### 3.18 $$\int \frac{d+e x^3}{x^2 (a+b x^3+c x^6)} \, dx$$

Optimal. Leaf size=653 $-\frac{\sqrt [3]{c} \left (\frac{b d-2 a e}{\sqrt{b^2-4 a c}}+d\right ) \log \left (-\sqrt [3]{2} \sqrt [3]{c} x \sqrt [3]{b-\sqrt{b^2-4 a c}}+\left (b-\sqrt{b^2-4 a c}\right )^{2/3}+2^{2/3} c^{2/3} x^2\right )}{6\ 2^{2/3} a \sqrt [3]{b-\sqrt{b^2-4 a c}}}-\frac{\sqrt [3]{c} \left (d-\frac{b d-2 a e}{\sqrt{b^2-4 a c}}\right ) \log \left (-\sqrt [3]{2} \sqrt [3]{c} x \sqrt [3]{\sqrt{b^2-4 a c}+b}+\left (\sqrt{b^2-4 a c}+b\right )^{2/3}+2^{2/3} c^{2/3} x^2\right )}{6\ 2^{2/3} a \sqrt [3]{\sqrt{b^2-4 a c}+b}}+\frac{\sqrt [3]{c} \left (\frac{b d-2 a e}{\sqrt{b^2-4 a c}}+d\right ) \log \left (\sqrt [3]{b-\sqrt{b^2-4 a c}}+\sqrt [3]{2} \sqrt [3]{c} x\right )}{3\ 2^{2/3} a \sqrt [3]{b-\sqrt{b^2-4 a c}}}+\frac{\sqrt [3]{c} \left (d-\frac{b d-2 a e}{\sqrt{b^2-4 a c}}\right ) \log \left (\sqrt [3]{\sqrt{b^2-4 a c}+b}+\sqrt [3]{2} \sqrt [3]{c} x\right )}{3\ 2^{2/3} a \sqrt [3]{\sqrt{b^2-4 a c}+b}}+\frac{\sqrt [3]{c} \left (\frac{b d-2 a e}{\sqrt{b^2-4 a c}}+d\right ) \tan ^{-1}\left (\frac{1-\frac{2 \sqrt [3]{2} \sqrt [3]{c} x}{\sqrt [3]{b-\sqrt{b^2-4 a c}}}}{\sqrt{3}}\right )}{2^{2/3} \sqrt{3} a \sqrt [3]{b-\sqrt{b^2-4 a c}}}+\frac{\sqrt [3]{c} \left (d-\frac{b d-2 a e}{\sqrt{b^2-4 a c}}\right ) \tan ^{-1}\left (\frac{1-\frac{2 \sqrt [3]{2} \sqrt [3]{c} x}{\sqrt [3]{\sqrt{b^2-4 a c}+b}}}{\sqrt{3}}\right )}{2^{2/3} \sqrt{3} a \sqrt [3]{\sqrt{b^2-4 a c}+b}}-\frac{d}{a x}$

[Out]

-(d/(a*x)) + (c^(1/3)*(d + (b*d - 2*a*e)/Sqrt[b^2 - 4*a*c])*ArcTan[(1 - (2*2^(1/3)*c^(1/3)*x)/(b - Sqrt[b^2 -
4*a*c])^(1/3))/Sqrt[3]])/(2^(2/3)*Sqrt[3]*a*(b - Sqrt[b^2 - 4*a*c])^(1/3)) + (c^(1/3)*(d - (b*d - 2*a*e)/Sqrt[
b^2 - 4*a*c])*ArcTan[(1 - (2*2^(1/3)*c^(1/3)*x)/(b + Sqrt[b^2 - 4*a*c])^(1/3))/Sqrt[3]])/(2^(2/3)*Sqrt[3]*a*(b
+ Sqrt[b^2 - 4*a*c])^(1/3)) + (c^(1/3)*(d + (b*d - 2*a*e)/Sqrt[b^2 - 4*a*c])*Log[(b - Sqrt[b^2 - 4*a*c])^(1/3
) + 2^(1/3)*c^(1/3)*x])/(3*2^(2/3)*a*(b - Sqrt[b^2 - 4*a*c])^(1/3)) + (c^(1/3)*(d - (b*d - 2*a*e)/Sqrt[b^2 - 4
*a*c])*Log[(b + Sqrt[b^2 - 4*a*c])^(1/3) + 2^(1/3)*c^(1/3)*x])/(3*2^(2/3)*a*(b + Sqrt[b^2 - 4*a*c])^(1/3)) - (
c^(1/3)*(d + (b*d - 2*a*e)/Sqrt[b^2 - 4*a*c])*Log[(b - Sqrt[b^2 - 4*a*c])^(2/3) - 2^(1/3)*c^(1/3)*(b - Sqrt[b^
2 - 4*a*c])^(1/3)*x + 2^(2/3)*c^(2/3)*x^2])/(6*2^(2/3)*a*(b - Sqrt[b^2 - 4*a*c])^(1/3)) - (c^(1/3)*(d - (b*d -
2*a*e)/Sqrt[b^2 - 4*a*c])*Log[(b + Sqrt[b^2 - 4*a*c])^(2/3) - 2^(1/3)*c^(1/3)*(b + Sqrt[b^2 - 4*a*c])^(1/3)*x
+ 2^(2/3)*c^(2/3)*x^2])/(6*2^(2/3)*a*(b + Sqrt[b^2 - 4*a*c])^(1/3))

________________________________________________________________________________________

Rubi [A]  time = 1.17526, antiderivative size = 653, normalized size of antiderivative = 1., number of steps used = 14, number of rules used = 8, integrand size = 25, $$\frac{\text{number of rules}}{\text{integrand size}}$$ = 0.32, Rules used = {1504, 1510, 292, 31, 634, 617, 204, 628} $-\frac{\sqrt [3]{c} \left (\frac{b d-2 a e}{\sqrt{b^2-4 a c}}+d\right ) \log \left (-\sqrt [3]{2} \sqrt [3]{c} x \sqrt [3]{b-\sqrt{b^2-4 a c}}+\left (b-\sqrt{b^2-4 a c}\right )^{2/3}+2^{2/3} c^{2/3} x^2\right )}{6\ 2^{2/3} a \sqrt [3]{b-\sqrt{b^2-4 a c}}}-\frac{\sqrt [3]{c} \left (d-\frac{b d-2 a e}{\sqrt{b^2-4 a c}}\right ) \log \left (-\sqrt [3]{2} \sqrt [3]{c} x \sqrt [3]{\sqrt{b^2-4 a c}+b}+\left (\sqrt{b^2-4 a c}+b\right )^{2/3}+2^{2/3} c^{2/3} x^2\right )}{6\ 2^{2/3} a \sqrt [3]{\sqrt{b^2-4 a c}+b}}+\frac{\sqrt [3]{c} \left (\frac{b d-2 a e}{\sqrt{b^2-4 a c}}+d\right ) \log \left (\sqrt [3]{b-\sqrt{b^2-4 a c}}+\sqrt [3]{2} \sqrt [3]{c} x\right )}{3\ 2^{2/3} a \sqrt [3]{b-\sqrt{b^2-4 a c}}}+\frac{\sqrt [3]{c} \left (d-\frac{b d-2 a e}{\sqrt{b^2-4 a c}}\right ) \log \left (\sqrt [3]{\sqrt{b^2-4 a c}+b}+\sqrt [3]{2} \sqrt [3]{c} x\right )}{3\ 2^{2/3} a \sqrt [3]{\sqrt{b^2-4 a c}+b}}+\frac{\sqrt [3]{c} \left (\frac{b d-2 a e}{\sqrt{b^2-4 a c}}+d\right ) \tan ^{-1}\left (\frac{1-\frac{2 \sqrt [3]{2} \sqrt [3]{c} x}{\sqrt [3]{b-\sqrt{b^2-4 a c}}}}{\sqrt{3}}\right )}{2^{2/3} \sqrt{3} a \sqrt [3]{b-\sqrt{b^2-4 a c}}}+\frac{\sqrt [3]{c} \left (d-\frac{b d-2 a e}{\sqrt{b^2-4 a c}}\right ) \tan ^{-1}\left (\frac{1-\frac{2 \sqrt [3]{2} \sqrt [3]{c} x}{\sqrt [3]{\sqrt{b^2-4 a c}+b}}}{\sqrt{3}}\right )}{2^{2/3} \sqrt{3} a \sqrt [3]{\sqrt{b^2-4 a c}+b}}-\frac{d}{a x}$

Antiderivative was successfully veriﬁed.

[In]

Int[(d + e*x^3)/(x^2*(a + b*x^3 + c*x^6)),x]

[Out]

-(d/(a*x)) + (c^(1/3)*(d + (b*d - 2*a*e)/Sqrt[b^2 - 4*a*c])*ArcTan[(1 - (2*2^(1/3)*c^(1/3)*x)/(b - Sqrt[b^2 -
4*a*c])^(1/3))/Sqrt[3]])/(2^(2/3)*Sqrt[3]*a*(b - Sqrt[b^2 - 4*a*c])^(1/3)) + (c^(1/3)*(d - (b*d - 2*a*e)/Sqrt[
b^2 - 4*a*c])*ArcTan[(1 - (2*2^(1/3)*c^(1/3)*x)/(b + Sqrt[b^2 - 4*a*c])^(1/3))/Sqrt[3]])/(2^(2/3)*Sqrt[3]*a*(b
+ Sqrt[b^2 - 4*a*c])^(1/3)) + (c^(1/3)*(d + (b*d - 2*a*e)/Sqrt[b^2 - 4*a*c])*Log[(b - Sqrt[b^2 - 4*a*c])^(1/3
) + 2^(1/3)*c^(1/3)*x])/(3*2^(2/3)*a*(b - Sqrt[b^2 - 4*a*c])^(1/3)) + (c^(1/3)*(d - (b*d - 2*a*e)/Sqrt[b^2 - 4
*a*c])*Log[(b + Sqrt[b^2 - 4*a*c])^(1/3) + 2^(1/3)*c^(1/3)*x])/(3*2^(2/3)*a*(b + Sqrt[b^2 - 4*a*c])^(1/3)) - (
c^(1/3)*(d + (b*d - 2*a*e)/Sqrt[b^2 - 4*a*c])*Log[(b - Sqrt[b^2 - 4*a*c])^(2/3) - 2^(1/3)*c^(1/3)*(b - Sqrt[b^
2 - 4*a*c])^(1/3)*x + 2^(2/3)*c^(2/3)*x^2])/(6*2^(2/3)*a*(b - Sqrt[b^2 - 4*a*c])^(1/3)) - (c^(1/3)*(d - (b*d -
2*a*e)/Sqrt[b^2 - 4*a*c])*Log[(b + Sqrt[b^2 - 4*a*c])^(2/3) - 2^(1/3)*c^(1/3)*(b + Sqrt[b^2 - 4*a*c])^(1/3)*x
+ 2^(2/3)*c^(2/3)*x^2])/(6*2^(2/3)*a*(b + Sqrt[b^2 - 4*a*c])^(1/3))

Rule 1504

Int[((f_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^(n_))*((a_) + (b_.)*(x_)^(n_) + (c_.)*(x_)^(n2_))^(p_), x_Symbol] :>
Simp[(d*(f*x)^(m + 1)*(a + b*x^n + c*x^(2*n))^(p + 1))/(a*f*(m + 1)), x] + Dist[1/(a*f^n*(m + 1)), Int[(f*x)^
(m + n)*(a + b*x^n + c*x^(2*n))^p*Simp[a*e*(m + 1) - b*d*(m + n*(p + 1) + 1) - c*d*(m + 2*n*(p + 1) + 1)*x^n,
x], x], x] /; FreeQ[{a, b, c, d, e, f, p}, x] && EqQ[n2, 2*n] && NeQ[b^2 - 4*a*c, 0] && IGtQ[n, 0] && LtQ[m, -
1] && IntegerQ[p]

Rule 1510

Int[(((f_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^(n_)))/((a_) + (b_.)*(x_)^(n_) + (c_.)*(x_)^(n2_)), x_Symbol] :> Wi
th[{q = Rt[b^2 - 4*a*c, 2]}, Dist[e/2 + (2*c*d - b*e)/(2*q), Int[(f*x)^m/(b/2 - q/2 + c*x^n), x], x] + Dist[e/
2 - (2*c*d - b*e)/(2*q), Int[(f*x)^m/(b/2 + q/2 + c*x^n), x], x]] /; FreeQ[{a, b, c, d, e, f, m}, x] && EqQ[n2
, 2*n] && NeQ[b^2 - 4*a*c, 0] && IGtQ[n, 0]

Rule 292

Int[(x_)/((a_) + (b_.)*(x_)^3), x_Symbol] :> -Dist[(3*Rt[a, 3]*Rt[b, 3])^(-1), Int[1/(Rt[a, 3] + Rt[b, 3]*x),
x], x] + Dist[1/(3*Rt[a, 3]*Rt[b, 3]), Int[(Rt[a, 3] + Rt[b, 3]*x)/(Rt[a, 3]^2 - Rt[a, 3]*Rt[b, 3]*x + Rt[b, 3
]^2*x^2), x], x] /; FreeQ[{a, b}, x]

Rule 31

Int[((a_) + (b_.)*(x_))^(-1), x_Symbol] :> Simp[Log[RemoveContent[a + b*x, x]]/b, x] /; FreeQ[{a, b}, x]

Rule 634

Int[((d_.) + (e_.)*(x_))/((a_) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Dist[(2*c*d - b*e)/(2*c), Int[1/(a +
b*x + c*x^2), x], x] + Dist[e/(2*c), Int[(b + 2*c*x)/(a + b*x + c*x^2), x], x] /; FreeQ[{a, b, c, d, e}, x] &
& NeQ[2*c*d - b*e, 0] && NeQ[b^2 - 4*a*c, 0] &&  !NiceSqrtQ[b^2 - 4*a*c]

Rule 617

Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*Simplify[(a*c)/b^2]}, Dist[-2/b, Sub
st[Int[1/(q - x^2), x], x, 1 + (2*c*x)/b], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /;
FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 204

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> -Simp[ArcTan[(Rt[-b, 2]*x)/Rt[-a, 2]]/(Rt[-a, 2]*Rt[-b, 2]), x] /
; FreeQ[{a, b}, x] && PosQ[a/b] && (LtQ[a, 0] || LtQ[b, 0])

Rule 628

Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Simp[(d*Log[RemoveContent[a + b*x +
c*x^2, x]])/b, x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[2*c*d - b*e, 0]

Rubi steps

\begin{align*} \int \frac{d+e x^3}{x^2 \left (a+b x^3+c x^6\right )} \, dx &=-\frac{d}{a x}-\frac{\int \frac{x \left (b d-a e+c d x^3\right )}{a+b x^3+c x^6} \, dx}{a}\\ &=-\frac{d}{a x}-\frac{\left (c \left (d-\frac{b d-2 a e}{\sqrt{b^2-4 a c}}\right )\right ) \int \frac{x}{\frac{b}{2}+\frac{1}{2} \sqrt{b^2-4 a c}+c x^3} \, dx}{2 a}-\frac{\left (c \left (d+\frac{b d-2 a e}{\sqrt{b^2-4 a c}}\right )\right ) \int \frac{x}{\frac{b}{2}-\frac{1}{2} \sqrt{b^2-4 a c}+c x^3} \, dx}{2 a}\\ &=-\frac{d}{a x}+\frac{\left (c^{2/3} \left (d-\frac{b d-2 a e}{\sqrt{b^2-4 a c}}\right )\right ) \int \frac{1}{\frac{\sqrt [3]{b+\sqrt{b^2-4 a c}}}{\sqrt [3]{2}}+\sqrt [3]{c} x} \, dx}{3\ 2^{2/3} a \sqrt [3]{b+\sqrt{b^2-4 a c}}}-\frac{\left (c^{2/3} \left (d-\frac{b d-2 a e}{\sqrt{b^2-4 a c}}\right )\right ) \int \frac{\frac{\sqrt [3]{b+\sqrt{b^2-4 a c}}}{\sqrt [3]{2}}+\sqrt [3]{c} x}{\frac{\left (b+\sqrt{b^2-4 a c}\right )^{2/3}}{2^{2/3}}-\frac{\sqrt [3]{c} \sqrt [3]{b+\sqrt{b^2-4 a c}} x}{\sqrt [3]{2}}+c^{2/3} x^2} \, dx}{3\ 2^{2/3} a \sqrt [3]{b+\sqrt{b^2-4 a c}}}+\frac{\left (c^{2/3} \left (d+\frac{b d-2 a e}{\sqrt{b^2-4 a c}}\right )\right ) \int \frac{1}{\frac{\sqrt [3]{b-\sqrt{b^2-4 a c}}}{\sqrt [3]{2}}+\sqrt [3]{c} x} \, dx}{3\ 2^{2/3} a \sqrt [3]{b-\sqrt{b^2-4 a c}}}-\frac{\left (c^{2/3} \left (d+\frac{b d-2 a e}{\sqrt{b^2-4 a c}}\right )\right ) \int \frac{\frac{\sqrt [3]{b-\sqrt{b^2-4 a c}}}{\sqrt [3]{2}}+\sqrt [3]{c} x}{\frac{\left (b-\sqrt{b^2-4 a c}\right )^{2/3}}{2^{2/3}}-\frac{\sqrt [3]{c} \sqrt [3]{b-\sqrt{b^2-4 a c}} x}{\sqrt [3]{2}}+c^{2/3} x^2} \, dx}{3\ 2^{2/3} a \sqrt [3]{b-\sqrt{b^2-4 a c}}}\\ &=-\frac{d}{a x}+\frac{\sqrt [3]{c} \left (d+\frac{b d-2 a e}{\sqrt{b^2-4 a c}}\right ) \log \left (\sqrt [3]{b-\sqrt{b^2-4 a c}}+\sqrt [3]{2} \sqrt [3]{c} x\right )}{3\ 2^{2/3} a \sqrt [3]{b-\sqrt{b^2-4 a c}}}+\frac{\sqrt [3]{c} \left (d-\frac{b d-2 a e}{\sqrt{b^2-4 a c}}\right ) \log \left (\sqrt [3]{b+\sqrt{b^2-4 a c}}+\sqrt [3]{2} \sqrt [3]{c} x\right )}{3\ 2^{2/3} a \sqrt [3]{b+\sqrt{b^2-4 a c}}}-\frac{\left (c^{2/3} \left (d-\frac{b d-2 a e}{\sqrt{b^2-4 a c}}\right )\right ) \int \frac{1}{\frac{\left (b+\sqrt{b^2-4 a c}\right )^{2/3}}{2^{2/3}}-\frac{\sqrt [3]{c} \sqrt [3]{b+\sqrt{b^2-4 a c}} x}{\sqrt [3]{2}}+c^{2/3} x^2} \, dx}{4 a}-\frac{\left (\sqrt [3]{c} \left (d-\frac{b d-2 a e}{\sqrt{b^2-4 a c}}\right )\right ) \int \frac{-\frac{\sqrt [3]{c} \sqrt [3]{b+\sqrt{b^2-4 a c}}}{\sqrt [3]{2}}+2 c^{2/3} x}{\frac{\left (b+\sqrt{b^2-4 a c}\right )^{2/3}}{2^{2/3}}-\frac{\sqrt [3]{c} \sqrt [3]{b+\sqrt{b^2-4 a c}} x}{\sqrt [3]{2}}+c^{2/3} x^2} \, dx}{6\ 2^{2/3} a \sqrt [3]{b+\sqrt{b^2-4 a c}}}-\frac{\left (c^{2/3} \left (d+\frac{b d-2 a e}{\sqrt{b^2-4 a c}}\right )\right ) \int \frac{1}{\frac{\left (b-\sqrt{b^2-4 a c}\right )^{2/3}}{2^{2/3}}-\frac{\sqrt [3]{c} \sqrt [3]{b-\sqrt{b^2-4 a c}} x}{\sqrt [3]{2}}+c^{2/3} x^2} \, dx}{4 a}-\frac{\left (\sqrt [3]{c} \left (d+\frac{b d-2 a e}{\sqrt{b^2-4 a c}}\right )\right ) \int \frac{-\frac{\sqrt [3]{c} \sqrt [3]{b-\sqrt{b^2-4 a c}}}{\sqrt [3]{2}}+2 c^{2/3} x}{\frac{\left (b-\sqrt{b^2-4 a c}\right )^{2/3}}{2^{2/3}}-\frac{\sqrt [3]{c} \sqrt [3]{b-\sqrt{b^2-4 a c}} x}{\sqrt [3]{2}}+c^{2/3} x^2} \, dx}{6\ 2^{2/3} a \sqrt [3]{b-\sqrt{b^2-4 a c}}}\\ &=-\frac{d}{a x}+\frac{\sqrt [3]{c} \left (d+\frac{b d-2 a e}{\sqrt{b^2-4 a c}}\right ) \log \left (\sqrt [3]{b-\sqrt{b^2-4 a c}}+\sqrt [3]{2} \sqrt [3]{c} x\right )}{3\ 2^{2/3} a \sqrt [3]{b-\sqrt{b^2-4 a c}}}+\frac{\sqrt [3]{c} \left (d-\frac{b d-2 a e}{\sqrt{b^2-4 a c}}\right ) \log \left (\sqrt [3]{b+\sqrt{b^2-4 a c}}+\sqrt [3]{2} \sqrt [3]{c} x\right )}{3\ 2^{2/3} a \sqrt [3]{b+\sqrt{b^2-4 a c}}}-\frac{\sqrt [3]{c} \left (d+\frac{b d-2 a e}{\sqrt{b^2-4 a c}}\right ) \log \left (\left (b-\sqrt{b^2-4 a c}\right )^{2/3}-\sqrt [3]{2} \sqrt [3]{c} \sqrt [3]{b-\sqrt{b^2-4 a c}} x+2^{2/3} c^{2/3} x^2\right )}{6\ 2^{2/3} a \sqrt [3]{b-\sqrt{b^2-4 a c}}}-\frac{\sqrt [3]{c} \left (d-\frac{b d-2 a e}{\sqrt{b^2-4 a c}}\right ) \log \left (\left (b+\sqrt{b^2-4 a c}\right )^{2/3}-\sqrt [3]{2} \sqrt [3]{c} \sqrt [3]{b+\sqrt{b^2-4 a c}} x+2^{2/3} c^{2/3} x^2\right )}{6\ 2^{2/3} a \sqrt [3]{b+\sqrt{b^2-4 a c}}}-\frac{\left (\sqrt [3]{c} \left (d-\frac{b d-2 a e}{\sqrt{b^2-4 a c}}\right )\right ) \operatorname{Subst}\left (\int \frac{1}{-3-x^2} \, dx,x,1-\frac{2 \sqrt [3]{2} \sqrt [3]{c} x}{\sqrt [3]{b+\sqrt{b^2-4 a c}}}\right )}{2^{2/3} a \sqrt [3]{b+\sqrt{b^2-4 a c}}}-\frac{\left (\sqrt [3]{c} \left (d+\frac{b d-2 a e}{\sqrt{b^2-4 a c}}\right )\right ) \operatorname{Subst}\left (\int \frac{1}{-3-x^2} \, dx,x,1-\frac{2 \sqrt [3]{2} \sqrt [3]{c} x}{\sqrt [3]{b-\sqrt{b^2-4 a c}}}\right )}{2^{2/3} a \sqrt [3]{b-\sqrt{b^2-4 a c}}}\\ &=-\frac{d}{a x}+\frac{\sqrt [3]{c} \left (d+\frac{b d-2 a e}{\sqrt{b^2-4 a c}}\right ) \tan ^{-1}\left (\frac{1-\frac{2 \sqrt [3]{2} \sqrt [3]{c} x}{\sqrt [3]{b-\sqrt{b^2-4 a c}}}}{\sqrt{3}}\right )}{2^{2/3} \sqrt{3} a \sqrt [3]{b-\sqrt{b^2-4 a c}}}+\frac{\sqrt [3]{c} \left (d-\frac{b d-2 a e}{\sqrt{b^2-4 a c}}\right ) \tan ^{-1}\left (\frac{1-\frac{2 \sqrt [3]{2} \sqrt [3]{c} x}{\sqrt [3]{b+\sqrt{b^2-4 a c}}}}{\sqrt{3}}\right )}{2^{2/3} \sqrt{3} a \sqrt [3]{b+\sqrt{b^2-4 a c}}}+\frac{\sqrt [3]{c} \left (d+\frac{b d-2 a e}{\sqrt{b^2-4 a c}}\right ) \log \left (\sqrt [3]{b-\sqrt{b^2-4 a c}}+\sqrt [3]{2} \sqrt [3]{c} x\right )}{3\ 2^{2/3} a \sqrt [3]{b-\sqrt{b^2-4 a c}}}+\frac{\sqrt [3]{c} \left (d-\frac{b d-2 a e}{\sqrt{b^2-4 a c}}\right ) \log \left (\sqrt [3]{b+\sqrt{b^2-4 a c}}+\sqrt [3]{2} \sqrt [3]{c} x\right )}{3\ 2^{2/3} a \sqrt [3]{b+\sqrt{b^2-4 a c}}}-\frac{\sqrt [3]{c} \left (d+\frac{b d-2 a e}{\sqrt{b^2-4 a c}}\right ) \log \left (\left (b-\sqrt{b^2-4 a c}\right )^{2/3}-\sqrt [3]{2} \sqrt [3]{c} \sqrt [3]{b-\sqrt{b^2-4 a c}} x+2^{2/3} c^{2/3} x^2\right )}{6\ 2^{2/3} a \sqrt [3]{b-\sqrt{b^2-4 a c}}}-\frac{\sqrt [3]{c} \left (d-\frac{b d-2 a e}{\sqrt{b^2-4 a c}}\right ) \log \left (\left (b+\sqrt{b^2-4 a c}\right )^{2/3}-\sqrt [3]{2} \sqrt [3]{c} \sqrt [3]{b+\sqrt{b^2-4 a c}} x+2^{2/3} c^{2/3} x^2\right )}{6\ 2^{2/3} a \sqrt [3]{b+\sqrt{b^2-4 a c}}}\\ \end{align*}

Mathematica [C]  time = 0.0487376, size = 85, normalized size = 0.13 $-\frac{\text{RootSum}\left [\text{\#1}^3 b+\text{\#1}^6 c+a\& ,\frac{\text{\#1}^3 c d \log (x-\text{\#1})-a e \log (x-\text{\#1})+b d \log (x-\text{\#1})}{2 \text{\#1}^4 c+\text{\#1} b}\& \right ]}{3 a}-\frac{d}{a x}$

Antiderivative was successfully veriﬁed.

[In]

Integrate[(d + e*x^3)/(x^2*(a + b*x^3 + c*x^6)),x]

[Out]

-(d/(a*x)) - RootSum[a + b*#1^3 + c*#1^6 & , (b*d*Log[x - #1] - a*e*Log[x - #1] + c*d*Log[x - #1]*#1^3)/(b*#1
+ 2*c*#1^4) & ]/(3*a)

________________________________________________________________________________________

Maple [C]  time = 0.006, size = 70, normalized size = 0.1 \begin{align*} -{\frac{d}{ax}}-{\frac{1}{3\,a}\sum _{{\it \_R}={\it RootOf} \left ({{\it \_Z}}^{6}c+{{\it \_Z}}^{3}b+a \right ) }{\frac{ \left ( cd{{\it \_R}}^{4}+ \left ( -ae+bd \right ){\it \_R} \right ) \ln \left ( x-{\it \_R} \right ) }{2\,{{\it \_R}}^{5}c+{{\it \_R}}^{2}b}}} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

int((e*x^3+d)/x^2/(c*x^6+b*x^3+a),x)

[Out]

-d/a/x-1/3/a*sum((c*d*_R^4+(-a*e+b*d)*_R)/(2*_R^5*c+_R^2*b)*ln(x-_R),_R=RootOf(_Z^6*c+_Z^3*b+a))

________________________________________________________________________________________

Maxima [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x^3+d)/x^2/(c*x^6+b*x^3+a),x, algorithm="maxima")

[Out]

Timed out

________________________________________________________________________________________

Fricas [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x^3+d)/x^2/(c*x^6+b*x^3+a),x, algorithm="fricas")

[Out]

Timed out

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x**3+d)/x**2/(c*x**6+b*x**3+a),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: TypeError} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x^3+d)/x^2/(c*x^6+b*x^3+a),x, algorithm="giac")

[Out]

Exception raised: TypeError