### 3.11 $$\int \frac{x^2 (d+e x^3)}{a+b x^3+c x^6} \, dx$$

Optimal. Leaf size=72 $\frac{e \log \left (a+b x^3+c x^6\right )}{6 c}-\frac{(2 c d-b e) \tanh ^{-1}\left (\frac{b+2 c x^3}{\sqrt{b^2-4 a c}}\right )}{3 c \sqrt{b^2-4 a c}}$

[Out]

-((2*c*d - b*e)*ArcTanh[(b + 2*c*x^3)/Sqrt[b^2 - 4*a*c]])/(3*c*Sqrt[b^2 - 4*a*c]) + (e*Log[a + b*x^3 + c*x^6])
/(6*c)

________________________________________________________________________________________

Rubi [A]  time = 0.0731691, antiderivative size = 72, normalized size of antiderivative = 1., number of steps used = 5, number of rules used = 5, integrand size = 25, $$\frac{\text{number of rules}}{\text{integrand size}}$$ = 0.2, Rules used = {1468, 634, 618, 206, 628} $\frac{e \log \left (a+b x^3+c x^6\right )}{6 c}-\frac{(2 c d-b e) \tanh ^{-1}\left (\frac{b+2 c x^3}{\sqrt{b^2-4 a c}}\right )}{3 c \sqrt{b^2-4 a c}}$

Antiderivative was successfully veriﬁed.

[In]

Int[(x^2*(d + e*x^3))/(a + b*x^3 + c*x^6),x]

[Out]

-((2*c*d - b*e)*ArcTanh[(b + 2*c*x^3)/Sqrt[b^2 - 4*a*c]])/(3*c*Sqrt[b^2 - 4*a*c]) + (e*Log[a + b*x^3 + c*x^6])
/(6*c)

Rule 1468

Int[(x_)^(m_.)*((a_) + (c_.)*(x_)^(n2_.) + (b_.)*(x_)^(n_))^(p_.)*((d_) + (e_.)*(x_)^(n_))^(q_.), x_Symbol] :>
Dist[1/n, Subst[Int[(d + e*x)^q*(a + b*x + c*x^2)^p, x], x, x^n], x] /; FreeQ[{a, b, c, d, e, m, n, p, q}, x]
&& EqQ[n2, 2*n] && EqQ[Simplify[m - n + 1], 0]

Rule 634

Int[((d_.) + (e_.)*(x_))/((a_) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Dist[(2*c*d - b*e)/(2*c), Int[1/(a +
b*x + c*x^2), x], x] + Dist[e/(2*c), Int[(b + 2*c*x)/(a + b*x + c*x^2), x], x] /; FreeQ[{a, b, c, d, e}, x] &
& NeQ[2*c*d - b*e, 0] && NeQ[b^2 - 4*a*c, 0] &&  !NiceSqrtQ[b^2 - 4*a*c]

Rule 618

Int[((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> Dist[-2, Subst[Int[1/Simp[b^2 - 4*a*c - x^2, x], x]
, x, b + 2*c*x], x] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
/; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 628

Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Simp[(d*Log[RemoveContent[a + b*x +
c*x^2, x]])/b, x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[2*c*d - b*e, 0]

Rubi steps

\begin{align*} \int \frac{x^2 \left (d+e x^3\right )}{a+b x^3+c x^6} \, dx &=\frac{1}{3} \operatorname{Subst}\left (\int \frac{d+e x}{a+b x+c x^2} \, dx,x,x^3\right )\\ &=\frac{e \operatorname{Subst}\left (\int \frac{b+2 c x}{a+b x+c x^2} \, dx,x,x^3\right )}{6 c}+\frac{(2 c d-b e) \operatorname{Subst}\left (\int \frac{1}{a+b x+c x^2} \, dx,x,x^3\right )}{6 c}\\ &=\frac{e \log \left (a+b x^3+c x^6\right )}{6 c}-\frac{(2 c d-b e) \operatorname{Subst}\left (\int \frac{1}{b^2-4 a c-x^2} \, dx,x,b+2 c x^3\right )}{3 c}\\ &=-\frac{(2 c d-b e) \tanh ^{-1}\left (\frac{b+2 c x^3}{\sqrt{b^2-4 a c}}\right )}{3 c \sqrt{b^2-4 a c}}+\frac{e \log \left (a+b x^3+c x^6\right )}{6 c}\\ \end{align*}

Mathematica [A]  time = 0.0500176, size = 71, normalized size = 0.99 $\frac{e \log \left (a+b x^3+c x^6\right )-\frac{2 (b e-2 c d) \tan ^{-1}\left (\frac{b+2 c x^3}{\sqrt{4 a c-b^2}}\right )}{\sqrt{4 a c-b^2}}}{6 c}$

Antiderivative was successfully veriﬁed.

[In]

Integrate[(x^2*(d + e*x^3))/(a + b*x^3 + c*x^6),x]

[Out]

((-2*(-2*c*d + b*e)*ArcTan[(b + 2*c*x^3)/Sqrt[-b^2 + 4*a*c]])/Sqrt[-b^2 + 4*a*c] + e*Log[a + b*x^3 + c*x^6])/(
6*c)

________________________________________________________________________________________

Maple [A]  time = 0.002, size = 99, normalized size = 1.4 \begin{align*}{\frac{e\ln \left ( c{x}^{6}+b{x}^{3}+a \right ) }{6\,c}}+{\frac{2\,d}{3}\arctan \left ({(2\,c{x}^{3}+b){\frac{1}{\sqrt{4\,ac-{b}^{2}}}}} \right ){\frac{1}{\sqrt{4\,ac-{b}^{2}}}}}-{\frac{be}{3\,c}\arctan \left ({(2\,c{x}^{3}+b){\frac{1}{\sqrt{4\,ac-{b}^{2}}}}} \right ){\frac{1}{\sqrt{4\,ac-{b}^{2}}}}} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

int(x^2*(e*x^3+d)/(c*x^6+b*x^3+a),x)

[Out]

1/6*e*ln(c*x^6+b*x^3+a)/c+2/3/(4*a*c-b^2)^(1/2)*arctan((2*c*x^3+b)/(4*a*c-b^2)^(1/2))*d-1/3/(4*a*c-b^2)^(1/2)*
arctan((2*c*x^3+b)/(4*a*c-b^2)^(1/2))*e*b/c

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2*(e*x^3+d)/(c*x^6+b*x^3+a),x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [A]  time = 1.44533, size = 481, normalized size = 6.68 \begin{align*} \left [\frac{{\left (b^{2} - 4 \, a c\right )} e \log \left (c x^{6} + b x^{3} + a\right ) - \sqrt{b^{2} - 4 \, a c}{\left (2 \, c d - b e\right )} \log \left (\frac{2 \, c^{2} x^{6} + 2 \, b c x^{3} + b^{2} - 2 \, a c +{\left (2 \, c x^{3} + b\right )} \sqrt{b^{2} - 4 \, a c}}{c x^{6} + b x^{3} + a}\right )}{6 \,{\left (b^{2} c - 4 \, a c^{2}\right )}}, \frac{{\left (b^{2} - 4 \, a c\right )} e \log \left (c x^{6} + b x^{3} + a\right ) - 2 \, \sqrt{-b^{2} + 4 \, a c}{\left (2 \, c d - b e\right )} \arctan \left (-\frac{{\left (2 \, c x^{3} + b\right )} \sqrt{-b^{2} + 4 \, a c}}{b^{2} - 4 \, a c}\right )}{6 \,{\left (b^{2} c - 4 \, a c^{2}\right )}}\right ] \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2*(e*x^3+d)/(c*x^6+b*x^3+a),x, algorithm="fricas")

[Out]

[1/6*((b^2 - 4*a*c)*e*log(c*x^6 + b*x^3 + a) - sqrt(b^2 - 4*a*c)*(2*c*d - b*e)*log((2*c^2*x^6 + 2*b*c*x^3 + b^
2 - 2*a*c + (2*c*x^3 + b)*sqrt(b^2 - 4*a*c))/(c*x^6 + b*x^3 + a)))/(b^2*c - 4*a*c^2), 1/6*((b^2 - 4*a*c)*e*log
(c*x^6 + b*x^3 + a) - 2*sqrt(-b^2 + 4*a*c)*(2*c*d - b*e)*arctan(-(2*c*x^3 + b)*sqrt(-b^2 + 4*a*c)/(b^2 - 4*a*c
)))/(b^2*c - 4*a*c^2)]

________________________________________________________________________________________

Sympy [B]  time = 4.38941, size = 287, normalized size = 3.99 \begin{align*} \left (\frac{e}{6 c} - \frac{\sqrt{- 4 a c + b^{2}} \left (b e - 2 c d\right )}{6 c \left (4 a c - b^{2}\right )}\right ) \log{\left (x^{3} + \frac{- 12 a c \left (\frac{e}{6 c} - \frac{\sqrt{- 4 a c + b^{2}} \left (b e - 2 c d\right )}{6 c \left (4 a c - b^{2}\right )}\right ) + 2 a e + 3 b^{2} \left (\frac{e}{6 c} - \frac{\sqrt{- 4 a c + b^{2}} \left (b e - 2 c d\right )}{6 c \left (4 a c - b^{2}\right )}\right ) - b d}{b e - 2 c d} \right )} + \left (\frac{e}{6 c} + \frac{\sqrt{- 4 a c + b^{2}} \left (b e - 2 c d\right )}{6 c \left (4 a c - b^{2}\right )}\right ) \log{\left (x^{3} + \frac{- 12 a c \left (\frac{e}{6 c} + \frac{\sqrt{- 4 a c + b^{2}} \left (b e - 2 c d\right )}{6 c \left (4 a c - b^{2}\right )}\right ) + 2 a e + 3 b^{2} \left (\frac{e}{6 c} + \frac{\sqrt{- 4 a c + b^{2}} \left (b e - 2 c d\right )}{6 c \left (4 a c - b^{2}\right )}\right ) - b d}{b e - 2 c d} \right )} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**2*(e*x**3+d)/(c*x**6+b*x**3+a),x)

[Out]

(e/(6*c) - sqrt(-4*a*c + b**2)*(b*e - 2*c*d)/(6*c*(4*a*c - b**2)))*log(x**3 + (-12*a*c*(e/(6*c) - sqrt(-4*a*c
+ b**2)*(b*e - 2*c*d)/(6*c*(4*a*c - b**2))) + 2*a*e + 3*b**2*(e/(6*c) - sqrt(-4*a*c + b**2)*(b*e - 2*c*d)/(6*c
*(4*a*c - b**2))) - b*d)/(b*e - 2*c*d)) + (e/(6*c) + sqrt(-4*a*c + b**2)*(b*e - 2*c*d)/(6*c*(4*a*c - b**2)))*l
og(x**3 + (-12*a*c*(e/(6*c) + sqrt(-4*a*c + b**2)*(b*e - 2*c*d)/(6*c*(4*a*c - b**2))) + 2*a*e + 3*b**2*(e/(6*c
) + sqrt(-4*a*c + b**2)*(b*e - 2*c*d)/(6*c*(4*a*c - b**2))) - b*d)/(b*e - 2*c*d))

________________________________________________________________________________________

Giac [A]  time = 1.37539, size = 95, normalized size = 1.32 \begin{align*} \frac{e \log \left (c x^{6} + b x^{3} + a\right )}{6 \, c} + \frac{{\left (2 \, c d - b e\right )} \arctan \left (\frac{2 \, c x^{3} + b}{\sqrt{-b^{2} + 4 \, a c}}\right )}{3 \, \sqrt{-b^{2} + 4 \, a c} c} \end{align*}

Veriﬁcation of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2*(e*x^3+d)/(c*x^6+b*x^3+a),x, algorithm="giac")

[Out]

1/6*e*log(c*x^6 + b*x^3 + a)/c + 1/3*(2*c*d - b*e)*arctan((2*c*x^3 + b)/sqrt(-b^2 + 4*a*c))/(sqrt(-b^2 + 4*a*c
)*c)