3.22 $$\int \frac{x^2 (1-x^3)}{1-x^3+x^6} \, dx$$

Optimal. Leaf size=39 $-\frac{1}{6} \log \left (x^6-x^3+1\right )-\frac{\tan ^{-1}\left (\frac{1-2 x^3}{\sqrt{3}}\right )}{3 \sqrt{3}}$

[Out]

-ArcTan[(1 - 2*x^3)/Sqrt[3]]/(3*Sqrt[3]) - Log[1 - x^3 + x^6]/6

________________________________________________________________________________________

Rubi [A]  time = 0.0395079, antiderivative size = 39, normalized size of antiderivative = 1., number of steps used = 5, number of rules used = 5, integrand size = 23, $$\frac{\text{number of rules}}{\text{integrand size}}$$ = 0.217, Rules used = {1468, 634, 618, 204, 628} $-\frac{1}{6} \log \left (x^6-x^3+1\right )-\frac{\tan ^{-1}\left (\frac{1-2 x^3}{\sqrt{3}}\right )}{3 \sqrt{3}}$

Antiderivative was successfully veriﬁed.

[In]

Int[(x^2*(1 - x^3))/(1 - x^3 + x^6),x]

[Out]

-ArcTan[(1 - 2*x^3)/Sqrt[3]]/(3*Sqrt[3]) - Log[1 - x^3 + x^6]/6

Rule 1468

Int[(x_)^(m_.)*((a_) + (c_.)*(x_)^(n2_.) + (b_.)*(x_)^(n_))^(p_.)*((d_) + (e_.)*(x_)^(n_))^(q_.), x_Symbol] :>
Dist[1/n, Subst[Int[(d + e*x)^q*(a + b*x + c*x^2)^p, x], x, x^n], x] /; FreeQ[{a, b, c, d, e, m, n, p, q}, x]
&& EqQ[n2, 2*n] && EqQ[Simplify[m - n + 1], 0]

Rule 634

Int[((d_.) + (e_.)*(x_))/((a_) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Dist[(2*c*d - b*e)/(2*c), Int[1/(a +
b*x + c*x^2), x], x] + Dist[e/(2*c), Int[(b + 2*c*x)/(a + b*x + c*x^2), x], x] /; FreeQ[{a, b, c, d, e}, x] &
& NeQ[2*c*d - b*e, 0] && NeQ[b^2 - 4*a*c, 0] &&  !NiceSqrtQ[b^2 - 4*a*c]

Rule 618

Int[((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> Dist[-2, Subst[Int[1/Simp[b^2 - 4*a*c - x^2, x], x]
, x, b + 2*c*x], x] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 204

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> -Simp[ArcTan[(Rt[-b, 2]*x)/Rt[-a, 2]]/(Rt[-a, 2]*Rt[-b, 2]), x] /
; FreeQ[{a, b}, x] && PosQ[a/b] && (LtQ[a, 0] || LtQ[b, 0])

Rule 628

Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Simp[(d*Log[RemoveContent[a + b*x +
c*x^2, x]])/b, x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[2*c*d - b*e, 0]

Rubi steps

\begin{align*} \int \frac{x^2 \left (1-x^3\right )}{1-x^3+x^6} \, dx &=\frac{1}{3} \operatorname{Subst}\left (\int \frac{1-x}{1-x+x^2} \, dx,x,x^3\right )\\ &=\frac{1}{6} \operatorname{Subst}\left (\int \frac{1}{1-x+x^2} \, dx,x,x^3\right )-\frac{1}{6} \operatorname{Subst}\left (\int \frac{-1+2 x}{1-x+x^2} \, dx,x,x^3\right )\\ &=-\frac{1}{6} \log \left (1-x^3+x^6\right )-\frac{1}{3} \operatorname{Subst}\left (\int \frac{1}{-3-x^2} \, dx,x,-1+2 x^3\right )\\ &=-\frac{\tan ^{-1}\left (\frac{1-2 x^3}{\sqrt{3}}\right )}{3 \sqrt{3}}-\frac{1}{6} \log \left (1-x^3+x^6\right )\\ \end{align*}

Mathematica [A]  time = 0.0085705, size = 39, normalized size = 1. $\frac{\tan ^{-1}\left (\frac{2 x^3-1}{\sqrt{3}}\right )}{3 \sqrt{3}}-\frac{1}{6} \log \left (x^6-x^3+1\right )$

Antiderivative was successfully veriﬁed.

[In]

Integrate[(x^2*(1 - x^3))/(1 - x^3 + x^6),x]

[Out]

ArcTan[(-1 + 2*x^3)/Sqrt[3]]/(3*Sqrt[3]) - Log[1 - x^3 + x^6]/6

________________________________________________________________________________________

Maple [A]  time = 0.002, size = 33, normalized size = 0.9 \begin{align*} -{\frac{\ln \left ({x}^{6}-{x}^{3}+1 \right ) }{6}}+{\frac{\sqrt{3}}{9}\arctan \left ({\frac{ \left ( 2\,{x}^{3}-1 \right ) \sqrt{3}}{3}} \right ) } \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

int(x^2*(-x^3+1)/(x^6-x^3+1),x)

[Out]

-1/6*ln(x^6-x^3+1)+1/9*3^(1/2)*arctan(1/3*(2*x^3-1)*3^(1/2))

________________________________________________________________________________________

Maxima [A]  time = 1.50671, size = 43, normalized size = 1.1 \begin{align*} \frac{1}{9} \, \sqrt{3} \arctan \left (\frac{1}{3} \, \sqrt{3}{\left (2 \, x^{3} - 1\right )}\right ) - \frac{1}{6} \, \log \left (x^{6} - x^{3} + 1\right ) \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2*(-x^3+1)/(x^6-x^3+1),x, algorithm="maxima")

[Out]

1/9*sqrt(3)*arctan(1/3*sqrt(3)*(2*x^3 - 1)) - 1/6*log(x^6 - x^3 + 1)

________________________________________________________________________________________

Fricas [A]  time = 1.68099, size = 95, normalized size = 2.44 \begin{align*} \frac{1}{9} \, \sqrt{3} \arctan \left (\frac{1}{3} \, \sqrt{3}{\left (2 \, x^{3} - 1\right )}\right ) - \frac{1}{6} \, \log \left (x^{6} - x^{3} + 1\right ) \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2*(-x^3+1)/(x^6-x^3+1),x, algorithm="fricas")

[Out]

1/9*sqrt(3)*arctan(1/3*sqrt(3)*(2*x^3 - 1)) - 1/6*log(x^6 - x^3 + 1)

________________________________________________________________________________________

Sympy [A]  time = 0.140165, size = 37, normalized size = 0.95 \begin{align*} - \frac{\log{\left (x^{6} - x^{3} + 1 \right )}}{6} + \frac{\sqrt{3} \operatorname{atan}{\left (\frac{2 \sqrt{3} x^{3}}{3} - \frac{\sqrt{3}}{3} \right )}}{9} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**2*(-x**3+1)/(x**6-x**3+1),x)

[Out]

-log(x**6 - x**3 + 1)/6 + sqrt(3)*atan(2*sqrt(3)*x**3/3 - sqrt(3)/3)/9

________________________________________________________________________________________

Giac [A]  time = 1.14617, size = 43, normalized size = 1.1 \begin{align*} \frac{1}{9} \, \sqrt{3} \arctan \left (\frac{1}{3} \, \sqrt{3}{\left (2 \, x^{3} - 1\right )}\right ) - \frac{1}{6} \, \log \left (x^{6} - x^{3} + 1\right ) \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2*(-x^3+1)/(x^6-x^3+1),x, algorithm="giac")

[Out]

1/9*sqrt(3)*arctan(1/3*sqrt(3)*(2*x^3 - 1)) - 1/6*log(x^6 - x^3 + 1)