### 3.154 $$\int (f x)^m (a+b x^n+c x^{2 n})^p \, dx$$

Optimal. Leaf size=158 $\frac{(f x)^{m+1} \left (\frac{2 c x^n}{b-\sqrt{b^2-4 a c}}+1\right )^{-p} \left (\frac{2 c x^n}{\sqrt{b^2-4 a c}+b}+1\right )^{-p} \left (a+b x^n+c x^{2 n}\right )^p F_1\left (\frac{m+1}{n};-p,-p;\frac{m+n+1}{n};-\frac{2 c x^n}{b-\sqrt{b^2-4 a c}},-\frac{2 c x^n}{b+\sqrt{b^2-4 a c}}\right )}{f (m+1)}$

[Out]

((f*x)^(1 + m)*(a + b*x^n + c*x^(2*n))^p*AppellF1[(1 + m)/n, -p, -p, (1 + m + n)/n, (-2*c*x^n)/(b - Sqrt[b^2 -
4*a*c]), (-2*c*x^n)/(b + Sqrt[b^2 - 4*a*c])])/(f*(1 + m)*(1 + (2*c*x^n)/(b - Sqrt[b^2 - 4*a*c]))^p*(1 + (2*c*
x^n)/(b + Sqrt[b^2 - 4*a*c]))^p)

________________________________________________________________________________________

Rubi [A]  time = 0.123837, antiderivative size = 158, normalized size of antiderivative = 1., number of steps used = 2, number of rules used = 2, integrand size = 22, $$\frac{\text{number of rules}}{\text{integrand size}}$$ = 0.091, Rules used = {1385, 510} $\frac{(f x)^{m+1} \left (\frac{2 c x^n}{b-\sqrt{b^2-4 a c}}+1\right )^{-p} \left (\frac{2 c x^n}{\sqrt{b^2-4 a c}+b}+1\right )^{-p} \left (a+b x^n+c x^{2 n}\right )^p F_1\left (\frac{m+1}{n};-p,-p;\frac{m+n+1}{n};-\frac{2 c x^n}{b-\sqrt{b^2-4 a c}},-\frac{2 c x^n}{b+\sqrt{b^2-4 a c}}\right )}{f (m+1)}$

Antiderivative was successfully veriﬁed.

[In]

Int[(f*x)^m*(a + b*x^n + c*x^(2*n))^p,x]

[Out]

((f*x)^(1 + m)*(a + b*x^n + c*x^(2*n))^p*AppellF1[(1 + m)/n, -p, -p, (1 + m + n)/n, (-2*c*x^n)/(b - Sqrt[b^2 -
4*a*c]), (-2*c*x^n)/(b + Sqrt[b^2 - 4*a*c])])/(f*(1 + m)*(1 + (2*c*x^n)/(b - Sqrt[b^2 - 4*a*c]))^p*(1 + (2*c*
x^n)/(b + Sqrt[b^2 - 4*a*c]))^p)

Rule 1385

Int[((d_.)*(x_))^(m_.)*((a_) + (c_.)*(x_)^(n2_.) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Dist[(a^IntPart[p]*(a +
b*x^n + c*x^(2*n))^FracPart[p])/((1 + (2*c*x^n)/(b + Rt[b^2 - 4*a*c, 2]))^FracPart[p]*(1 + (2*c*x^n)/(b - Rt[
b^2 - 4*a*c, 2]))^FracPart[p]), Int[(d*x)^m*(1 + (2*c*x^n)/(b + Sqrt[b^2 - 4*a*c]))^p*(1 + (2*c*x^n)/(b - Sqrt
[b^2 - 4*a*c]))^p, x], x] /; FreeQ[{a, b, c, d, m, n, p}, x] && EqQ[n2, 2*n]

Rule 510

Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] :> Simp[(a^p*c^q
*(e*x)^(m + 1)*AppellF1[(m + 1)/n, -p, -q, 1 + (m + 1)/n, -((b*x^n)/a), -((d*x^n)/c)])/(e*(m + 1)), x] /; Free
Q[{a, b, c, d, e, m, n, p, q}, x] && NeQ[b*c - a*d, 0] && NeQ[m, -1] && NeQ[m, n - 1] && (IntegerQ[p] || GtQ[a
, 0]) && (IntegerQ[q] || GtQ[c, 0])

Rubi steps

\begin{align*} \int (f x)^m \left (a+b x^n+c x^{2 n}\right )^p \, dx &=\left (\left (1+\frac{2 c x^n}{b-\sqrt{b^2-4 a c}}\right )^{-p} \left (1+\frac{2 c x^n}{b+\sqrt{b^2-4 a c}}\right )^{-p} \left (a+b x^n+c x^{2 n}\right )^p\right ) \int (f x)^m \left (1+\frac{2 c x^n}{b-\sqrt{b^2-4 a c}}\right )^p \left (1+\frac{2 c x^n}{b+\sqrt{b^2-4 a c}}\right )^p \, dx\\ &=\frac{(f x)^{1+m} \left (1+\frac{2 c x^n}{b-\sqrt{b^2-4 a c}}\right )^{-p} \left (1+\frac{2 c x^n}{b+\sqrt{b^2-4 a c}}\right )^{-p} \left (a+b x^n+c x^{2 n}\right )^p F_1\left (\frac{1+m}{n};-p,-p;\frac{1+m+n}{n};-\frac{2 c x^n}{b-\sqrt{b^2-4 a c}},-\frac{2 c x^n}{b+\sqrt{b^2-4 a c}}\right )}{f (1+m)}\\ \end{align*}

Mathematica [A]  time = 0.330698, size = 181, normalized size = 1.15 $\frac{x (f x)^m \left (\frac{-\sqrt{b^2-4 a c}+b+2 c x^n}{b-\sqrt{b^2-4 a c}}\right )^{-p} \left (\frac{\sqrt{b^2-4 a c}+b+2 c x^n}{\sqrt{b^2-4 a c}+b}\right )^{-p} \left (a+x^n \left (b+c x^n\right )\right )^p F_1\left (\frac{m+1}{n};-p,-p;\frac{m+n+1}{n};-\frac{2 c x^n}{b+\sqrt{b^2-4 a c}},\frac{2 c x^n}{\sqrt{b^2-4 a c}-b}\right )}{m+1}$

Warning: Unable to verify antiderivative.

[In]

Integrate[(f*x)^m*(a + b*x^n + c*x^(2*n))^p,x]

[Out]

(x*(f*x)^m*(a + x^n*(b + c*x^n))^p*AppellF1[(1 + m)/n, -p, -p, (1 + m + n)/n, (-2*c*x^n)/(b + Sqrt[b^2 - 4*a*c
]), (2*c*x^n)/(-b + Sqrt[b^2 - 4*a*c])])/((1 + m)*((b - Sqrt[b^2 - 4*a*c] + 2*c*x^n)/(b - Sqrt[b^2 - 4*a*c]))^
p*((b + Sqrt[b^2 - 4*a*c] + 2*c*x^n)/(b + Sqrt[b^2 - 4*a*c]))^p)

________________________________________________________________________________________

Maple [F]  time = 0.05, size = 0, normalized size = 0. \begin{align*} \int \left ( fx \right ) ^{m} \left ( a+b{x}^{n}+c{x}^{2\,n} \right ) ^{p}\, dx \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

int((f*x)^m*(a+b*x^n+c*x^(2*n))^p,x)

[Out]

int((f*x)^m*(a+b*x^n+c*x^(2*n))^p,x)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int{\left (c x^{2 \, n} + b x^{n} + a\right )}^{p} \left (f x\right )^{m}\,{d x} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate((f*x)^m*(a+b*x^n+c*x^(2*n))^p,x, algorithm="maxima")

[Out]

integrate((c*x^(2*n) + b*x^n + a)^p*(f*x)^m, x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left ({\left (c x^{2 \, n} + b x^{n} + a\right )}^{p} \left (f x\right )^{m}, x\right ) \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate((f*x)^m*(a+b*x^n+c*x^(2*n))^p,x, algorithm="fricas")

[Out]

integral((c*x^(2*n) + b*x^n + a)^p*(f*x)^m, x)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate((f*x)**m*(a+b*x**n+c*x**(2*n))**p,x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int{\left (c x^{2 \, n} + b x^{n} + a\right )}^{p} \left (f x\right )^{m}\,{d x} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate((f*x)^m*(a+b*x^n+c*x^(2*n))^p,x, algorithm="giac")

[Out]

integrate((c*x^(2*n) + b*x^n + a)^p*(f*x)^m, x)