6*e^2 + 2*(a^3*b^2*c - 19*a^4*c^2)*d^4*e^4)/(a^6*b^6*c^2 -
12*a^7*b^4*c^3 + 48*a^8*b^2*c^4 - 64*a^9*c^5)))/(a^3*b^4*c - 8*a^4*b^2*c^2 + 16*a^5*c^3)) + ((b^7*c^2 - 9*a*b^
5*c^3 + 24*a^2*b^3*c^4 - 16*a^3*b*c^5)*d^7 - (7*a*b^6*c^2 - 59*a^2*b^4*c^3 + 136*a^3*b^2*c^4 - 48*a^4*c^5)*d^6
*e + 18*(a^2*b^5*c^2 - 8*a^3*b^3*c^3 + 16*a^4*b*c^4)*d^5*e^2 + (a^2*b^6*c - 27*a^3*b^4*c^2 + 168*a^4*b^2*c^3 -
304*a^5*c^4)*d^4*e^3 - 5*(a^3*b^5*c - 8*a^4*b^3*c^2 + 16*a^5*b*c^3)*d^3*e^4 + 9*(a^4*b^4*c - 8*a^5*b^2*c^2 +
16*a^6*c^3)*d^2*e^5 - (a^5*b^4 - 8*a^6*b^2*c + 16*a^7*c^2)*e^7 - ((a^3*b^8*c^2 - 14*a^4*b^6*c^3 + 72*a^5*b^4*c
^4 - 160*a^6*b^2*c^5 + 128*a^7*c^6)*d^3 - 3*(a^4*b^7*c^2 - 12*a^5*b^5*c^3 + 48*a^6*b^3*c^4 - 64*a^7*b*c^5)*d^2
*e + 6*(a^5*b^6*c^2 - 12*a^6*b^4*c^3 + 48*a^7*b^2*c^4 - 64*a^8*c^5)*d*e^2 - (a^5*b^7*c - 12*a^6*b^5*c^2 + 48*a
^7*b^3*c^3 - 64*a^8*b*c^4)*e^3)*sqrt(-(48*a^3*b*c^2*d^5*e^3 - 8*a^4*b*c*d^3*e^5 + 12*a^5*c*d^2*e^6 - a^6*e^8 -
(b^4*c^2 - 2*a*b^2*c^3 + a^2*c^4)*d^8 + 8*(a*b^3*c^2 - a^2*b*c^3)*d^7*e - 4*(7*a^2*b^2*c^2 - 3*a^3*c^3)*d^6*e
^2 + 2*(a^3*b^2*c - 19*a^4*c^2)*d^4*e^4)/(a^6*b^6*c^2 - 12*a^7*b^4*c^3 + 48*a^8*b^2*c^4 - 64*a^9*c^5)))*sqrt(s
qrt(1/2)*sqrt(-(6*a^2*b*c*d^2*e^2 - 8*a^3*c*d*e^3 + a^3*b*e^4 + (b^3*c - 3*a*b*c^2)*d^4 - 4*(a*b^2*c - 2*a^2*c
^2)*d^3*e + (a^3*b^4*c - 8*a^4*b^2*c^2 + 16*a^5*c^3)*sqrt(-(48*a^3*b*c^2*d^5*e^3 - 8*a^4*b*c*d^3*e^5 + 12*a^5*
c*d^2*e^6 - a^6*e^8 - (b^4*c^2 - 2*a*b^2*c^3 + a^2*c^4)*d^8 + 8*(a*b^3*c^2 - a^2*b*c^3)*d^7*e - 4*(7*a^2*b^2*c
^2 - 3*a^3*c^3)*d^6*e^2 + 2*(a^3*b^2*c - 19*a^4*c^2)*d^4*e^4)/(a^6*b^6*c^2 - 12*a^7*b^4*c^3 + 48*a^8*b^2*c^4 -
64*a^9*c^5)))/(a^3*b^4*c - 8*a^4*b^2*c^2 + 16*a^5*c^3)))*sqrt(-(6*a^2*b*c*d^2*e^2 - 8*a^3*c*d*e^3 + a^3*b*e^4
+ (b^3*c - 3*a*b*c^2)*d^4 - 4*(a*b^2*c - 2*a^2*c^2)*d^3*e + (a^3*b^4*c - 8*a^4*b^2*c^2 + 16*a^5*c^3)*sqrt(-(4
8*a^3*b*c^2*d^5*e^3 - 8*a^4*b*c*d^3*e^5 + 12*a^5*c*d^2*e^6 - a^6*e^8 - (b^4*c^2 - 2*a*b^2*c^3 + a^2*c^4)*d^8 +
8*(a*b^3*c^2 - a^2*b*c^3)*d^7*e - 4*(7*a^2*b^2*c^2 - 3*a^3*c^3)*d^6*e^2 + 2*(a^3*b^2*c - 19*a^4*c^2)*d^4*e^4)
/(a^6*b^6*c^2 - 12*a^7*b^4*c^3 + 48*a^8*b^2*c^4 - 64*a^9*c^5)))/(a^3*b^4*c - 8*a^4*b^2*c^2 + 16*a^5*c^3))*sqrt
((2*(14*a^3*b*c*d^3*e^5 - 2*a^4*b*d*e^7 + a^5*e^8 - (b^2*c^3 - a*c^4)*d^8 + 2*(b^3*c^2 + a*b*c^3)*d^7*e - (b^4
*c + 9*a*b^2*c^2 + 4*a^2*c^3)*d^6*e^2 + 6*(a*b^3*c + 3*a^2*b*c^2)*d^5*e^3 - 5*(3*a^2*b^2*c + 2*a^3*c^2)*d^4*e^
4 + (a^3*b^2 - 4*a^4*c)*d^2*e^6)*x^2 - sqrt(1/2)*((b^6*c - 7*a*b^4*c^2 + 14*a^2*b^2*c^3 - 8*a^3*c^4)*d^6 - 2*(
3*a*b^5*c - 17*a^2*b^3*c^2 + 20*a^3*b*c^3)*d^5*e + 2*(8*a^2*b^4*c - 39*a^3*b^2*c^2 + 28*a^4*c^3)*d^4*e^2 - 20*
(a^3*b^3*c - 4*a^4*b*c^2)*d^3*e^3 - (a^3*b^4 - 18*a^4*b^2*c + 56*a^5*c^2)*d^2*e^4 + 2*(a^4*b^3 - 4*a^5*b*c)*d*
e^5 - 2*(a^5*b^2 - 4*a^6*c)*e^6 - ((a^3*b^7*c - 12*a^4*b^5*c^2 + 48*a^5*b^3*c^3 - 64*a^6*b*c^4)*d^2 - 2*(a^4*b
^6*c - 12*a^5*b^4*c^2 + 48*a^6*b^2*c^3 - 64*a^7*c^4)*d*e)*sqrt(-(48*a^3*b*c^2*d^5*e^3 - 8*a^4*b*c*d^3*e^5 + 12
*a^5*c*d^2*e^6 - a^6*e^8 - (b^4*c^2 - 2*a*b^2*c^3 + a^2*c^4)*d^8 + 8*(a*b^3*c^2 - a^2*b*c^3)*d^7*e - 4*(7*a^2*
b^2*c^2 - 3*a^3*c^3)*d^6*e^2 + 2*(a^3*b^2*c - 19*a^4*c^2)*d^4*e^4)/(a^6*b^6*c^2 - 12*a^7*b^4*c^3 + 48*a^8*b^2*
c^4 - 64*a^9*c^5)))*sqrt(-(6*a^2*b*c*d^2*e^2 - 8*a^3*c*d*e^3 + a^3*b*e^4 + (b^3*c - 3*a*b*c^2)*d^4 - 4*(a*b^2*
c - 2*a^2*c^2)*d^3*e + (a^3*b^4*c - 8*a^4*b^2*c^2 + 16*a^5*c^3)*sqrt(-(48*a^3*b*c^2*d^5*e^3 - 8*a^4*b*c*d^3*e^
5 + 12*a^5*c*d^2*e^6 - a^6*e^8 - (b^4*c^2 - 2*a*b^2*c^3 + a^2*c^4)*d^8 + 8*(a*b^3*c^2 - a^2*b*c^3)*d^7*e - 4*(
7*a^2*b^2*c^2 - 3*a^3*c^3)*d^6*e^2 + 2*(a^3*b^2*c - 19*a^4*c^2)*d^4*e^4)/(a^6*b^6*c^2 - 12*a^7*b^4*c^3 + 48*a^
8*b^2*c^4 - 64*a^9*c^5)))/(a^3*b^4*c - 8*a^4*b^2*c^2 + 16*a^5*c^3)))/(14*a^3*b*c*d^3*e^5 - 2*a^4*b*d*e^7 + a^5
*e^8 - (b^2*c^3 - a*c^4)*d^8 + 2*(b^3*c^2 + a*b*c^3)*d^7*e - (b^4*c + 9*a*b^2*c^2 + 4*a^2*c^3)*d^6*e^2 + 6*(a*
b^3*c + 3*a^2*b*c^2)*d^5*e^3 - 5*(3*a^2*b^2*c + 2*a^3*c^2)*d^4*e^4 + (a^3*b^2 - 4*a^4*c)*d^2*e^6)))/(3*a^5*b*d
*e^9 - a^6*e^10 + (b^2*c^4 - a*c^5)*d^10 - (3*b^3*c^3 + a*b*c^4)*d^9*e + 3*(b^4*c^2 + 4*a*b^2*c^3 + a^2*c^4)*d
^8*e^2 - (b^5*c + 17*a*b^3*c^2 + 24*a^2*b*c^3)*d^7*e^3 + 7*(a*b^4*c + 6*a^2*b^2*c^2 + 2*a^3*c^3)*d^6*e^4 - 21*
(a^2*b^3*c + 2*a^3*b*c^2)*d^5*e^5 + 14*(2*a^3*b^2*c + a^4*c^2)*d^4*e^6 + (a^3*b^3 - 16*a^4*b*c)*d^3*e^7 - 3*(a
^4*b^2 - a^5*c)*d^2*e^8)) + 1/4*sqrt(sqrt(1/2)*sqrt(-(6*a^2*b*c*d^2*e^2 - 8*a^3*c*d*e^3 + a^3*b*e^4 + (b^3*c -
3*a*b*c^2)*d^4 - 4*(a*b^2*c - 2*a^2*c^2)*d^3*e + (a^3*b^4*c - 8*a^4*b^2*c^2 + 16*a^5*c^3)*sqrt(-(48*a^3*b*c^2
*d^5*e^3 - 8*a^4*b*c*d^3*e^5 + 12*a^5*c*d^2*e^6 - a^6*e^8 - (b^4*c^2 - 2*a*b^2*c^3 + a^2*c^4)*d^8 + 8*(a*b^3*c
^2 - a^2*b*c^3)*d^7*e - 4*(7*a^2*b^2*c^2 - 3*a^3*c^3)*d^6*e^2 + 2*(a^3*b^2*c - 19*a^4*c^2)*d^4*e^4)/(a^6*b^6*c
^2 - 12*a^7*b^4*c^3 + 48*a^8*b^2*c^4 - 64*a^9*c^5)))/(a^3*b^4*c - 8*a^4*b^2*c^2 + 16*a^5*c^3)))*log((10*a^2*b*
c*d^3*e^3 - 5*a^3*c*d^2*e^4 - a^3*b*d*e^5 + a^4*e^6 - (b^2*c^2 - a*c^3)*d^6 + (b^3*c + 3*a*b*c^2)*d^5*e - 5*(a
*b^2*c + a^2*c^2)*d^4*e^2)*x + 1/2*((b^4*c - 5*a*b^2*c^2 + 4*a^2*c^3)*d^5 - 4*(a*b^3*c - 4*a^2*b*c^2)*d^4*e +
6*(a^2*b^2*c - 4*a^3*c^2)*d^3*e^2 - (a^3*b^2 - 4*a^4*c)*d*e^4 - ((a^3*b^5*c - 8*a^4*b^3*c^2 + 16*a^5*b*c^3)*d
- 2*(a^4*b^4*c - 8*a^5*b^2*c^2 + 16*a^6*c^3)*e)*sqrt(-(48*a^3*b*c^2*d^5*e^3 - 8*a^4*b*c*d^3*e^5 + 12*a^5*c*d^2
*e^6 - a^6*e^8 - (b^4*c^2 - 2*a*b^2*c^3 + a^2*c^4)*d^8 + 8*(a*b^3*c^2 - a^2*b*c^3)*d^7*e - 4*(7*a^2*b^2*c^2 -
3*a^3*c^3)*d^6*e^2 + 2*(a^3*b^2*c - 19*a^4*c^2)*d^4*e^4)/(a^6*b^6*c^2 - 12*a^7*b^4*c^3 + 48*a^8*b^2*c^4 - 64*a
^9*c^5)))*sqrt(sqrt(1/2)*sqrt(-(6*a^2*b*c*d^2*e^2 - 8*a^3*c*d*e^3 + a^3*b*e^4 + (b^3*c - 3*a*b*c^2)*d^4 - 4*(a
*b^2*c - 2*a^2*c^2)*d^3*e + (a^3*b^4*c - 8*a^4*b^2*c^2 + 16*a^5*c^3)*sqrt(-(48*a^3*b*c^2*d^5*e^3 - 8*a^4*b*c*d
^3*e^5 + 12*a^5*c*d^2*e^6 - a^6*e^8 - (b^4*c^2 - 2*a*b^2*c^3 + a^2*c^4)*d^8 + 8*(a*b^3*c^2 - a^2*b*c^3)*d^7*e
- 4*(7*a^2*b^2*c^2 - 3*a^3*c^3)*d^6*e^2 + 2*(a^3*b^2*c - 19*a^4*c^2)*d^4*e^4)/(a^6*b^6*c^2 - 12*a^7*b^4*c^3 +
48*a^8*b^2*c^4 - 64*a^9*c^5)))/(a^3*b^4*c - 8*a^4*b^2*c^2 + 16*a^5*c^3)))) - 1/4*sqrt(sqrt(1/2)*sqrt(-(6*a^2*b
*c*d^2*e^2 - 8*a^3*c*d*e^3 + a^3*b*e^4 + (b^3*c - 3*a*b*c^2)*d^4 - 4*(a*b^2*c - 2*a^2*c^2)*d^3*e + (a^3*b^4*c
- 8*a^4*b^2*c^2 + 16*a^5*c^3)*sqrt(-(48*a^3*b*c^2*d^5*e^3 - 8*a^4*b*c*d^3*e^5 + 12*a^5*c*d^2*e^6 - a^6*e^8 - (
b^4*c^2 - 2*a*b^2*c^3 + a^2*c^4)*d^8 + 8*(a*b^3*c^2 - a^2*b*c^3)*d^7*e - 4*(7*a^2*b^2*c^2 - 3*a^3*c^3)*d^6*e^2
+ 2*(a^3*b^2*c - 19*a^4*c^2)*d^4*e^4)/(a^6*b^6*c^2 - 12*a^7*b^4*c^3 + 48*a^8*b^2*c^4 - 64*a^9*c^5)))/(a^3*b^4
*c - 8*a^4*b^2*c^2 + 16*a^5*c^3)))*log((10*a^2*b*c*d^3*e^3 - 5*a^3*c*d^2*e^4 - a^3*b*d*e^5 + a^4*e^6 - (b^2*c^
2 - a*c^3)*d^6 + (b^3*c + 3*a*b*c^2)*d^5*e - 5*(a*b^2*c + a^2*c^2)*d^4*e^2)*x - 1/2*((b^4*c - 5*a*b^2*c^2 + 4*
a^2*c^3)*d^5 - 4*(a*b^3*c - 4*a^2*b*c^2)*d^4*e + 6*(a^2*b^2*c - 4*a^3*c^2)*d^3*e^2 - (a^3*b^2 - 4*a^4*c)*d*e^4
- ((a^3*b^5*c - 8*a^4*b^3*c^2 + 16*a^5*b*c^3)*d - 2*(a^4*b^4*c - 8*a^5*b^2*c^2 + 16*a^6*c^3)*e)*sqrt(-(48*a^3
*b*c^2*d^5*e^3 - 8*a^4*b*c*d^3*e^5 + 12*a^5*c*d^2*e^6 - a^6*e^8 - (b^4*c^2 - 2*a*b^2*c^3 + a^2*c^4)*d^8 + 8*(a
*b^3*c^2 - a^2*b*c^3)*d^7*e - 4*(7*a^2*b^2*c^2 - 3*a^3*c^3)*d^6*e^2 + 2*(a^3*b^2*c - 19*a^4*c^2)*d^4*e^4)/(a^6
*b^6*c^2 - 12*a^7*b^4*c^3 + 48*a^8*b^2*c^4 - 64*a^9*c^5)))*sqrt(sqrt(1/2)*sqrt(-(6*a^2*b*c*d^2*e^2 - 8*a^3*c*d
*e^3 + a^3*b*e^4 + (b^3*c - 3*a*b*c^2)*d^4 - 4*(a*b^2*c - 2*a^2*c^2)*d^3*e + (a^3*b^4*c - 8*a^4*b^2*c^2 + 16*a
^5*c^3)*sqrt(-(48*a^3*b*c^2*d^5*e^3 - 8*a^4*b*c*d^3*e^5 + 12*a^5*c*d^2*e^6 - a^6*e^8 - (b^4*c^2 - 2*a*b^2*c^3
+ a^2*c^4)*d^8 + 8*(a*b^3*c^2 - a^2*b*c^3)*d^7*e - 4*(7*a^2*b^2*c^2 - 3*a^3*c^3)*d^6*e^2 + 2*(a^3*b^2*c - 19*a
^4*c^2)*d^4*e^4)/(a^6*b^6*c^2 - 12*a^7*b^4*c^3 + 48*a^8*b^2*c^4 - 64*a^9*c^5)))/(a^3*b^4*c - 8*a^4*b^2*c^2 + 1
6*a^5*c^3)))) + 1/4*sqrt(sqrt(1/2)*sqrt(-(6*a^2*b*c*d^2*e^2 - 8*a^3*c*d*e^3 + a^3*b*e^4 + (b^3*c - 3*a*b*c^2)*
d^4 - 4*(a*b^2*c - 2*a^2*c^2)*d^3*e - (a^3*b^4*c - 8*a^4*b^2*c^2 + 16*a^5*c^3)*sqrt(-(48*a^3*b*c^2*d^5*e^3 - 8
*a^4*b*c*d^3*e^5 + 12*a^5*c*d^2*e^6 - a^6*e^8 - (b^4*c^2 - 2*a*b^2*c^3 + a^2*c^4)*d^8 + 8*(a*b^3*c^2 - a^2*b*c
^3)*d^7*e - 4*(7*a^2*b^2*c^2 - 3*a^3*c^3)*d^6*e^2 + 2*(a^3*b^2*c - 19*a^4*c^2)*d^4*e^4)/(a^6*b^6*c^2 - 12*a^7*
b^4*c^3 + 48*a^8*b^2*c^4 - 64*a^9*c^5)))/(a^3*b^4*c - 8*a^4*b^2*c^2 + 16*a^5*c^3)))*log((10*a^2*b*c*d^3*e^3 -
5*a^3*c*d^2*e^4 - a^3*b*d*e^5 + a^4*e^6 - (b^2*c^2 - a*c^3)*d^6 + (b^3*c + 3*a*b*c^2)*d^5*e - 5*(a*b^2*c + a^2
*c^2)*d^4*e^2)*x + 1/2*((b^4*c - 5*a*b^2*c^2 + 4*a^2*c^3)*d^5 - 4*(a*b^3*c - 4*a^2*b*c^2)*d^4*e + 6*(a^2*b^2*c
- 4*a^3*c^2)*d^3*e^2 - (a^3*b^2 - 4*a^4*c)*d*e^4 + ((a^3*b^5*c - 8*a^4*b^3*c^2 + 16*a^5*b*c^3)*d - 2*(a^4*b^4
*c - 8*a^5*b^2*c^2 + 16*a^6*c^3)*e)*sqrt(-(48*a^3*b*c^2*d^5*e^3 - 8*a^4*b*c*d^3*e^5 + 12*a^5*c*d^2*e^6 - a^6*e
^8 - (b^4*c^2 - 2*a*b^2*c^3 + a^2*c^4)*d^8 + 8*(a*b^3*c^2 - a^2*b*c^3)*d^7*e - 4*(7*a^2*b^2*c^2 - 3*a^3*c^3)*d
^6*e^2 + 2*(a^3*b^2*c - 19*a^4*c^2)*d^4*e^4)/(a^6*b^6*c^2 - 12*a^7*b^4*c^3 + 48*a^8*b^2*c^4 - 64*a^9*c^5)))*sq
rt(sqrt(1/2)*sqrt(-(6*a^2*b*c*d^2*e^2 - 8*a^3*c*d*e^3 + a^3*b*e^4 + (b^3*c - 3*a*b*c^2)*d^4 - 4*(a*b^2*c - 2*a
^2*c^2)*d^3*e - (a^3*b^4*c - 8*a^4*b^2*c^2 + 16*a^5*c^3)*sqrt(-(48*a^3*b*c^2*d^5*e^3 - 8*a^4*b*c*d^3*e^5 + 12*
a^5*c*d^2*e^6 - a^6*e^8 - (b^4*c^2 - 2*a*b^2*c^3 + a^2*c^4)*d^8 + 8*(a*b^3*c^2 - a^2*b*c^3)*d^7*e - 4*(7*a^2*b
^2*c^2 - 3*a^3*c^3)*d^6*e^2 + 2*(a^3*b^2*c - 19*a^4*c^2)*d^4*e^4)/(a^6*b^6*c^2 - 12*a^7*b^4*c^3 + 48*a^8*b^2*c
^4 - 64*a^9*c^5)))/(a^3*b^4*c - 8*a^4*b^2*c^2 + 16*a^5*c^3)))) - 1/4*sqrt(sqrt(1/2)*sqrt(-(6*a^2*b*c*d^2*e^2 -
8*a^3*c*d*e^3 + a^3*b*e^4 + (b^3*c - 3*a*b*c^2)*d^4 - 4*(a*b^2*c - 2*a^2*c^2)*d^3*e - (a^3*b^4*c - 8*a^4*b^2*
c^2 + 16*a^5*c^3)*sqrt(-(48*a^3*b*c^2*d^5*e^3 - 8*a^4*b*c*d^3*e^5 + 12*a^5*c*d^2*e^6 - a^6*e^8 - (b^4*c^2 - 2*
a*b^2*c^3 + a^2*c^4)*d^8 + 8*(a*b^3*c^2 - a^2*b*c^3)*d^7*e - 4*(7*a^2*b^2*c^2 - 3*a^3*c^3)*d^6*e^2 + 2*(a^3*b^
2*c - 19*a^4*c^2)*d^4*e^4)/(a^6*b^6*c^2 - 12*a^7*b^4*c^3 + 48*a^8*b^2*c^4 - 64*a^9*c^5)))/(a^3*b^4*c - 8*a^4*b
^2*c^2 + 16*a^5*c^3)))*log((10*a^2*b*c*d^3*e^3 - 5*a^3*c*d^2*e^4 - a^3*b*d*e^5 + a^4*e^6 - (b^2*c^2 - a*c^3)*d
^6 + (b^3*c + 3*a*b*c^2)*d^5*e - 5*(a*b^2*c + a^2*c^2)*d^4*e^2)*x - 1/2*((b^4*c - 5*a*b^2*c^2 + 4*a^2*c^3)*d^5
- 4*(a*b^3*c - 4*a^2*b*c^2)*d^4*e + 6*(a^2*b^2*c - 4*a^3*c^2)*d^3*e^2 - (a^3*b^2 - 4*a^4*c)*d*e^4 + ((a^3*b^5
*c - 8*a^4*b^3*c^2 + 16*a^5*b*c^3)*d - 2*(a^4*b^4*c - 8*a^5*b^2*c^2 + 16*a^6*c^3)*e)*sqrt(-(48*a^3*b*c^2*d^5*e
^3 - 8*a^4*b*c*d^3*e^5 + 12*a^5*c*d^2*e^6 - a^6*e^8 - (b^4*c^2 - 2*a*b^2*c^3 + a^2*c^4)*d^8 + 8*(a*b^3*c^2 - a
^2*b*c^3)*d^7*e - 4*(7*a^2*b^2*c^2 - 3*a^3*c^3)*d^6*e^2 + 2*(a^3*b^2*c - 19*a^4*c^2)*d^4*e^4)/(a^6*b^6*c^2 - 1
2*a^7*b^4*c^3 + 48*a^8*b^2*c^4 - 64*a^9*c^5)))*sqrt(sqrt(1/2)*sqrt(-(6*a^2*b*c*d^2*e^2 - 8*a^3*c*d*e^3 + a^3*b
*e^4 + (b^3*c - 3*a*b*c^2)*d^4 - 4*(a*b^2*c - 2*a^2*c^2)*d^3*e - (a^3*b^4*c - 8*a^4*b^2*c^2 + 16*a^5*c^3)*sqrt
(-(48*a^3*b*c^2*d^5*e^3 - 8*a^4*b*c*d^3*e^5 + 12*a^5*c*d^2*e^6 - a^6*e^8 - (b^4*c^2 - 2*a*b^2*c^3 + a^2*c^4)*d
^8 + 8*(a*b^3*c^2 - a^2*b*c^3)*d^7*e - 4*(7*a^2*b^2*c^2 - 3*a^3*c^3)*d^6*e^2 + 2*(a^3*b^2*c - 19*a^4*c^2)*d^4*
e^4)/(a^6*b^6*c^2 - 12*a^7*b^4*c^3 + 48*a^8*b^2*c^4 - 64*a^9*c^5)))/(a^3*b^4*c - 8*a^4*b^2*c^2 + 16*a^5*c^3)))
)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x**4+d)/(c*x**8+b*x**4+a),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: TypeError} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x^4+d)/(c*x^8+b*x^4+a),x, algorithm="giac")

[Out]

Exception raised: TypeError